首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Leka Ophiolite Complex (LOC) is located on the island of Leka, Norway, and belongs to the Uppermost Allochthon of the Scandinavian Caledonides. The rocks of the adjacent mainland and most of the surrounding islands are basement gneisses and supracrustal rocks not related to the ophiolite complex. Paleostress analysis, gravity inversion, and regional geology support a fault-bounded rhombochasm geometry for the LOC. The paleostress inversions revealed two types of tensors, interpreted as small strains: (1) horizontal extension, generally E–W to NE–SW, and (2) horizontal extension in the same direction with an added component of perpendicular horizontal contraction. A strong positive gravity anomaly (25 mGal) is centered on Leka, and gravity inversion indicates that the LOC lies directly below its surface exposures with steep-sided walls and a flat bottom located at 7 km depth. The faults bounding the LOC probably initiated during postorogenic extension in the Scandinavian Caledonides. The faults are regional in scale and are parallel to other NE–SW trending en echelon faults along the Norwegian coastline and on the adjacent mainland.A pull-apart structure explains the down-dropping and subsequent preservation of the LOC, as it is surrounded by rocks from lower structural positions within the nappe stack. The paleostress directions from Leka support a sinistral component of shear along these faults. The gravity inversion is consistent with a fault-bounded geometry. This pull-apart structure, as uniquely recorded by the dense ophiolitic rocks, suggests that strike-slip partitioning was active in an obliquely divergent setting.  相似文献   

2.
In this work we analyse and check the results of anisotropy of magnetic susceptibility (AMS) by means of a comparison with palaeostress orientations obtained from the analysis of brittle mesostructures in the Cabuérniga Cretaceous basin, located in the western end of the Basque–Cantabrian basin, North Spain. The AMS data refer to 23 sites including Triassic red beds, Jurassic and Lower Cretaceous limestones, sandstones and shales. These deposits are weakly deformed, and represent the syn-rift sequence linked to basins formed during the Mesozoic and later inverted during the Pyrenean compression. The observed magnetic fabrics are typical of early stages of deformation, and show oblate, triaxial and prolate magnetic ellipsoids. The magnetic fabric seems to be related to a tectonic overprint of an original, compaction, sedimentary fabric. Most sites display a NE–SW magnetic lineation that is interpreted to represent the stretching direction of the Early Cretaceous extensional stage of the basin, without recording of the Tertiary compressional events, except for sites with compression-related cleavage.Brittle mesostructures include normal faults, calcite and quartz tension gashes and joints, related to the extensional stage. The results obtained from joints and tension gashes show a dominant N–S to NE–SW, and secondary NW–SE, extension direction. Paleostresses obtained from fault analysis (Right Dihedra and stress inversion methods) indicate NW–SE to E–W, and N–S extension direction. The results obtained from brittle mesostructures show a complex pattern resulting from the superposition of several tectonic processes during the Mesozoic, linked to the tectonic activity related to the opening of the Bay of Biscay during the Early Cretaceous. This work shows the potential in using AMS analysis in inverted basins to unravel its previous extensional history when the magnetic fabric is not expected to be modified by subsequent deformational events. Brittle mesostructure analysis seems to be more sensitive to far-field stress conditions and record longer time spans, whereas AMS records deformation on the near distance, during shorter intervals of time.  相似文献   

