首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Data on the value and sign of the circumpolar magnetic field of the Sun at a maximum of its activity in cycle 24 have been analyzed. The data were obtained from observations at the Wilcox Solar Observatory and from synoptic maps of the magnetic field built in the SOLIS project (SOLIS stands for Synoptic Optical Long-term Investigations of the Sun) and with the Helioseismic and Magnetic Imager (HMI). We studied the dynamics of the total magnetic fields in the circumpolar latitudinal zones of different extension in the northern and southern hemispheres. The epochs of the sign reversal of the polar magnetic field were determined. It was found that, in cycle 24, the magnetic field polarity changed three times in the northern hemisphere and only once in the southern one. In the northern hemisphere, the reversal of the polar magnetic field finished approximately a year earlier than that in the southern one. The obtained results are compared to the data on the sign reversal of the polar magnetic field of the Sun reported for the previous solar cycles.  相似文献   

2.
The Sun is the only star for which individual surface features can be observed directly. For other stars, the properties of starspots, stellar rotation, stellar flares, etc, are derived indirectly via variation of star‐integrated spectral line profiles or their luminosity measurements. Solar disk‐integrated and disk‐resolved observations allow for investigations of the contribution of individual solar disk features to sun‐as‐a‐star spectra. Here, we provide a brief overview of three sun‐as‐a‐star programs, currently in operation, and describe recent improvements in observations and data reduction for the Integrated Sunlight Spectrometer (ISS), one of three instruments comprising the Synoptic Optical Long‐term Investigations of the Sun (SOLIS) system. Next, we discuss studies employing sun‐as‐a‐star observations (including Ca II K line as proxy for total unsigned magnetic flux and 2800 MHz radio flux) as well as the effects of flares on solar disk‐integrated spectra. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The evolution of the photospheric magnetic field during the declining phase and minimum of cycle 23 and the recent rise of cycle 24 are compared with the behavior during previous cycles. We used longitudinal full-disk magnetograms from the NSO??s three magnetographs at Kitt Peak, the Synoptic Optical Long-term Investigations of the Sun (SOLIS) vector spectro-magnetograph (VSM), the spectro-magnetograph and the 512-channel magnetograph instruments, and longitudinal full-disk magnetograms from the Mt. Wilson 150-foot tower. We analyzed 37 years of observations from these two observatories that have been observing daily, weather permitting, since 1974, offering an opportunity to study the evolving relationship between the active region and polar fields in some detail over several solar cycles. It is found that the annual averages of a proxy for the active region poloidal magnetic field strength, the magnetic field strength of the high-latitude poleward streams, and the time derivative of the polar field strength are all well correlated in each hemisphere. The active region net poloidal fields effectively disappeared in both hemispheres around 2004 and the polar fields have not become significantly stronger since this time. These results are based on statistically significant cyclical patterns in the active region fields and are consistent with the Babcock?CLeighton phenomenological model for the solar activity cycle. There was more hemispheric asymmetry in the total and maximum active region flux during late cycle 23 (after around 2004), when the southern hemisphere was more active, and the rise of cycle?24, when the northern hemisphere was more active, than at any other time since 1974. We see evidence that the process of cycle 24 field reversal has begun at both poles.  相似文献   

4.
Active regions on the Sun in the 20th solar cycle are studied with special reference to their association with proton flares based on microwave interferometric observations at Toyokawa Observatory. It has been reconfirmed that the active regions associated with intense S-component emission with a high 3-cm to 8-cm flux ratio are likely to produce proton flares. About one fourth of 259 active regions during the period investigated are found to have definite features in the spatial distribution of polarization at a wavelength of 3 cm. Active regions with one particular type of polarization pattern have a good correlation with the occurrence of proton flares.  相似文献   

5.
Extrapolation codes for modelling the magnetic field in the corona in Cartesian geometry do not take the curvature of the Sun’s surface into account and can only be applied to relatively small areas, e.g., a single active region. We apply a method for nonlinear force-free coronal magnetic field modelling of photospheric vector magnetograms in spherical geometry which allows us to study the connectivity between multi-active regions. We use Vector Spectromagnetograph (VSM) data from the Synoptic Optical Long-term Investigations of the Sun (SOLIS) survey to model the coronal magnetic field, where we study three neighbouring magnetically connected active regions (ARs 10987, 10988, 10989) observed on 28, 29, and 30 March 2008, respectively. We compare the magnetic field topologies and the magnetic energy densities and study the connectivities between the active regions. We have studied the time evolution of the magnetic field over the period of three days and found no major changes in topologies, as there was no major eruption event. From this study we have concluded that active regions are much more connected magnetically than the electric current.  相似文献   

