首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
针对在研仪器——大气辐射超高光谱探测仪的临边探测模式,模拟计算了大气温度和水汽的权重函数。以此为基础,利用信息量和权重函数线性化方法,结合仪器的可探测亮温阈值0.3 K,计算并分析6种大气状态下,大气温度和水汽混合比廓线在不同反演精度条件下可获得的光谱通道数,在满足最佳光谱通道数200的要求下,理论上预估其反演精度。温度廓线整体反演精度为0.6 K,水汽混合比廓线反演精度可达到5%,但热带大气在16~20 km高度的水汽廓线反演精度仅为10%。反演精度预估,仅提供了一种全面认识仪器性能的方法,精度的确定还有赖于真实探测数据的获取和反演方法。  相似文献   

2.
刘清华  杨军  陆风 《气象科技》2012,40(5):698-706
采用基于光谱匹配的计算方法开展红外通道模拟仿真,该方法利用高光谱大气探测仪的实际观测数据来模拟气象卫星成像仪红外通道观测目标亮温.利用高光谱大气探测仪(IASI)的实际观测数据,进行了2010年2月14日12:57(UTC)、2010年2月15日00:57(UTC)、2010年5月2日12:57(UTC)MTSAT-1R卫星成像仪(JAMI)红外通道的模拟仿真.结果显示:JAMI 4个红外通道的模拟亮温与观测亮温偏差平均值的绝对值都小于1K,模拟亮温与观测亮温的相关系数都大于0.93,表明这种基于高光谱数据的方法可用于气象卫星成像仪红外通道的模拟仿真.进而利用IASI的观测数据进行了 2010年11月6个时刻FY-2E卫星成像仪(VISSR)红外通道的模拟仿真,并将通道模拟数据与GSICS定标的观测数据以及与业务定标的观测数据相比,结果表明:2010年11月期间,FY-2E卫星成像仪IR2、IR3、IR4通道的GSICS定标比业务定标有明显的改进.  相似文献   

3.
大气透过率的计算是红外辐射传输计算的核心,RTTOV(Radiative Transfer for TOVS)通过建立大气廓线中温度、水汽、臭氧和其他气体浓度等参数与卫星通道透过率的统计关系,可实现卫星通道透过率和大气顶辐射率的快速准确计算。但在一些复杂吸收波段,如水汽波段,RTTOV的计算误差较大。为提高RTTOV在水汽敏感波段的计算精度,利用机器学习中的梯度提升树(Gradient Boosting Tree,GBT)方法,选取从ECMWF(European Centre for Medium-Range Weather Forecasts)的IFS-137(The Integrated Forecast System,137-level-profile)廓线集中挑选的1406条廓线和由此计算的透过率真值作为样本,选取风云三号气象卫星上搭载的红外分光计(InfraRed Atmospheric Sounder,IRAS)通道12(7.33 μm)进行个例研究,分别建立陆地和海洋晴空大气等压面至大气层顶透过率的快速计算模型(GBT模型)。通过和透过率、亮温真值的比较,验证了GBT模型。比较结果显示,GBT模型预测的透过率平均绝对误差(Mean Absolute Error,MAE)为:陆地0.0012,海洋0.0009;均方对数误差(Mean Squared Logarithmic Error,MSLE)为:陆地0.0215,海洋0.0095,均小于RTTOV直接计算的透过率的误差(陆地、海洋的MAE分别比RTTOV小0.0008和0.0010,MSLE分别比RTTOV小0.0135和0.0227);由GBT模型计算的亮温MAE分别为:陆地0.0949 K,海洋0.0634 K,均方根误差(Root Mean Square Error,RMSE)分别为:陆地0.1352 K,海洋0.0831 K,也都小于RTTOV直接模拟的晴空亮温误差(陆地、海洋的MAE分别比RTTOV小0.1685 K和0.1466 K,RMSE分别比RTTOV小0.1794 K和0.1685 K)。本研究的结果表明,在IRAS红外水汽波段,GBT预测的透过率和亮温误差比RTTOV小。机器学习有提高水汽波段正演精度的潜力,或可为辐射传输的快速计算提供可行的替代方法。   相似文献   

