首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Several discontinuous, segmented strandlines that mark the former shores of Lake Agassiz can be found in eastern North Dakota. These strandlines are difficult to map and correlate because of their segmented nature. Better mapping would benefit researchers working on a number of problems involving Lake Agassiz including dating the strandlines, reconstructing the lake's history, and calculation of asthenosphere viscosity beneath the Lake Agassiz basin. Elongated soil delineations representing beach-indicative soils with a north-northwest trend and extending from currently mapped areas of the Herman strandline were identified on Grand Forks County soil maps. This information was combined with the geologic map of Grand Forks County in an attempt to better define the location of the Herman strandline in the southern part of the county. This approach worked well, and it is recommended that similar studies be attempted on other Lake Agassiz strandlines in North Dakota and the surrounding area.  相似文献   

2.
Holocene sediments in Lake Winnipeg are expressed in the lower Lake Agassiz sequence which is unconformably overlain by the Lake Winnipeg sequence. Nine sites, covering the North and South basins and the connecting Narrows, were selected for analysis of Holocene changes in thecamoebian faunae. Only the Lake Winnipeg sequence contains thecamoebians. This study indicates that biologic productivity and consequently the type of organic material in the sediments is the main control on thecamoebian taxa in Lake Winnipeg. Other factors controlling the distribution of thecamoebians are water chemistry and turbidity. Inorganic sediment geochemistry and water temperature do not appear to significantly influence the thecamoebian fauna of Lake Winnipeg. Variations in the abundance of key thecamoebian species along a north-south transect divide Lake Winnipeg into three distinct areas. The North Basin has remained relatively unchanged since the retreat of Lake Agassiz as indicated by the domination of Difflugia manicata throughout its history. This species appears to prefer Cyanophyta and diatoms as its food source. In the Narrows harsh conditions created by turbid waters and lack of algal food taxa result in Centropyxis aculeata replacing Difflugia manicata as the dominant species. In the South Basin three thecamoebian assemblages are recognized. Cucurbitella tricuspis, indicative of eutrophic conditions, dominates the most recent sediments of the South Basin. The underlying sediments are characterized by Difflugia globulus. In Lake Winnipeg this species is not a cold climate (arctic) indicator as suggested elsewhere but instead seems to prefer sediments containing green and yellow-green algal material. A Centropyxis-Arcella Assemblage occurs only at the base of the southernmost core where it is indicative of an early phase of hyposaline conditions as developed in shallow pools during the southward transgression of Lake Winnipeg. This study illustrates the usefulness of thecamoebians as paleolimnological indicators. Environmental changes are more significant in the restricted South Basin resulting in distinct thecamoebian assemblages. In contrast, the North Basin provided a stable environment throughout the late Holocene reflected in only subtle faunal changes.  相似文献   

3.
Thecamoebians (testate protozoan) were examined in 18 surface sediment samples from the North and South basins and the Narrows of Lake Winnipeg, Manitoba. Significantly higher numbers of thecamoebians and tintinnids in the North Basin compared to the Narrows and South Basin are attributed to the effects of urban development around the South Basin of Lake Winnipeg. Human population growth in this area has led to increased nutrient concentration in runoff, causing eutrophication of the southern lake, which in turn allows for increased algal productivity. Cucurbitella tricuspis is found in large abundances in the South Basin, particularly close to the inlet of the Red and Assiniboine rivers. High abundances of this species have been attributed to eutrophic conditions, which this species appears to withstand more successfully than other species. Increases in domestic waste output, that have led to elevated heavy metal concentrations in lake bottom sediments of the South Basin, may have resulted in lower abundances of thecamoebians, further reducing competition.Strong currents in the Narrows cause a slightly coarser substrate and sweep away food sources such as phytoplankton. This results in a lower faunal abundance and slightly lower species richness of thecamoebians. Robust species such as the coarse-grained Difflugia viscidula and species which feed on bacteria such as Centropyxis aculeata show increased abundances.Modern thecamoebian assemblages are comparable to Late Holocene faunal associations in terms of species composition. Individual species abundances, however, have changed. For example, in the North Basin the Late Holocene dominance of Difflugia manicata is replaced by various strains of Difflugia oblonga during recent times. A common species of the South Basin from Late Holocene to recent times is Difflugia globulus. It would appear that faunal differences between basins are the result of differences in algal food sources.  相似文献   