6.
A time-dependent, nonplanar, two-dimensional magnetohydrodynamic computer model is used to simulate a series, separately examined, of solar flare-generated shock waves and their subsequent disturbances in interplanetary space between the Sun and the Earth's magnetosphere. The ‘canonical’ or ansatz series of shock waves include initial velocities near the Sun over the range 500 to 3500 km s?1. The ambient solar wind, through which they propagate, is taken to be a steady-state homogeneous plasma (that is, independent of heliolongitude) with a representative set of plasma and magnetic field parameters. Complete sets of solar wind plasma and magnetic field parameters are presented and discussed. Particular attention is addressed to the MHD model's ability to address fundamental operational questions vis-à-vis the long-range forecasting of geomagnetic disturbances. These questions are: (i) will a disturbance (such as the present canonical series of solar flare shock waves) produce a magnetospheric and ionospheric disturbance, and, if so, (ii) when will it start, (iii) how severe will it be, and (iv) how long will it last? The model's output is used to compute various solar wind indices of current interest as a demonstration of the model's potential for providing ‘answers’ to these questions.  相似文献   

7.
The Sun’s polar fields play a leading role in structuring the large-scale solar atmosphere and in determining the interplanetary magnetic field. They are also believed to supply the seed field for the subsequent solar activity cycle. However, present-day synoptic observations do not have sufficient spatial resolution or sensitivity to diagnose accurately the high-latitude magnetic vector field. The high spatial resolution and sensitivity of the full-Stokes observations from the Hinode Solar Optical Telescope Spectro-Polarimeter, observing the poles long-term, allows us to build up a detailed picture of the Cycle 24 polar field reversal, including the changing latitude distribution of the high-latitude flux, and to study the effect on global coronal field models. The Hinode observations provide detailed information on the dominant facular-scale magnetic structure of the polar fields, and their field inclination and flux distribution. Hybrid synoptic magnetograms are constructed from Hinode polar measurements and full-disk magnetograms from the Synoptic Optical Long-term Investigations of the Sun (SOLIS) Vector Spectro-Magnetograph (VSM), and coronal potential field models are calculated. Loss of effective spatial resolution at the highest latitudes presents complications. Possible improvements to synoptic polar data are discussed.  相似文献   

8.
The magnetic fields in the solar atmosphere structure the plasma, store free magnetic energy and produce a wide variety of active solar phenomena, like flare and coronal mass ejections (CMEs). The distribution and strength of magnetic fields are routinely measured in the solar surface (photosphere). Therefore, there is considerable interest in accurately modeling the 3D structure of the coronal magnetic field using photospheric vector magnetograms. Knowledge of the 3D structure of magnetic field lines also help us to interpret other coronal observations, e.g., EUV images of the radiating coronal plasma. Nonlinear force-free field (NLFFF) models are thought to be viable tools for those task. Usually those models use Cartesian geometry. However, the spherical nature of the solar surface cannot be neglected when the field of view is large. In this work, we model the coronal magnetic field above multiple active regions using NLFFF extrapolation code using vector magnetograph data from the Synoptic Optical Long-term Investigations of the Sun survey (SOLIS)/Vector Spectromagnetograph (VSM) as a boundary conditions. We compare projections of the resulting magnetic field lines solutions with their respective coronal EUV-images from the Atmospheric Imaging Assembly (SDO/AIA) observed on October 15, 2011 and November 13, 2012. This study has found that the NLFFF model in spherical geometry reconstructs the magnetic configurations for several active regions which agrees to some extent with observations. During October 15, 2011 observation, there are substantial number of trans-equatorial loops carrying electric current.  相似文献   