3.
As a result of oblique collision, the Taiwan orogen propagates southward. The Hengchun peninsula in the southern tip of the Taiwan Central Range, preserving the youngest, the least deformed and the most complete accretionary prism sequences, allows therefore better understanding of the tectonic evolution of Taiwan orogen. On the Hengchun peninsula, four main stages of paleostress can be recognized by the analysis of brittle tectonics. After recording the first two stages of paleostress, rocks of the Hengchun peninsula (the Hengchun block) have undergone both tilting and counterclockwise rotation of about 90°. The structural boundaries of this rotated Hengchun block are: the Kenting Mélange zone in the southwest, the Fongkang Fault in the north, and a submarine backthrust in the east. The angle of this rotation is principally calculated by the paleomagnetic analysis data and a physical model experiment. Through a systematic back-tilting and back-rotating restoration, the original orientations of the four paleostress stages of Hengchun peninsula are recognized. They are, from the ancient to the recent, a NW–SE extension, a combination of NW–SE transtension and NE–SW transpression, a NE–SW compression, and finally a combination of NE–SW transtension and NW–SE transpression. This result can be explained by a phenomenon of stress axes permutation, instead of a complex polyphase tectonism. This stress axes permutation is caused by the horizontal compression increase accompanying the propagation of the accretionary prism. Combining the tectonic and paleomagnetic data with paleocurrent and stratigraphic data enables us to reconstruct the tectonic evolution of the Hengchun peninsula. This reconstruction corresponds to the deformation history of a continental margin basin, from its opening to its intense deformation in the accretionary prism.  相似文献   

4.
In this study, we analyze the recent (1990–1997) seismicity that affected the northern sector (Sannio–Benevento area) of the Southern Apennines chain. We applied the Best Estimate Method (BEM), which collapses hypocentral clouds, to the events of low energy (Md max=4.1) seismic sequences in order to constrain the location and geometry of the seismogenetic structures. The results indicate that earthquakes aligned along three main structures: two sub-parallel structures striking NW–SE (1990–1992, Benevento sequence) and one structure striking NE–SW (1997, Sannio sequence). The southernmost NW–SE structure, which dips towards NE, overlies the fault that is likely to be responsible for a larger historical earthquake (Io max=XI MCS, 1688 earthquake). The northernmost NW–SE striking structure dips towards SW. The NE–SW striking structure is sub-vertical and it is located at the northern tip of the fault segment supposed to be responsible for the 1688 earthquake. The spatio-temporal evolution of the 1990–1997 seismicity indicates a progressive migration from SE (Benevento) to NW (Sannio) associated to a deepening of hypocenters (i.e., from about 5 to 12 km). Hypocenters cluster at the interface between the major structural discontinuities (e.g., pre-existing thrust surfaces) or within higher rigidity layers (e.g., the Apulia carbonates). Available focal mechanisms from earthquakes occurred on the recognized NW–SE and NE–SW faults are consistent with dip-slip normal solutions. This evidences the occurrence of coexisting NW–SE and NE–SW extensions in Southern Apennines.  相似文献   

5.
Neotectonic observations allow a new interpretation of the recent tectonic behaviour of the outer fore arc in the Caldera area, northern Chile (27°S). Two periods of deformation are distinguished, based on large-scale Neogene to Quaternary features of the westernmost part of the Coastal Cordillera: Late Miocene to Early Pliocene deformations, characterized by a weak NE–SW to E–W extension is followed by uppermost Pliocene NW–SE to E–W compression. The Middle Pleistocene to Recent time is characterized by vertical uplift and NW–SE extension. These deformations provide clear indications of the occurrence of moderate to large earthquakes. Microseismic observations, however, indicate a lack of shallow crustal seismicity in coastal zone. We propose that both long-term brittle deformation and uplift are linked to the subduction seismic cycle.  相似文献   

6.
The Iberian Chain is a wide intraplate deformation zone formed by the tectonic inversion during the Pyrenean orogeny of a Permian–Mesozoic basin developed in the eastern part of the Iberian Massif. The N–S convergence between Iberia and Eurasia from the Late Cretaceous to the Lower Miocene times produced significant intraplate deformation. The NW–SE oriented Castilian Branch of the Iberian Chain can be considered as a “key zone” where the proposed models for the Cenozoic tectonic evolution of the Iberian Chain can be tested. Structural style of basin inversion suggests mainly strike–slip displacements along previous NW–SE normal faults, developed mostly during the Mesozoic. To confirm this hypothesis, structural and basin evolution analysis, macrostructural Bouguer gravity anomaly analysis, detailed mapping and paleostress inversions have been used to prove the important role of strike slip deformation. In addition, we demonstrate that two main folding trends almost perpendicular (NE–SW to E–W and NW–SE) were simultaneously active in a wide transpressive zone. The two fold trends were generated by different mechanical behaviour, including buckling and bending under constrictive strain conditions. We propose that strain partitioning occurred with oblique compression and transpression during the Cenozoic.  相似文献   

