首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 903 毫秒
1.
Garhwal Himalaya has been rocked by two major earthquakes in the span of just eight years, viz. Uttarkashi earthquake of 20th Oct, 1991 and Chamoli earthquake of 28th March, 1999. Chamoli earthquake of March 28, 1999 was recorded at 11 different stations of a strong motion array installed in the epicentral region. The maximum peak ground acceleration (353 cm/s2) was recorded at an accelerograph located at Gopeshwar. The data from eleven stations has been used for comparison with the simulated acceleration envelopes due to a model of the rupture responsible for this earthquake. For simulation of acceleration envelope the method of Midorikawa (1993) has been modified for its applicability to Himalayan region. This method has earlier been used by Joshi and Patel (1997) and Joshi (1999) for the studyof Uttarkashi earthquake of 20th Oct, 1991. The same method has been used for study of Chamoli earthquake. Layered earth crust has been introduced in place of homogeneous one in this method. The model of rupture is placed at a depth of 12 km below the Munsiari thrust for modelling Chamoli earthquake. Peak ground acceleration was calculated from simulated acceleration envelope using layered as well as homogeneous earth crust. For the rupture placed in a layered crust model peak ground acceleration of order 312 cm/s2 was simulated at Gopeshwar which is quite close to actually recorded value. The comparison of peak ground acceleration values in terms of root mean square error at eleven stations suggests that the root mean square error is reduced by inclusion of a layered earth crust in place of homogeneous earth crust.  相似文献   

2.
The Simulation of Ground Motions Using Envelope Summations   总被引:2,自引:0,他引:2  
—?The technique of Midorikawa (1993) has been modified to obtain a resultant envelope function at the observation point by placing the rupture causing an earthquake in a layered earth model. The method and its dependency on various modelling parameters are studied in detail. The complete study shows that the generated resultant envelope follows important strong motion characteristics such as directivity and attenuation effects. The simulated resultant envelope is further used for generating synthetic accelerograms by multiplying filtered white noise with the envelope of accelerogram at a particular observation point. Filters through which white noise passes include the effects of geometrical spreading, anelastic attenuation and near-site attenuation at high frequencies.¶Uttarkashi earthquake is among few Indian earthquakes for which strong motion data are available at thirteen different stations. Using the technique presented in this work, envelope function as well as complete acceleration time history during Uttarkashi earthquake has been simulated at these observation points. Comparison of peak acceleration, duration and acceleration response spectra confirms the utility and efficacy of the approach.  相似文献   

3.
以汶川地震中的非发震断层安宁河断裂带周边西昌地区所获取的加速度记录为依据,研究了这些记录在峰值、频谱之间的差异,并通过这些地区的局部场地条件差异进行了初步解释。在此基础上通过数值模拟方法,利用基于显式有限元和局部透射人工边界的二维有限元模型对该地区的地面运动进行了模拟。数值试验结果表明:这些简单的理想化模型对这一地区地震动的本质特征进行重现,并对产生地面运动差异的机理进行合理解释。通过分析,初步揭示了由深部断层构造所控制的断陷盆地对地震动影响显著。  相似文献   

4.
以汶川地震中的非发震断层安宁河断裂带周边西昌地区所获取的加速度记录为依据,研究了这些记录在峰值、频谱之间的差异,并通过这些地区的局部场地条件差异进行了初步解释。在此基础上通过数值模拟方法,利用基于显式有限元和局部透射人工边界的二维有限元模型对该地区的地面运动进行了模拟。数值试验结果表明:这些简单的理想化模型对这一地区地震动的本质特征进行重现,并对产生地面运动差异的机理进行合理解释。通过分析,初步揭示了由深部断层构造所控制的断陷盆地对地震动影响显著。  相似文献   