9.
Mendoza  B.  Ramírez  J. 《Solar physics》2001,199(1):201-209
After analysing the ratio of sunspot to facular areas along the cycle for solar cycles 12 to 20 we propose two possibilities. One indicates a non-linear behaviour for low-activity cycles and a closer-to-linear behaviour for high-activity cycles, the other one presents a non-linear behaviour for both low- and high-activity cycles and a closer-to-linear behaviour for moderate-activity cycles. Furthermore, we also find within the cycle that during low-activity cycles the Sun becomes brighter as their magnetic activity level increases while for high-activity cycles the opposite occurs, in agreement with previous studies of solar-type stars; another possibility, however, is that when evolving from minimum to maximum both the low- and high-activity Sun may become fainter while the moderate-activity Sun brightens.  相似文献   

10.
We discuss the 21-cm power spectrum (PS) following the completion of reionization. In contrast to the reionization era, this PS is proportional to the PS of mass density fluctuations, with only a small modulation due to fluctuations in the ionization field on scales larger than the mean-free-path of ionizing photons. We derive the form of this modulation, and demonstrate that its effect on the 21-cm PS will be smaller than 1 per cent for physically plausible models of damped Lyα systems. In contrast to the 21-cm PS observed prior to reionization, in which H  ii regions dominate the ionization structure, the simplicity of the 21-cm PS after reionization will enhance its utility as a cosmological probe by removing the need to separate the PS into physical and astrophysical components. As a demonstration, we consider the Alcock–Paczynski test and show that the next generation of low-frequency arrays could measure the angular distortion of the PS at the per cent level for   z ∼ 3–5  .  相似文献   

11.
The activity minimum between the end of cycle 23 and the beginning of cycle 24 was the longest and deepest since at least the beginning of the 20th century. This has led to speculation that the Sun is changing its behaviour. The sunspot number and 10.7-cm solar radio flux indices have traditionally been highly correlated, so a change in the relationship between them might flag at such a change. An examination of this relationship suggests a significant change in the relationship between activity in the photosphere and in the chromosphere/corona happened soon after the maximum of cycle 23 and has continued into cycle 24. However, there are indications of change as early as 1980.  相似文献   

12.
We investigate the impact of neutral hydrogen (H  i ) in galaxies on the statistics of 21-cm fluctuations using seminumerical modelling. Following the reionization of hydrogen, the H  i content of the Universe is dominated by damped absorption systems (DLAs), with a cosmic density in H  i that is observed to be constant at a level equal to ∼2 per cent of the cosmic baryon density from   z ∼ 1  to   z ∼ 5  . We show that extrapolation of this constant fraction into the reionization epoch results in a reduction in the amplitude of 21-cm fluctuations over a range of spatial scales. We further find that consideration of H  i in galaxies/DLAs reduces the prominence of the H  ii region induced shoulder in the 21-cm power spectrum (PS), and hence modifies the scale dependence of 21-cm fluctuations. We also estimate the 21-cm–galaxy cross PS and show that the cross PS changes sign on scales corresponding to the H  ii regions. From consideration of the sensitivity for forthcoming low-frequency arrays, we find that the effects of H  i in galaxies/DLAs on the statistics of 21-cm fluctuations will be significant with respect to the precision of a PS or cross PS measurement. In addition, since overdense regions are reionized first we demonstrate that the cross-correlation between galaxies and 21-cm emission changes sign at the end of the reionization era, providing an alternative avenue to pinpoint the end of reionization. The sum of our analysis indicates that the H  i content of the galaxies that reionize the universe will need to be considered in detailed modelling of the 21-cm intensity PS in order to correctly interpret measurements from forthcoming low-frequency arrays.  相似文献   

13.
We study predictions for dark matter (DM) phase-space structure near the Sun based on high-resolution simulations of six galaxy haloes taken from the Aquarius project. The local DM density distribution is predicted to be remarkably smooth; the density at the Sun differs from the mean over a best-fitting ellipsoidal equidensity contour by less than 15 per cent at the 99.9 per cent confidence level. The local velocity distribution is also very smooth, but it differs systematically from a (multivariate) Gaussian distribution. This is not due to the presence of individual clumps or streams, but to broad features in the velocity modulus and energy distributions that are stable in both space and time and reflect the detailed assembly history of each halo. These features have a significant impact on the signals predicted for weakly interacting massive particle and axion searches. For example, weakly interacting massive particles recoil rates can deviate by ∼10 per cent from those expected from the best-fitting multivariate Gaussian models. The axion spectra in our simulations typically peak at lower frequencies than in the case of multivariate Gaussian velocity distributions. Also in this case, the spectra show significant imprints of the formation of the halo. This implies that once direct DM detection has become routine, features in the detector signal will allow us to study the DM assembly history of the Milky Way. A new field, 'DM astronomy', will then emerge.  相似文献   