7.
Methods have been devised for analyzing vertical land movement and seismicity data using two-dimensional Chebychev functions and oblique projections. A filtering operation in the space domain is made possible by use of a two-dimensional Chebychev function. The oblique projections give an intuitive understanding of land deformation. Characteristic aspects of vertical land movement obtained by precise levelling and of the energy release of microearthquakes with depths shallower than 20 km in the northeastern Japan arc were investigated in detail applying these methods.Lineations with wavelength of about 20–60km trending towards NE—SW were found for both the land deformation and the seismicity. It should be noted that this trend is almost perpendicular to the direction of the strain migration and is related to other geophysical information.  相似文献   

8.
In response to the discovery of diamonds within modern alluvium in the glaciated area of Wawa, Ontario, Canada, the Ontario Geological Survey undertook a regional program of surficial mapping and modern alluvial sediment sampling to assess the potential of the area for diamond-bearing kimberlite. Five varieties of kimberlite-derived indicator minerals were recovered and the composition of three varieties was evaluated, resulting in the identification of G10 Cr-pyrope garnet, inclusion field chromite and Mg-ilmenite. The distribution of indicator minerals was examined in the context of the glacial and bedrock geology. Glacial dispersal from non-kimberlitic marker units is restricted (commonly less than 200 m) and many kimberlite indicator minerals were recovered from samples collected close to cross-cutting NE–SW and NW–SE faults and a strong NE–SW trend in the bedrock associated with the Kapuskasing Structural Zone. From this, several potential exploration targets for diamond-bearing kimberlite are defined.  相似文献   

9.
A statistical analysis was carried out to investigate spatial associations between natural seismicity and faults in southeastern Ontario and north-central New York State (between 73°18′ and 77°00′W and 43°30′ and 45°18′N). The study area is situated to the west of the seismically active St. Lawrence fault zone, and to the east of the Lake Ontario basin where recently documented geological and geophysical evidence points to possible neotectonic faulting. The weights of evidence method was used to judge the spatial associations between seismic events and populations of faults in eight arbitrarily defined orientation groups. Spatial analysis of data sets for seismic events in the periods 1930–1970 and post-1970 suggest stronger spatial associations between earthquake epicentres and faults with strikes that lie in the NW–SE quadrants, and weaker spatial associations of epicentres with faults that have strikes in the NE–SW quadrants. The strongest spatial associations were determined for groups of faults with strikes between 101° and 146°. The results suggest that faults striking broadly NW–SE, at high angles to the regional maximum horizontal compressive stress, are statistically more likely to be spatially associated with seismic events than faults striking broadly NE–SW. If the positive spatial associations can be interpreted as indicating genetic relationships between earthquakes and mapped faults, then the results may suggest that, as a population, NW–SE trending faults are more likely to be seismically active than NE–SW striking faults. Detailed geological studies of faults in the study area would be required to determine possible neotectonic displacements and the kinematics of the displacements.  相似文献   

10.
In SW Iberian Variscides, the boundary between the South Portuguese Zone (SPZ) and the Ossa Morena Zone (OMZ) corresponds to a major tectonic suture that includes the Beja Acebuches Ophiolite Complex (BAOC) and the Pulo do Lobo Antiform Terrane (PLAT). Three sub-parallel and approximately equidistant MT profiles were performed, covering a critical area of this Palaeozoic plate-tectonic boundary in Portugal; the profiles, running roughly along an NE–SW direction, are sub-perpendicular to the main Variscan tectonic features. Results of the three-dimensional (3-D) modelling of MT data allow to generate, for the first time, a 3-D electromagnetic imaging of the OMZ–SPZ boundary, which reveals different conductive and resistive domains that display morphological variations in depth and are intersected by two major sub-vertical corridors; these corridors coincide roughly with the NE–SW, Messejana strike–slip fault zone and with the WNW–ESE, Ferreira–Ficalho thrust fault zone. The distribution of the shallow resistive domains is consistent with the lithological and structural features observed and mapped, integrating the expected electrical features produced by igneous intrusions and metamorphic sequences of variable nature and age. The development in depth of these resistive domains suggests that: (1) a significant vertical displacement along an early tectonic structure, subsequently re-taken by the Messejana fault-zone in Late-Variscan times, has to be considered to explain differences in deepness of the base of the Precambrian–Cambrian metamorphic pile; (2) hidden, syn- to late-collision igneous bodies intrude the meta-sedimentary sequences of PLAT; (3) the roots of BAOC are inferred from 12 km depth onwards, forming a moderate resistive band located between two middle-crust conductive layers extended to the north (in OMZ) and to the south (in SPZ). These conductive layers overlap the Iberian Reflective Body (evidenced by the available seismic reflection data) and are interpreted as part of an important middle-crust décollement developed immediately above or coinciding with the top of a graphite-bearing granulitic basement.  相似文献   