5.
We present a simplified method to simulate strong ground motion for a realistic representation of a finite earthquake source burried in a layered earth. This method is based on the stochastic simulation method of Boore (Boore, D. M., 1983, Bull. Seism. Soc. Am. 73, 1865–1894) and the Empirical Greens Function (EFG) method of Irikura (Irikura, K., 1986, Proceedings of the 7th Japan Earthquake symposium, pp. 151–156). The rupture responsible for an earthquake is represented by several subfaults. The geometry of subfaults and their number is decided by the similarity relationships. For simulation of ground motion using the stochastic simulation technique we used the shapping window based on the kinetic source model of the rupture plane. The shaping window deepens on the geometry of the earthquake source and the propagation characteristics of the energy released by various subfaults. The division of large fault into small subfaults and the method for accounting their contribution at the surface is identical to the EGF. The shapping window has been modified to take into account the effect of the transmission of energy released form the finite fault at various boundaries of the layered earth model above the source. In the present method we have applied the correction factor to adjust slip time function of small and large earthquakes. The correction factor is used to simulate strong motion records having basic spectral shape of 2 source model in broad frequency range. To test this method we have used the strong motion data of the Geiyo earthquake of 24th March 2001, Japan recorded by KiK network. The source of this earthquake is modelled by a simple rectangular rupture of size 24 × 15 km, burried at a depth of 31 km in a multilayered earth model. This rupture plane is divided into 16 rectangular subfaults of size 6.0 × 3.75 km each. Strong motion records at eight selected near-field stations were simulated and compared with the observed records in terms of the acceleration and velocity records and their response spectrum. The comparison confirms the suitability of proposed rupture model responsible for this earthquake and the efficacy of the approach in predicting the strong motion scenario of earthquakes in the subduction zone. Using the same rupture model of the Geiyo earthquake, we compared the simulated records from our and the EGF techniques at one near-field station. The comparison shows that this technique gives records which matches in a wide frequency range and that too from simple and easily accessible parameters of burried rupture.  相似文献   

6.
2013年7月22日甘肃省定西市岷县漳县交界(东经104.2°,北纬34.5°)发生M6.6地震。甘肃强震动台网在该地区覆盖良好,获得了丰富的主震加速度记录。本文收集整理了此次地震中各强震动台站获得的加速度记录资料并进行了基本处理;经统计分析绘出了峰值加速度分布图。  相似文献   

7.
A simple hybrid approach for the simulation of strong ground motion is presented in this paper. This approach is based on the deterministic modelling of rupture plane initially started by Midorikawa, Tectonophysics 218:287–295, (1993) and further modified by Joshi, Pure Appl Geophys (PAGEOPH) 8:161, (2004). In this technique, the finite rupture plane of the target event is divided into several subfaults, which satisfy scaling relationship. In this paper, simulation of strong ground motion due to a rupture buried in a earth medium consisting of several layers of different velocities and thicknesses is made by considering (1) transmission of energy at each layer; (2) frequency filtering properties of medium and earthquake source; (3) correction factor for slip of large and small magnitude earthquakes and (4) site amplification ratio at various stations. To test the efficacy of the developed technique, strong motion records were simulated at different stations that have recorded the 2004 Niigata-ken Chuetsu, Japan earthquake (M s 7.0). Comparison is made between the simulated and observed velocity and acceleration records and their response spectra. Distribution of peak ground acceleration, velocity and displacement surrounding the rupture plane is prepared from simulated and observed records and are compared with each other. The comparison of synthetic with the observed records over wide range of frequencies shows that the present technique is effective to predict various strong motion parameters from simple deterministic model which is based on simple regression relations and modelling parameters.  相似文献   

8.
Predictive equations based on the stochastic approach are developed for earthquake ground motions from Garhwal Himalayan earthquakes of 3.5≤Mw≤6.8 at a distance of 10≤R≤250 km. The predicted ground motion parameters are response spectral values at frequencies from 0.25 to 20 Hz, and peak ground acceleration (PGA). The ground motion prediction equations (GMPEs) are derived from an empirically based stochastic ground motion model. The GMPEs show a fair agreement with the empirically developed ground motion equations from Himalaya as well as the NGA equation. The proposed relations also reasonably predict the observed ground motion of two major Himalayan earthquakes from Garhwal Himalayan region. For high magnitudes, there is insufficient data to satisfactorily judge the relationship; however it reasonably predicts the 1991 Uttarkashi earthquake (Mw=6.8) and 1999 Chamoli earthquake (Mw=6.4) from Garhwal Himalaya region.  相似文献   