14.
The standard model of solar evolution is reviewed and a number of problems highlighted. A fundamental question is whether there is any mixing of matter in the central regions, since such mixing could radically alter the model of the present Sun and modify our understanding of the evolution of other stars. Standard models of solar evolution become unstable to 3He driven global oscillations at an age of 3 × 108 years and this may drive some mixing, even if this is not the case the finite amptitude limit of these oscillations is likely to produce modifications in the standard model. Convective overshooting at the bottom of the outer convective zone leads to an increased depth of this zone and small changes in the interior. It is pointed out that the young Sun had a 12C driven convective core whose extent and duration depends on the extent of overshooting. Such a core is likely to produce a magnetic field which will affect the internal dynamics. The internal rotation of the Sun remains an enigma and absence of knowledge of any internal magnetic field makes it difficult to study the problem. Rotationally driven instabilities are ineffective in the central chemically inhomogenous regions but may contribute to the inward diffusion of lithium from the convective zone. These and other problems are considered, but few solutions are proposed.  相似文献   

15.
Spatial dependence in the statistics of redshifted 21-cm fluctuations promises to provide the most powerful probe of the reionization epoch. In this paper we consider the second and third moments of the redshifted 21-cm intensity distribution using a simple model that accounts for galaxy bias during the reionization process. We demonstrate that skewness in redshifted 21-cm maps should be substantial throughout the reionization epoch and on all angular scales, owing to the effects of galaxy bias which leads to early reionization in overdense regions of the intergalactic medium (IGM). The variance (or power spectrum) of 21-cm fluctuations will exhibit a minimum in redshift part way through the reionization process, when the global ionization fraction is around 50 per cent. This minimum is generic, and is due to the transition from 21-cm intensity being dominated by overdense to underdense regions as reionization progresses. We show that the details of the reionization history, including the presence of radiative feedback are encoded in the evolution of the autocorrelation and skewness functions with redshift and mean IGM neutral fraction. The amplitudes of fluctuations are particularly sensitive to the masses of ionizing sources, and vary by an order of magnitude for astrophysically plausible models. We discuss the detection of skewness by first-generation instruments, and conclude that the Mileura Wide-field Array–Low-Frequency Demonstrator will have sufficient sensitivity to detect skewness on a range of angular scales at redshifts near the end of reionization, while a subsequent instrument of 10 times the collecting area could map out the evolution of skewness in detail. The observation of a minimum in variance during the reionization history, and the detection of skewness would both provide important confirmation of the cosmological origin of redshifted 21-cm intensity fluctuations.  相似文献   

16.
Reionization is thought to be dominated by low-mass galaxies, while direct observations of resolved galaxies probe only the most massive, rarest objects. The cross-correlation between fluctuations in the surface brightness of the cumulative Lyα emission (which serves as a proxy for the star formation rate) and the redshifted 21-cm signal from neutral hydrogen in the intergalactic medium (IGM) will directly probe the causal link between the production of ionizing photons in galaxies and the reionization of the IGM. We discuss the prospects for detecting this cross-correlation for unresolved galaxies. We find that on angular scales ≲10 arcmin detection will be practical using wide-field near-infrared (near-IR) imaging from space in combination with the forthcoming Mileura Wide-field Array – Low Frequency Demonstrator. When redshifted 21-cm observations of the neutral IGM are combined with space-based near-IR imaging of Lyα emission, the detection on angular scales ≲3 arcmin will be limited by the sensitivity of the 21-cm signal, even when a small-aperture optical telescope (∼2 m) and a moderate field of view (∼10 deg2) are used. On scales ≳3 arcmin, the measurement of cross-correlation will be limited by the accuracy of the foreground sky subtraction.  相似文献   

17.
介绍频谱日像仪天线阵排列及实验馈源设计的研究工作。基于CSRH设计指标,模拟了天线阵T型排列、Y型排列、不规则型和螺旋型排列,给出了每种排列的UV覆盖图像,并在成图质量上对各种排列方式做了分析。最后综合考虑提出建议采用自相似螺旋型排列。  相似文献   