4.
利用地基微波辐射计资料反演0-10km大气温湿廓线试验研究   总被引:3,自引:0,他引:3  
实测与模拟的微波辐射计亮温存在偏差,导致基于BP神经网络模型的大气温湿廓线反演精度的降低。研究了一种基于资料订正后的BP神经网络反演大气温湿廓线的方法。首先,基于2014年6月南京江宁探空资料,利用MonoRTM模式,模拟中心频率在22.2GHz~58.8GHz范围内22通道亮温;对比模拟和实测南京站微波辐射计资料,建立实测微波辐射计资料订正模型。然后,以南京地区2011-2013年探空资料为输入,模拟22通道亮温数据,并基于模拟的22通道亮温数据和当地探空资料,利用BP神经网络算法,建立大气温度、水汽密度、相对湿度廓线反演模型。最后,利用构建的订正模型,对2014年7月试验获取的微波辐射计资料进行订正,并将订正后的微波辐射计资料输入BP神经网络反演模型,反演0-10km高度58层的大气温度、水汽密度和相对湿度,对比实际探空资料以及微波辐射计二级产品,评估分析反演效果。实验结果表明:所建的反演模型提高了大气温湿廓线反演精度,大气温度、水汽密度和相对湿度均方根误差范围分别为1.0~2.0K、0.20 ~1.93g/m3和2.5%~18.6%。  相似文献   

5.
GMS-5 估计可降水量的研究   总被引:12,自引:1,他引:11       下载免费PDF全文
文章证明了由静止气象卫星GMS-5的分裂窗通道和水汽通道亮温反演可降水量的可行性,探讨了GMS-5红外通道亮温与可降水量的关系,建立了由3个通道亮温反演可降水量的经验公式。用60组大气平均廓线,对公式模拟检验误差为0.18 g/cm2,而用实际124组探空和对应的GMS-5亮温资料进行检验,误差0.40 g/cm2。用得到的经验公式可反演大范围的晴空可降水量分布。  相似文献   

6.
目前多数资料同化系统中对卫星的观测值都是采用晴空模拟,然而用晴空辐射传输模式模拟云区卫星微波通道的辐射值会造成与观测较大的偏差,导致大量云区卫星资料被直接抛弃无法进入同化系统,因而有必要改进云区卫星辐射亮温的模拟能力,进而提高同化系统中云区卫星资料利用率。以2010年台风“圆规”、“凡比亚”和“鲇鱼”为例,基于先进的微波扫描辐射计AMSR-E观测应用一维变分算法反演台风区域的云宏观参数,包括云液水含量廓线、云冰水含量廓线和雨水含量廓线;然后,以大气温度、湿度廓线及这些反演的云参数作为快速辐射传输模式CRTM的输入参数,模拟AMSR-E各通道的辐射亮温。通过对比晴空、有云两种情况下模拟亮度温度与实际观测亮度温度间的偏差,发现增加云参数作为辅助参数、启动辐射传输的散射模块,可以有效地改进台风外围云区卫星辐射亮温的模拟效果,大幅减少模拟亮温与观测亮温间的偏差,增加了同化进数值预报系统的卫星观测数据量。   相似文献   

7.
利用MODTRAN辐射传输模式,结合FY-2E星载辐射计红外分裂窗通道的光谱响应特征,计算了中纬度的夏、冬季晴空大气情况下,卫星观测亮温度对大气水汽及气溶胶的敏感性。在模拟条件下,计算星载辐射计红外通道温度灵敏度(0.2 K)对应的大气水汽及气溶胶含量变化的临界值分别为0.42 g/cm2和0.25。以此为参照值,利用FY-2E晴空大气可降水量产品及MODIS大气气溶胶产品实际数据,分析了在导风模块常用尺度(80 km×80 km)内大气水汽、气溶胶含量的变化引起FY-2E星载辐射计红外分裂窗通道观测亮温度差异超过星载辐射计红外通道的温度灵敏度的可能性,结果表明实际大气存在满足上述临界值条件的情况。研究结果为把晴空大气水汽、气溶胶作为卫星红外云图上的晴空区导风示踪物,提供了理论和实际依据。   相似文献   