4.
Lake Agassiz water oxygen isotopic compositions inferred from sediment core organics and pore waters provide some additional insight into the paleohydrology of the Great Lakes and their drainage into the North Atlantic during the late glacial and early Holocene. Isotopically enriched Lake Agassiz water supports the hypothesis that high Huron Basin lake (Mattawa) phases, during the early Holocene (9600–9300 and 9100–8100 years BP) resulted from an influx of Lake Agassiz water and suggests that low lake (Stanley) phases (9800–9600, 9300–9100, 8100–7400 years BP) were influenced more by regional influxes of isotopically depleted glacial melt water. Eastward drainage of enriched early Lake Agassiz water supports an active Port Huron outlet between 11000 and 10500 years BP and also helps to explain the absence of an 18O depleted interval in North Atlantic foram records. This may be the result of a balance between the opposing isotopic effects of depleted Lake Agassiz water and lower sea surface temperatures on carbonate precipitation between 11000 and 10000 years BP.  相似文献   

5.
Two seismic facies were recognized in the sedimentary sequence overlying acoustic basement in Lake Winnipeg. The upper facies, which overlies a regional unconformity, is termed the Lake Winnipeg Sequence. Based on the seismostratigraphy, lithostratigraphy, and radiocarbon dates of approximately 4000 and 7000 yr BP from material collected directly over the unconformity in the southern and northern parts of the lake, respectively, this facies has been interpreted as representing Holocene sedimentation. Results of compositional and textural analyses of the Holocene sediment (Winnipeg sediment) from thirteen long (>2 m) cores indicate a transgressional sequence throughout the basin. In the South Basin, the generally fining upward sequence is characterized at the base by silt-sized detrital carbonate minerals, quartz and feldspar which decrease in concentration upward. In this basin, the high carbonate content and V/Al and Zn/Al ratios are indicative of a Paleozoic and Cretaceous provenance for sediment derived from glacial deposits through shoreline erosion and fluvial transport, via the Red River. Sedimentation in the central part of the lake and the North Basin is attributed to shoreline erosion of sand and gravel beaches. Consequently, the texture of these sediments is generally coarser than in the South Basin, and the composition primarily reflects a Paleozoic and Precambrian provenance. The basin-wide decrease in Ca, total carbonate minerals, dolomite and calcite concentrations upward in the cores is reflected by a decrease in the detrital carbonate component in all but the most northern cores. Other basin-wide trends show an upward increase in organic content in all cores. An increase in grain size near the top of most cores suggests a major, basin-wide change in sedimentation within the last, approximately 900 years in the South Basin.  相似文献   

6.
Estimates of postglacial rebound in central North America from Laurentide deglaciation to the present time are uncertain as a result of lack of data from the continental interior. A more precise knowledge of postglacial tilt history will assist studies of the evolution of the major lakes in Manitoba and will facilitate the engineering and environmental management of the present-day hydrological system. This paper explores the benefits of combining geomorphological data with high-precision, real-time geodetic data (GPS positioning and absolute gravity) and lake-gauge tilt data now being collected for postglacial rebound studies in Manitoba and adjacent regions in the US. Presently-available data sets representing these data types are (1) tilting of the 9.5 kyr B.P. Campbell strand line south and west of Lake Winnipeg, (2) the rate of decrease in absolute gravity values measured from 1987 to 1995 at Churchill, Manitoba, and (3) the present-day regional tilt rate derived from water-level gauges in southern Manitoba lakes. These data are compared to theoretical predictions based on the published ICE-3G loading history and on a model of Earth rheology characterized by a 1066B density and elastic structure, an upper-mantle viscosity of 10 21Pa s, a lower-mantle viscosity of 2 × 10 21Pa s, and a lithosphere thickness of 120 km (Tushingham & Peltier, 1991). All three data types show disagreement in Manitoba with ICE-3G and the standard Earth model. ICE-4G does better but could not be investigated in any detail. The constraints on model parameters provided by the different data types were investigated by varying, one at a time, three key parameters, (1) the thickness of the lithosphere in excess of 120 km, (2) the lower mantle viscosity, and (3) the thickness of Laurentide ice over the Prairies, to obtain better fits to the data. The present data do not appear to constrain lithosphere thickness in excess of 120 km very well. While both the Campbell strand line data and the Churchill absolute gravity data are consistent with an increase in lower-mantle viscosity, the present-day, lake-gauge data are not. All three data types are consistent with a thinning of the Laurentide ice-sheet over the Prairies relative to the ICE-3G model. Simultaneous adjustment of model parameters with the advantage of anticipated new data in Manitoba and adjacent regions in the US will lead to better understanding of the trade-offs between Earth rheology and ice sheet history and hence to an improved Laurentide postglacial rebound model.  相似文献   