18.
Phobos Laser Ranging (PLR) is a concept for a space mission designed to advance tests of relativistic gravity in the solar system. PLR’s primary objective is to measure the curvature of space around the Sun, represented by the Eddington parameter γ, with an accuracy of two parts in 107, thereby improving today’s best result by two orders of magnitude. Other mission goals include measurements of the time-rate-of-change of the gravitational constant, G and of the gravitational inverse square law at 1.5-AU distances—with up to two orders-of-magnitude improvement for each. The science parameters will be estimated using laser ranging measurements of the distance between an Earth station and an active laser transponder on Phobos capable of reaching mm-level range resolution. A transponder on Phobos sending 0.25-mJ, 10-ps pulses at 1 kHz, and receiving asynchronous 1-kHz pulses from earth via a 12-cm aperture will permit links that even at maximum range will exceed a photon per second. A total measurement precision of 50 ps demands a few hundred photons to average to 1-mm (3.3 ps) range precision. Existing satellite laser ranging (SLR) facilities—with appropriate augmentation—may be able to participate in PLR. Since Phobos’ orbital period is about 8 h, each observatory is guaranteed visibility of the Phobos instrument every Earth day. Given the current technology readiness level, PLR could be started in 2011 for launch in 2016 for 3 yr of science operations. We discuss the PLR’s science objectives, instrument, and mission design. We also present the details of science simulations performed to support the mission’s primary objectives.  相似文献   

19.
E. N. Parker 《Solar physics》1985,100(1-2):599-619
The future of solar physics is founded on the existing fundamental unsolved problems in stellar physics. Thus, for instance, the physics of stellar interiors has been called into serious question by the very low-measured neutrino flux. The 71Ga neutrino detection experiment is the next step in unravelling this mystery. If that experiment should find the expected neutrino flux from the basic p-p reaction in the Sun, then astrophysics is in a difficult situation, because the most likely explanation for the low neutrino flux found in the 37Cl experiment would be an error in our calculation of the opacity or an error in our understanding of the elemental abundances in stellar interiors, with serious implications for present ideas on stellar structure and the age of the galaxy.The new methods of helioseismology, for probing the interior of the Sun, have already found the primordial rapid rotation of the central core. The forthcoming world-wide helioseismology observing network will permit fuller exploitation of the method, promising to provide the first direct sounding of the interior of a star, hitherto known to us only through theoretical inference and the discrepant neutrino emission.The activity of all stars involves much the same phenomena as make up the activity of the Sun. The effects are too complex, and too foreign to the familiar dynamics in the terrestrial laboratory, to be deciphered by theoretical effort alone. It has become clear through the observational and theoretical work of the past decade or two that much of the essential dynamics of the activity of the atmosphere takes place on scales of the order of 102 km. Thus, an essential step in developing the physics of stellar activity will be the Solar Optical Telescope (presently planned by NASA to be launched early in the next decade) to permit a microscopic examination of the surface of the Sun to study the source of the action. The activity and X-ray emission of other stars depend on much the same effects, so that the study is essential to determining the significance of the X-ray emission from other stars.This work was supported in part by the National Aeronautics and Space Administration under grant NGL-14-001-001.  相似文献   

20.
The introduction of low-frequency radio arrays is expected to revolutionize the study of the reionization epoch. Observation of the contrast in redshifted 21-cm emission between a large H  ii region and the surrounding neutral intergalactic medium (IGM) will be the simplest and most easily interpreted signature. However, the highest redshift quasars known are thought to reside in an ionized IGM. Using a semi-analytic model we describe the redshifted 21-cm signal from the IGM surrounding quasars discovered using the i -drop-out technique (i.e. quasars at   z ∼ 6  ). We argue that while quasars at   z < 6.5  seem to reside in the post-overlap IGM, they will still provide valuable probes of the late stages of the overlap era because the light-travel time across a quasar proximity zone should be comparable to the duration of overlap. For redshifted 21-cm observations within a 32-MHz bandpass, we find that the subtraction of a spectrally smooth foreground will not remove spectral features due to the proximity zone. These features could be used to measure the neutral hydrogen content of the IGM during the late stages of reionization. The density of quasars at   z ∼ 6  is now well constrained. We use the measured quasar luminosity function to estimate the prospects for discovery of high-redshift quasars in fields that will be observed by the Murchison Widefield Array.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号