11.
Previous dynamic models of the Baikal Rift Zone (BRZ) are mostly two-dimensional on vertical plane. In this study, a numerical model of neotectonics in the region on map view was constructed using the adapted PLATES program. The present work is an attempt to test different mechanisms for opening Baikal Rift by comparing the modelled and observed stress and strain rate fields. The following rifting scenarios were tested: (1) pure northwest–southeast extension, (2) pure northeast–southwest compression, (3) oblique rift opening and (4) combined northwest–southeast extension and northeast–southwest compression. The models are calibrated using geologically and GPS-derived strain rates and stress-tensor determinations from fault-slip data and earthquake focal mechanisms. The most successful model requires a combination of NE–SW compression and orthogonal extension. The model results indicate that the present extensional regime in BRZ can be explained by combining the India plate indentation northward into Eurasia, east–west convergence between the North America and Eurasia plates and southeastward extrusion of the Amur plate in northeastern Asia. Predicted fault-slip rates for the best-fit model are consistent with the observed Holocene fault-slip rates in the Lake Baikal region. The generally accepted rotation of the Amur and Mongolia microplates are used as independent constraints for the choice of the best-fit model. These data correlate well with the predicted direction of rotation in our best model.  相似文献   

12.
We describe and compare the two transform zones that connect the Icelandic rift segments and the mid-Atlantic Ridge close to the Icelandic hot spot, in terms of geometry of faulting and stress fields. The E–W trending South Iceland Seismic Zone is a diffuse shear zone with a Riedel fault pattern including N0°–N20°E trending right-lateral and N60°–N70°E trending left-lateral faults. The dominant stress field in this zone is characterised by NW–SE extension, in general agreement with left-lateral transform motion. The Tjörnes Fracture Zone includes three major lineaments at different stages of development. The most developed, the Húsavík–Flatey Fault, presents a relatively simple geometry with a major fault that trends ESE–WNW. The stress pattern is however complex, with two dominant directions of extension, E–W and NE–SW on average. Both these extensions are compatible with the right-lateral transform motion and reveal different behaviours in terms of coupling. Transform motion has unambiguous fault expression along a mature zone, a situation close to that of the Tjörnes Fracture Zone. In contrast, transform motion along the immature South Iceland Seismic Zone is expressed through a more complicate structural pattern. At the early stage of the transform process, relatively simple stress patterns prevail, with a single dominant stress field, whereas, when the transform zone is mature, moderate and low coupling situations may alternate, as a function of volcanic–tectonic crises and induce changes in stress orientation.  相似文献   