8.
大气逆温层会阻碍大气垂直运动的发展,传统上只能利用地基无线电探空资料进行监测和分析。星载高光谱红外大气探测可以反演晴空区大气温、湿度廓线,为大气逆温层监测提供了一种可能的技术手段。为探索中国卫星监测逆温层的方法和途径,本研究基于风云三号D星搭载的红外高光谱大气探测仪(FY-3D/HIRAS)观测资料,利用RTTOV(Radiative Transfer for TOVS)快速辐射传输模式模拟了不同逆温强度、不同逆温层顶高度对HIRAS红外通道观测亮温的影响。结果表明,在780—1000 cm-1窗区光谱内的精细谱线对应的通道对逆温层最为敏感,与参考通道(926.875 cm-1)的亮温差可以用于大气逆温层识别。文中定义了逆温强度敏感指数和逆温层顶高度敏感指数,模拟结果表明,强吸收(通道1:784.375 cm-1、通道2:798.750 cm-1)、中吸收(通道1:803.125 cm-1、通道2:852.500 cm-1)、弱吸收(通道1:840.000...  相似文献   

9.
机载微波大气温度探测仪可以机动灵活地获取大气温度廓线信息。针对一次机载微波大气温度探测仪的多高度飞行观测试验,基于逐线积分模式和大气参数廓线库,建立用于不同飞行高度的快速辐射传输模式,分析了仪器观测亮温的质量并对仪器观测进行了订正;建立了基于神经网络的微波大气温度廓线反演算式,分析了不同高度、不同通道选择对于大气温度廓线反演性能的影响。研究结果表明:(1)较低飞行高度计算得到的各地表敏感通道地表比辐射率之间具有较好的一致性;(2)采用订正算式订正后,不同飞行高度的模拟亮温与观测亮温具有较好的一致性;(3)机载微波大气温度反演最优通道组合依赖于平台飞行高度;(4)采用最优的通道组合,4 200 m、3 200 m和2 500 m高度层温度反演均方根误差范围分别为0.5~1.8 K、0.5~1.3 K和0.4~1.0 K。   相似文献   

10.
吴晓  白文广  张婉春 《气象》2018,44(6):844-849
FY-3B卫星VIRR仪器的向外长波辐射(outgoing long-wave radiation,OLR)产品处理采用与NOAA/AVHRR相同的算法模型,即用窗区通道亮温-通量等效亮度温度的回归关系式计算OLR,但两星的OLR业务产品与目前国际质量最好的云和地球辐射能量系统(cloud and earth’s radiant energy system,CERES)仪器观测OLR产品相比,存在约10 W·m~(-2)的系统负偏差。FY-3B的原因在于OLR反演模式建立过程中红外辐射传输计算软件的精度不够。鉴于此,本文采用美国21世纪开发的逐线辐射传输模型计算软件(LBLRTM),模拟计算了全球2521条大气廓线的大气顶辐射率光谱,在此基础上计算了每条廓线的OLR和FY-3B/VIRR窗区通道亮温,应用最小二乘法统计回归模拟数据,重新建立了由FY-3B/VIRR窗区通道亮温计算OLR的回归关系式及系数。模式应用于FY-3BL1级数据,处理2016年1,3,7和10月的FY-3B逐日全球OLR资料,该资料与AQUA-TERRA卫星的CERES仪器OLR观测产品相比,得到日平均OLR:RMSE=9~15 W·m~(-2),R=0.9834,Bias=-0.3W·m~(-2);月平均OLR:RMSE=4~7W·m~(-2),R=0.9915,Bias=-0.3W·m~(-2),表明改进的模式能处理出无系统偏差的、精度基本与CERES观测相当的OLR产品,尽管单通道反演算法有着固有的模式回归误差。  相似文献   

11.
为了考察风云三号(FY-3)气象卫星红外分光计的性能, 以该仪器初样阶段的光谱通道特征和仪器响应函数为基础, 进行大气温度垂直廓线模拟反演。选用红外分光计15 μmCO2吸收带的不同通道组合进行模拟反演, 结果表明:总体上红外分光计具有较好的大气温度反演能力, 窗区通道8的加入可有效提高近地面层温度反演精度;利用迭代算法反演大气温度时, 初估廓线对反演精度影响较大, 初估廓线与真值愈接近, 反演精度愈高;现有仪器通道灵敏度设计指标可满足大气温度反演基本要求, 如仪器灵敏度降低, 反演精度也随之降低, 提高仪器灵敏度, 有利于提高仪器的使用效果。  相似文献   