9.
震源动力学中破裂产生的地震动在层状介质中的传播模拟,是地震学以及地震工程学研究的前沿课题之一。本文通过建立精确的三维模型,选取具备灵活网格、高精度高效率计算性能的谱元法,利用有效抑制伪震荡的时间域离散方法——加权速度Newmark方法以及多次透射人工边界条件,进行了SCEC/USGS基准项目中TPV5模型的地震破裂过程模拟,得到基于层状介质模型和均匀介质模型(后者采用相同破裂模型)的埋深2km的震源参数结果。将二者进行对比,并具体分析破裂面位错、地震矩、破裂传播时间、上升时间和地表位移,发现层状介质对破裂过程的传播影响较为明显:① 层状介质的存在整体增加了破裂面上的位错,在层状介质模型下计算得到的地震矩约是均匀介质模型结果的1.3倍,因此认为层状介质增强了地震破裂过程中的能量释放;② 层状介质的存在使得破裂传播至地表的速度减慢,并缩短了地表各点的上升时间,增强了地表的地震动响应;③ 层状介质对于地表位移有着明显的增加作用,同时协同破裂面上的初始应力异常区域对位移峰值中心的改变有显著影响。④ 介质分异面附近地震动强烈。对结果进行整理后发现,在具有地下层状介质的地区要充分考虑层状介质产生的场地效应,否则可能会低估该地区的地震危险性。  相似文献   

10.
台湾集集地震近场地震动的上盘效应   总被引:32,自引:12,他引:32       下载免费PDF全文
俞言祥  高孟潭 《地震学报》2001,24(6):615-621
1999年9月21日(当地时间)台湾集集7.6级地震是一个逆断层型地震.用回归分析法对台湾集集地震的加速度峰值数据进行分析,得出了这次地震的水平与垂直向的加速度峰值衰减关系.从残差分布上看,位于断层上盘和下盘上的加速度峰值与从衰减关系所得到的结果相比存在不同的系统偏差,断层上盘地表的加速度峰值较高,而下盘地表的加速度峰值较低.从这次地震的加速度峰值分布等值线图上也可以看出,加速度峰值的分布相对于断层呈现明显的不对称性,上盘衰减较慢而下盘衰减较快.在近断层强地面运动研究、地震危险性分析、设定地震研究与震害预测等工作中,应考虑可能地震的震源机制特点,以便使所用的衰减模型更能反映不同地震环境地区的地震动分布特征.   相似文献   

11.
2022年1月8日门源M6.9地震造成山丹明长城局部破坏。为研究此次地震作用下夯土城墙的动力响应与破坏特征,基于地震现场考察结果,采用振幅等效处理后的记录地震波为输入地震动,开展双向地震荷载作用下夯土城墙的动力响应数值分析,研究不同位置测点的最大位移、峰值加速度与墙体应力分布特征,探讨地震导致夯土城墙破坏的主要内因。研究结果表明:双向地震荷载作用下,墙体位移和峰值加速度(PGA)随着高度的增加逐渐增加,但距墙体底部0.5 m高度范围内PGA放大效应不明显,最大位移、加速度均出现在墙体顶部裂缝位置处;水平地震荷载作用下墙体的地震动响应更为显著;墙体的最大主应力、最大剪应力均出现在有裂缝处的底端掏蚀悬空部位,墙体裂缝、夯筑搭接、掏蚀悬空处应力集中明显;裂缝对夯土城墙的地震动放大效应在一定高度范围内表现为弱化作用,但随高度增加逐渐过渡为强化作用;裂缝可显著增强墙体顶部地震动响应,可能是本次地震诱发城墙破坏的主要内因。研究成果可为古城墙遗址的加固修缮提供科学指导。  相似文献   

12.
2007年宁洱6.4级地震强震动观测记录   总被引:2,自引:0,他引:2  
"十五"期间建设并投入试运行的中国数字强震动台网云南区域台网有20多个强震动台站记录到宁洱6.4级地震产生的地面运动。记录的最大峰值加速度为431.2cm/s2,这是我国大陆自开展强震动观测以来在一次强震中同时获取记录最多的一次,初步展现了"十五"强震动台站建设的成效。  相似文献   