13.
A geophysical perspective based on well-acquired gravity, magnetic, and radiometric data provides good insights into the basin architectural elements and tectonic evolution of the Rio do Peixe Basin (RPB), an Early Cretaceous intracontinental basin in the northeast Brazilian rift system, which developed during the opening of the South Atlantic. NW–SE-trending extensional forces acting over an intensively deformed Precambrian basement yielded a composite basin architecture strongly controlled by preexisting, mechanically weak fault zones in the upper crust. Reactivated NE–SW and E–W ductile shear zones of Brasiliano age (0.6 Ga) divided the RPB into three asymmetrical half-grabens (Brejo das Freiras, Sousa, and Pombal subbasins), separated by basement highs of granite bodies that seem to anchor and distinguish the mechanical subsidence of the subbasins. Radiometric and geopotential field data highlight the relationship between the tectonic stress field and the role of a preexisting structural framework inserted in the final rift geometry. The up-to-2000 m thick half-grabens are sequentially located at the inflexion of sigmoidal-shaped shear zones and acquire a typical NE–SW-oriented elliptic shape. The Sousa Subbasin is the single exception. Because of its uncommon E–W elongated form, three-dimensional gravity modeling reveals an E–W axis of depocenters within the Sousa Subbasin framework, in which the eastern shoulders are controlled by NE–SW-trending faults. These faults belong to the Precambrian structural fabric, as is well illustrated by the gamma ray and magnetic signatures of the basement grain. Release faults were identified nearly perpendicular or oblique to master faults, forming marginal strike ramps and horst structures in all subbasins. The emplacement mechanism of Brasiliano granites around the RPB was partially oriented by the same structural framework, as is indicated by the gravity signature of the granitic bodies after removal of the gravity effect of the basin-filling deposits. The RPB major-fault occurrence along the releasing bend of a strong discontinuity – the so-called Portalegre Shear Zone – in addition to the configuration of a gentle crustal thinning, according to gravity field studies, suggests that a crustal discontinuity governs the nucleation of the RPB, followed probably by small displacement in deep crustal levels accommodating low-rate stretching during basin subsidence.  相似文献   

14.
Processing of gravity and magnetic maps shows that the basement of the Upper Rhine Graben area is characterized by a series of NE–SW trending discontinuities and elongated structures, identified in outcrops in the Vosges, Black Forest, and the Odenwald Mountains. They form a 40 km wide, N30–40° striking, sinistral wrench-zone that, in the Visean, shifted the Variscan and pre-Variscan structures by at least 43 km to the NE. Wrenching was associated with emplacement of several generations of plutonic bodies emplaced in the time range 340–325 Ma. The sub-vertical, NE–SW trending discontinuities in the basement acted as zones of weakness, susceptible to reactivation by subsequent tectonism. The first reactivation, marked by mineralizations and palaeomagnetic overprinting along NE–SW faults of the Vosges Mountains, results from the Liassic NW–SE extension contemporaneous with the break-up of Pangea. The major reactivation occurred during the Late Eocene N–S compression and the Early-Middle Oligocene E–W extension. The NE–SW striking basement discontinuities were successively reactivated as sinistral strike-slip faults, and as oblique normal faults. Elongated depocenters appear to form in association with reactivated Variscan wrench faults. Some of the recent earthquakes are located on NE–SW striking Variscan fault zones, and show sinistral strike-slip focal mechanisms with the same direction, suggesting also present reactivation.  相似文献   

15.
Understanding the relationships of inclusion trail geometries in porphyroblasts relative to matrix foliations is vital for unravelling complex deformation and metamorphic histories in highly tectonized terranes and the approach used to thin sectioning rocks is critically important for this. Two approaches have been used by structural and metamorphic geologists. One is based on fabric orientations with sections cut perpendicular to the foliation both parallel (P) and normal (N) to the lineation, whereas the other uses geographic orientations and a series of vertical thin sections. Studies using P and N sections reveal a simple history in comparison with studies using multiple-vertical thin sections. The reason for this is that inclusion trails exiting the porphyroblasts into the strain shadows in P and N sections commonly appear continuous with the matrix foliation whereas multiple vertical thin sections with different strikes reveal that they are actually truncated. Such truncations or textural unconformities are apparent from microstructures, textural relationships, compositional variations and FIA (foliation intersection axis) trends. A succession of four FIA trends from ENE–WSW, E–W, N–S to NE–SW in the Robertson River Metamorphics, northern Queensland, Australia, suggests that these truncations were formed because of the overprint of successive generations of orthogonal foliations preserved within porphyroblasts by growth during multiple deformation events. At least four periods of orogenesis involving multiple phases of porphyroblast growth can be delineated instead of just the one previously suggested from an N and P section approach.  相似文献   