12.
基于FY-3/IRAS利用非线性模式反演OLR   总被引:1,自引:0,他引:1       下载免费PDF全文
FY-3系列卫星星载IRAS仪器设有26个通道,其中20个通道用于探测地球大气在红外波段的热辐射,通道辐射率代表了地球大气系统在大气顶的向外辐射光谱信息,与总波段的射出长波辐射(OLR)通量相关性高。该文基于逐线辐射传输模式计算软件LBLRTM对全球2521条大气廓线的大气顶射出辐射率模拟数据,计算了每条廓线的OLR和FY-3B/IRAS,FY-3C/IRAS通道辐射率,用统计回归方法建立了利用IRAS的多通道辐射率计算OLR的非线性理论回归模式;应用模式和FY-3B/IRAS,FY-3C/IRAS的L1级数据,处理得到2016年4月1-30日的全球日平均、月平均OLR格点产品。与Aqua/CERES,Terra/CERES仪器宽波段观测OLR产品对比表明:对于水平分辨率为1°×1°的全球月平均OLR格点产品,均方根误差为2.22 W·m-2,相关系数为0.9982 W·m-2,平均偏差为-0.2 W·m-2,表明FY-3/IRAS仪器定标及反演模式均达到较高水平。文中还回顾了历史上不同气象卫星的多种OLR反演算法模式,并对不同模式精度进行了比较。  相似文献   

13.
Fengyun-3 D(FY-3 D) satellite is the latest polar-orbiting meteorological satellite launched by China and carries 10 instruments onboard. Its microwave temperature sounder(MWTS) and microwave humidity sounder(MWHS) can acquire a total of 28 channels of brightness temperatures, providing rich information for profiling atmospheric temperature and moisture. However, due to a lack of two important frequencies at 23.8 and 31.4 GHz, it is difficult to retrieve the total precipitable water vapor(TPW) and cloud liquid water path(CLW) from FY-3 D microwave sounder data as commonly done for other microwave sounding instruments. Using the channel similarity between Suomi National Polar-orbiting Partnership(NPP) advanced technology microwave sounder(ATMS) and FY-3 D microwave sounding instruments, a machine learning(ML) technique is used to generate the two missing low-frequency channels of MWTS and MWHS. Then, a new dataset named as combined microwave sounder(CMWS) is obtained,which has the same channel setting as ATMS but the spatial resolution is consistent with MWTS. A statistical inversion method is adopted to retrieve TPW and CLW over oceans from the FY-3 D CMWS. The intercomparison between different satellites shows that the inversion products of FY-3 D CMWS and Suomi NPP ATMS have good consistency in magnitude and distribution. The correlation coefficients of retrieved TPW and CLW between CMWS and ATMS can reach 0.95 and 0.85, respectively.  相似文献   

14.
半透明云风矢量高度指定是卫星风矢量算法的重要部分,需要来自半透明云体的辐射和云下背景辐射两个变量。云下背景辐射发生在云层下面,未被卫星直接观测到,为了在半透明云风矢量高度指定算法中更精确地获得云下背景辐射,使用风矢量附近无云区的红外/水汽散点图,估计云下背景辐射。分析表明:在追踪区域里存在无云区的情况下,追踪区的最高红外亮温可代表红外通道的背景辐射;而水汽通道的背景辐射,却在红外亮温高值区段内水汽亮温相对较低区段。追踪区内找不到无云区时应扩大搜索范围,找到无云区后可估计云下背景辐射。在半透明云风矢量高度指定算法中使用云下背景辐射估计的改进算法前后,计算FY-2气象卫星进行风矢量,并将结果与欧洲中期天气预报中心(ECMWF)分析场进行对比表明,在半透明风矢量高度指定算法中使用云下背景辐射估计,FY-2气象卫星风矢量误差明显降低。  相似文献   

15.
中国新一代地球静止气象卫星风云四号A星(FY-4A)搭载的干涉式大气垂直探测仪(Geostationary Interferometric Infrared Sounder, GIIRS)以红外高光谱干涉分光方式探测三维大气温湿结构,取得了在静止轨道上探测大气的突破性进展。地基全球导航卫星系统(Global Navigation Satellite System,GNSS)是一种连续监测大气可降水量(Precipitable Water Vapor,PWV)的有效手段,基于2018年6—8月中国地基GNSS站监测的PWV和FY-4A/GIIRS水汽廓线的业务产品以及常规无线电探空资料,开展GNSS/PWV与FY-4A/GIIRS水汽廓线快速融合应用,以提高卫星资料反演大气水汽廓线的精度。结果表明:与常规无线电探空相比,FY-4A/GIIRS水汽廓线产品在大气低层均方根误差(Root Mean Square Error,RMSE)为4.5 g/kg,700 hPa为2.4 g/kg,500 hPa以上因水汽含量较低RSME小于1.5 g/kg。GNSS/PWV与FY-4A/GIIRS水汽廓线融合后,FY-4A/GIIRS水汽廓线误差整层RMSE减小20%,从近地层到600 hPa RMSE平均减小20%—25%,尤其是850—700 hPa改善最明显,极大改善了卫星水汽反演资料的可用性。对一次多系统影响的暴雨天气过程应用分析表明,GNSS/PWV和FY-4A/GIIRS融合产品可获得高时、空密度的大气水汽廓线,对强降水的临近预报有非常重要的支撑作用。   相似文献   