13.
2008年辽宁海城M 4.3地震,辽宁省强震动台网12个强震台站记录到地面运动,是辽宁省自开展强震动观测以来同时获取强震记录最多的一次,记录的最大加速度为167.5 cm·s-2,初步展现了辽宁省强震动台网建设的成效.  相似文献   

14.
The rupture plane for an earthquake has been modelledby using the semi empirical technique of Midorikawa(1993). This technique estimates ground accelerationby modelling the rupture process during an earthquake.Modifications in this technique have been made for itsapplication to the Indian region. This has been tested forthe Uttarkashi earthquake of 20th Oct, 1991, India, whichwas well recorded at thirteen stations of installedstrong motion array in this region. After testingseveral possible rupture models, a final model has beenselected and peak ground acceleration due to thismodel is simulated at thirteen different stations.Dependency of methodology on model parameters, e.g.dip and mode of rupture propagation have also beenstudied in detail.Using this technique synthetic isoseismal maps wereprepared by converting peak ground acceleration intoMMI scale. Dependency of rupture models on syntheticisoseismals has also been studied in detail. Usingthis method, peak ground acceleration for the Laturearthquake of Sept 30, 1993 has been obtained atvarious places within meisoseismal area. Synthetic andfield intensity was compared at various well-knownsites. Since the region was not covered by anyinstrumental array during Latur earthquake, thesimulated peak ground accelerations are expected toserve basis of design criteria in this region.  相似文献   

15.
2015年尼泊尔Gorkha地震强地面运动记录分析   总被引:1,自引:0,他引:1       下载免费PDF全文
2015年4月25日在尼泊尔Gorkha地区发生MW7.8地震,距离发震断层约11 km的KATNP台站完整记录了主震的加速度时程.本文根据KATNP台站记录的加速度数据分析了Gorkha地震的地震动特征.结果表明Gorkha地震在KATNP台站处产生的水平向峰值加速度为0.17 g,竖直向峰值加速度为0.19 g,该数值小于科学家们对如此大规模地震产生的地震动的预期,初步推测这可能是由加德满都山谷产生的非线性响应造成的(Dixit et al.,2015);地震在KATNP台站处产生了地表永久位移,其中竖向永久位移为131.9 cm,水平向永久位移的绝对值为159.2 cm,方向为南偏西19°(199°),据此可简单推算出断层走向约为289°(109°).地震产生了脉冲型地震动,影响因素有盆地效应、地震破裂的向前的方向性效应以及滑冲效应,其中盆地效应的周期约为5 s左右,方向性效应产生的速度脉冲的周期约为8 s左右.加速度反应谱显示在0.5 s和5.0 s左右各有一个峰值,前者是由地震破裂的脉冲式滑移产生的大量高频地震动造成的,后者是由于盆地效应和地震破裂的方向性效应造成的.基于阿里亚斯烈度计算的地震动持时约在36~46 s之间,小于与其规模相当的地震产生的地震动持时,并且不同方向上的地震动持时可能与地震破裂方向有关.阿里亚斯烈度随时间的变化比较简单,也反映了Gorkha地震是一次连续的、能量释放相对简单的地震事件.  相似文献   

16.
根据强震动观测、实验研究与数值模拟结果表明,山脊地形对地震动具有显著影响。文章基于汶川地震主震及余震的三个地形效应观测台阵记录的三分量地震动加速度时程,经基线校正后计算得到各观测点的地面峰值加速度、峰值加速度比和反应谱比,分析山脊地形对地震地面运动的影响。结果表明:山脊地形对地震地面运动的影响显著,其地形地震效应随山脊地形的不同而变化,且地形效应具有方向性;水平向地形效应显著于垂直向;谱比是周期相关的,在所分析的周期范围内谱比不总是大于1.0。  相似文献   