16.
The Philippine Sea plate, located between the Pacific, Eurasian and Australian plates, is the world's largest marginal basin plate. The motion of the Philippine Sea plate through time is poorly understood as it is almost entirely surrounded by subduction zones and hence, previous studies have relied on palaeomagnetic analysis to constrain its rotation. We present a comprehensive analysis of geophysical data within the Parece Vela and Shikoku Basins—two Oligocene to Miocene back-arc basins—which provide independent constraints on the rotational history of the Philippine Sea plate by means of their seafloor spreading record. We have created a detailed plate model for the opening of the Parece Vela and Shikoku Basins based on an analysis of all available magnetic, gravity and bathymetric data in the region. Subduction along the Izu–Bonin–Mariana trench led to trench roll-back, arc rupture and back-arc rifting in the Parece Vela and Shikoku Basins at 30 Ma. Seafloor spreading in both basins developed by chron 9o (28 Ma), and possibly by chron 10o (29 Ma), as a northward and southward propagating rift, respectively. The spreading orientation in the Parece Vela Basin was E–W as opposed to ENE–WSW in the Shikoku Basin. The spreading ridges joined by chron 6By (23 Ma) and formed a R–R–R triple junction to accommodate the difference in spreading orientations in both basins. At chron 6No (20 Ma), the spreading direction in the Parece Vela Basin changed from E–W to NE–SW. At chron 5Ey (19 Ma), the spreading direction in the Shikoku Basin changed from ENE–WSW to NE–SW. This change was accompanied by a marked decrease in spreading rate. Cessation of back-arc opening occurred at 15 Ma, a time of regional plate reorganisation in SE Asia. We interpret the dramatic change in spreading rate and direction from E–W to NE–SW at 20±1.3 Ma as an expression of Philippine Sea plate rotation and is constrained by the spacing between our magnetic anomaly identifications and the curvature of the fracture zones. This rotation was previously thought to have begun at 25 Ma as a result of a global change in plate motions. Our results suggest that the Philippine Sea plate rotated clockwise by about 4° between 20 and 15 Ma about a pole located 35°N, 84°E. This implies that the majority of the 34° clockwise rotation inferred to have occurred between 25 and 5 Ma from paleomagnetic data may have in fact been confined to the period between 15 and 5 Ma.  相似文献   

17.
This paper summarises the results of combined structural and geomorphological investigations we carried out in two key areas, in order to obtain new data on the structure and evolution of the Tyrrhenian slope of the southern Apennines. Analysis by a stress inversion method [Angelier, J., 1994. Fault slip analysis and paleostress reconstruction. In: Continental Deformation. P.L. Hancock Ed., Pergamon Press, Oxford, 53–100] of fault slip data from Mesozoic to Quaternary formations allowed the reconstruction of states of stress at different time intervals. By integrating these data with those deriving from the stratigraphic and morphotectonic records, chronology and timing of the sequence of the deformation events was obtained.The tectonic history of the region can be related to four deformation events. Structures related to the first event, that was dominated by a strike-slip regime with a NW–SE oriented σ1 and was active since Mid–Late Miocene, do not significantly affect the present day landscape, as they were strongly displaced and overprinted by subsequent deformation events and/or deleted by erosion. The second and third events, that may be considered as the main responsible for the morphostructural signature of the region, are comparable with the stretching phases recognised offshore and considered to be responsible for the opening and widening of the Tyrrhenian basin. In particular, the second event (with an E–W oriented σ3), took place in the Late Miocene/earliest Pliocene and was first dominated by a strike-slip regime, that was also responsible for thrusting and folding. Since Late Pliocene, it was dominated by an extensional regime that created large vertical offsets along N–S to NW–SE trending faults. The third event, that was dominated by extension with a NW–SE oriented σ3, started in the Early Pleistocene and was responsible for formation of the horst-and-graben structure with NE–SW trend that characterises the Tyrrhenian margin of the southern Apennines. The fourth deformation event, which is characterised by an extensional regime with a NE–SW trending σ3, started in the late Middle Pleistocene and is currently active.  相似文献   