16.
LAPS(Local Analysis and Prediction System)采用物理初值化与三维变分约束相结合的方法,通过融合多源观测资料,发挥各种资料的优势,分析得到较为客观的三维云场,并可改善数值模式初始场。将FY-2E卫星可见光反照率和红外亮温资料引入LAPS,针对2014年6月登陆我国的台风"海贝思",设计不同水平分辨率的同化试验,研究台风三维云结构和初始场的改善情况。结果表明:1)LAPS云分析中引入卫星可见光反照率资料之后,总云量有显著的调整,能够较清晰地分辨出台风眼区、云墙和螺旋云带,卫星红外亮温资料在云顶高度的调整中发挥了重要作用,而且高分辨率的云分析结果有助于更好地分析出台风结构和强对流区域。2)LAPS物理初值化技术将卫星资料中的云结构和微物理信息添加到初始场中,一定程度上调整了数值模式初始场中垂直速度、云水、云冰和水汽场等变量的分布,提高了模式初值质量,对模拟和预报台风系统将会产生一定的影响。  相似文献   

17.
毕明明  邹晓蕾 《气象科学》2022,42(4):457-466
极轨气象卫星S-NPP、MetOp-A和FY-3B上搭载的微波湿度计观测资料可以反映出台风周围水汽和云雨结构。本文使用权重函数峰值在800 hPa附近的微波湿度计通道观测资料和ERA5再分析资料全天空模拟亮温,以飓风Sandy和Isaac为例,对用方位谱台风中心位置定位方法得到的观测和模拟中心位置进行了比较。利用下午星S-NPP搭载的先进技术微波探测仪(Advanced Technology Microwave Sounder, ATMS)和上午星MetOp-A搭载的微波湿度计(Microwave Humidity Sounder, MHS)观测亮温得到的飓风Sandy(Isaac)中心位置与最佳路径平均相差35.8 km(32.9 km),但用ERA5全天空模拟亮温得到的飓风Sandy(Isaac)中心位置与最佳路径平均相差73.3 km(82.1 km)。若按照热带风暴和台风等级来划分,ATMS和MHS观测和模拟亮温得到的台风中心位置与最佳路径的平均距离对热带风暴分别是36.5 km和105.9 km,对台风分别是25.8 km和56.4 km。若用FY-3B搭载的微波湿度计(以M...  相似文献   

18.
利用FY-3A近红外资料反演水汽总量   总被引:4,自引:1,他引:3       下载免费PDF全文
该文介绍了利用搭载在FY-3A卫星上的中分辨率光谱成像仪 (MERSI) 的近红外 (NIR) 通道反演大气水汽总量 (PWV) 的方法。根据预先建立的查找表,大气水汽总量可以通过水汽通道与窗区通道的卫星测值相比反演得到。对MERSI近红外水汽通道灵敏度进行估算,结果表明:处于吸收带两翼的905 nm和980 nm通道对不同水汽量的敏感性表现比较接近,对较大水汽含量最为敏感;当水汽较弱时,强吸收的940 nm通道非常敏感。基于这3个通道对水汽含量敏感性的不同表现,采用3个通道水汽总量的加权平均值作为PWV产品的最终反演值。文中设计了水汽总量业务算法反演流程,并基于FY-3A/MERSI最新观测资料进行晴空大气水汽总量的业务处理生成试验,顺利生成MERSI单轨道水汽总量产品及日拼图中国区域产品和全球产品,同时生成多天合成产品,产品反映出MERSI具有较好的近红外水汽探测能力。将卫星反演结果与探空数据进行初步比对检验,显示卫星反演值有20%~30%系统性偏低,需要进一步改进反演查找表。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号