17.
2018年9月12日陕西省宁强县发生5.3级地震,中国数字强震动台网的39个专业台站在此次地震中触发。文章中通过处理捕获的117条三分向加速度记录,给出近场台站的地震动参数,绘制震中附近区域峰值加速度等值线图,其长轴呈西南-东北方向展布。采用实际观测数据与几种常用地震动衰减关系对比,发现霍俊荣衰减预测模型能更好地反映此次地震的影响场。将振幅最大的51GYD台的反应谱与我国抗震设计反应谱比较,采用最小二乘法拟合出不同震中距5个台站各周期谱加速度衰减特性,总结出此次地震的反应谱基本特征。运用H/V谱比法对51GYD土层台和62ZM台阵进行局部场地地震反应分析,研究覆盖土层对地震动的放大作用,及局部地形对峰值加速度和峰值速度的影响过程。  相似文献   

18.
2015年11月22日07时43分广东省徐闻县发生ML4.2地震,海南省强震动台网中心记录到3组三分向加速度记录,这是海南强震动台网建成后首次记录到强震动地震波形,常规处理后得到9条零基线校正后的三分向峰值加速度(PGA)。对3个台站的加速度记录进行分析,绘制校正后的加速度、速度、位移时程曲线及加速度反应谱,为中国南部工程震害调查提供参考资料。结果表明,此次地震记录到的强震记录PGA介于0.8—10.2 cm/s2之间,距离震中位置最近的火山口台(HSK)记录到最大PGA值。   相似文献   

19.
The 2008 MS8 Wenchuan earthquake occurs on a high angle listric thrust fault. It is the first time that the near and far field strong ground motion was observed for such special type thrust earthquake. This paper jointly interprets the distribution of peak acceleration of ground motion data with seismogenic structure and slip propagating process to investigate how high angle listric thrust fault controls the pattern of strong ground motion. We found that the distribution of peak acceleration of strong ground motion during the Wenchuan earthquake has four distinctive features: 1)The peak acceleration of ground motion inside the Longmenshan fault zone is large, that is, nearly twice as strong as that outside the fault zone; 2)This earthquake produces significant vertical ground motion, prevailing against horizontal components in the near field; 3)The far field records show that the peak acceleration is generally higher and attenuates slower versus station-fault distance in the hanging wall. It is doubtful that the attenuation of horizontal components also has the hanging wall effect since no evidence yet proving that the unexpected high value at long distance need be omitted; 4)As to the attenuation in directions parallel to the source fault(Yingxiu-Beichuan Fault), the far field records also exhibit azimuthal heterogeneity that the peak acceleration of horizontal components decreases slower in the north-northeastern direction in which the co-seismic slip propagates than that in the backward way. However, the attenuation of vertical component displays very weak heterogeneity of this kind. Synthetically considered with shallow dislocation, high dip angle, and prevailing vertical deformation during co-seismic process of the Wenchuan earthquake, our near and far field ground motion records reflect the truth that the magnitude of ground motion is principally determined by slip type of earthquake and actual distance between the slipping source patches and stations. As a further interpretation, the uniqueness of high angle listric thrust results in that the ground motion effects of the Wenchuan earthquake are similar to that due to a common thrust earthquake in some components while differ in the others.  相似文献   

20.
A method for generating a suite of synthetic ground motion time‐histories for specified earthquake and site characteristics defining a design scenario is presented. The method employs a parameterized stochastic model that is based on a modulated, filtered white‐noise process. The model parameters characterize the evolving intensity, predominant frequency, and bandwidth of the acceleration time‐history, and can be identified by matching the statistics of the model to the statistics of a target‐recorded accelerogram. Sample ‘observations’ of the parameters are obtained by fitting the model to a subset of the NGA database for far‐field strong ground motion records on firm ground. Using this sample, predictive equations are developed for the model parameters in terms of the faulting mechanism, earthquake magnitude, source‐to‐site distance, and the site shear‐wave velocity. For any specified set of these earthquake and site characteristics, sets of the model parameters are generated, which are in turn used in the stochastic model to generate the ensemble of synthetic ground motions. The resulting synthetic acceleration as well as corresponding velocity and displacement time‐histories capture the main features of real earthquake ground motions, including the intensity, duration, spectral content, and peak values. Furthermore, the statistics of their resulting elastic response spectra closely agree with both the median and the variability of response spectra of recorded ground motions, as reflected in the existing prediction equations based on the NGA database. The proposed method can be used in seismic design and analysis in conjunction with or instead of recorded ground motions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号