18.
We have developed a significant body of new field-based evidence relating to the history of crustal extension in western Turkey. We establish that two of the NE–SW-trending basins in this region, the Gördes and Selendi Basins, whose sedimentary successions begin in the early Miocene, are unlikely to relate to late-stage Alpine compressional orogeny or to E–W extension of Tibetan-type grabens as previously suggested. We argue instead that these basins are the result of earlier (?) late Oligocene, low-angle normal faulting that created approximately N–S “scoop-shaped” depressions in which clastic to lacustine and later tuffaceous sediments accumulated during early–mid-Miocene time, separated by elongate structural highs. These basins were later cut by E–W-trending (?) Plio–Quaternary normal faults that post-date accumulation of the Neogene deposits. In addition, we interpret the Alaşehir (Gediz) Graben in terms of two phases of extension, an early phase lasting from the early Miocene to the (?) late Miocene and a young Plio–Quaternary phase that is still active. Taking into account our inferred earlier phase of regional extension, we thus propose a new three-phase “pulsed extension” model for western Turkey. We relate the first two phases to “roll-back” of the south Aegean subduction zone and the third phase to the westward “tectonic escape” of Anatolia.  相似文献   

19.
This paper focuses on the recent tectonic evolution of the Bay of Naples with the aim of exploring the connection between local tectonics and volcanism. We reprocessed the seismic reflection dataset acquired in the area in the late 1973. The new processing was highly successful in obtaining a decisive strong reduction of random noise, removal of coherent noise and reduction of spatial aliasing. Classical interpretative schemes and complex attributes of seismic traces were used to reconstruct fault kinematics and reflector patterns. The results show that the faults affecting the Bay of Naples exhibit prevailing NE structural strikes, with the exception of the Pozzuoli Caldera where NW patterns are also common. Many faults are subvertical and show seismic evidence of volcanic activity along them. A main alignment of conjugate NE–SW faults, named here as “Magnaghi–Sebeto line”, intersects several submarine volcanic banks and separates the bay into two sectors, characterized by important geological, geophysical and petrochemical differences. The structural configuration of the bay may reflect the occurrence of either oblique extension or a transfer zone of the NW–SE fault system, along which, in the Campanian–Lucanian Apennine chain, great vertical displacements occur.  相似文献   

20.
Using a 3-D structural model, we performed a basin-scale analysis of the tectonically inverted Mid-Polish Swell, which developed above the NW–SE-oriented Teisseyre-Tornquist Zone. The later separates the Paleozoic West European Platform from the Precambrian East European Craton. The model permits a comparison between the present depths and sedimentary thicknesses of five layers within the Permian–Mesozoic and Cenozoic successions. The inversion of the NW–SE-trending Mid-Polish Trough during the Late Cretaceous–Paleogene resulted in uplift of a central horst, the Mid-Polish Swell, bounded by two lateral troughs. These structural features are induced by squeezing of a weak crust along the Teisseyre-Tornquist Zone. The swell is characterized by an inherited segmentation which is due to NE–SW transversal faults having crustal roots. From NW to SE, we distinguish the Pomeranian, Kujavian, and Ma opolska segments, that are separated by two transversal faults. During the inversion, the Zechstein salt occurring in the Pomeranian and Kujavian segments in the NW acted as decoupling level between the basement and the post-salt cover, leading to disharmonic deformation. Conversely, because no salt occurs in the SE, both basement and cover were jointly deformed. The vertical tectonic uplift at the surface is estimated to amount to 3 km in the Ma opolska segment. The structural inheritance of the basement is expressed by the heterogeneous geometry of the swell and tectonic instability during Mesozoic sedimentation. The reasons for the inheritance are seen in the mosaic-type Paleozoic basement SW of the Teisseyre-Tornquist Zone, contrasting the Precambrian East European Craton which acted as a stable buttress in the NE. The horst and trough geometry of Cenozoic sediments blanketing the Mid-Polish swell reveals the ongoing intracontinental compressional stress in Poland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号