7.
Analysis of a 3.5 m vibracore from the Olson buried forest bed in the southern Lake Michigan basin provides new paleolimnological data for the early Holocene. The core records a rise in lake level from the Chippewa low water phase toward the Nipissing high water phase. Deepening of the water level at the core site is suggested by a trend toward decreasing organic carbon content up core that is interpreted as a response to increasing distance between terrestrial debris sources and the core site.Published data from deep water cores from the southern Lake Michigan basin suggest there had been an inflow of isotopically light water from glacial Lake Agassiz into the southern basin between 10.5-11 ka (A1 event). The data also indicate a second flood of isotopically light water between 8-9 ka (A2 event).Three new 14C dates from the Olson site core suggest that most of the sediment was deposited between 8.45 ka and 8.2 ka, an interval roughly coeval with the second pulse of 18O-depleted water (A2) from Lake Agassiz into the southern basin. Oxygen isotope ratio analysis of shell aragonite from the gastropods Probythinella lacustris and Marstonia deceptashows increasingly negative values up core. This trend in18O values suggests that 18O - depleted water entered the southern basin about 8.4 ka. The Olson site core thus provides a chronology of events in the southern Lake Michigan basin associated with the draining of glacial Lake Agassiz.  相似文献   

8.
West Hawk Lake (WHL) is located within the glacial Lake Agassiz basin, 140 km east of Winnipeg, Manitoba. The small lake lies in a deep, steep-sided, meteorite impact crater, which has been partly filled by 60 m of sediment that today forms a flat floor in the central part of the basin below 111 m of water. Four cores, 5–11 m in length, were collected using a Kullenberg piston gravity corer. All sediment is clay, contains no unconformities, and has low organic content in all but the upper meter. Sample analyses include bulk and clay mineralogy, major and minor elements, TOC, stable isotopes of C, N, and O, pollen, charcoal, diatoms, and floral and faunal macrofossils. The sequence is divided into four units based mainly on thickness and style of lamination, diatoms, and pollen. AMS radiocarbon dates do not provide a clear indication of age in the postglacial sequence; possible explanations include contamination by older organic inwash and downward movement of younger organic acids. A chronological framework was established using only selected AMS dates on plant macrofossils, combined with correlations to dated events outside the basin and paleotopographic reconstructions of Lake Agassiz. The 822 1-cm-thick varves in the lower 8 m of the cored WHL sequence were deposited just prior to 10,000 cal years BP (∼8,900 14C years BP), during the glacial Lake Agassiz phase of the lake. The disappearance of dolomite near the top of the varved sequence reflects the reduced influence of Lake Agassiz and the carbonate bedrock and glacial sediment in its catchment. The lowermost varves are barren of organisms, indicating cold and turbid glacial lake waters, but the presence of benthic and planktonic algae in the upper 520 varves indicates warming; this lake phase coincides with a change in clay mineralogy, δ18O and δ13C in cellulose, and in some other parameters. This change may have resulted from a major drawdown in Lake Agassiz when its overflow switched from northwest to east after formation of the Upper Campbell beach of that lake 9,300–9,400 14C years ago. The end of thick varve deposition at ∼10,000 cal years BP is related to the opening of a lower eastern outlet of Lake Agassiz and an accompanying drop in West Hawk Lake level. WHL became independent from Lake Agassiz at this time, sedimentation rates dropped, and only ∼2.5 m of sediment was deposited in the next 10,000 years. During the first two centuries of post-Lake Agassiz history, there were anomalies in the diatom assemblage, stable O and C isotopes, magnetic susceptibility, and other parameters, reflecting an unstable watershed. Modern oligotrophic conditions were soon established; charcoal abundance increased in response to the reduced distance to the shoreline and to warmer conditions. Regional warming after ∼9,500 cal years BP is indicated by pollen and diatoms as well as C and O isotope values. Relatively dry conditions are suggested by a rise in pine and decrease in spruce and other vegetation types between 9,500 and 5,000 cal years BP (∼8,500–4,400 14C years BP), plus a decrease in δ13Ccell values. After this, there was a shift to slightly cooler and wetter conditions. A large increase in organic content and change in elemental concentration in the past several thousand years probably reflects a decline in supply of mineral detritus to the basin and possibly an increase in productivity.  相似文献   

9.
Detailed mapping and elevation measurements of glacial lake shorelines in the Flin Flon region has permitted the reconstruction of 6 well-defined levels of Lake Agassiz formed around 8.3 ka to 7.9 ka 14C BP. The Stonewall, The Pas, Gimli, Grand Rapids, Drunken Point and Ponton paleo-water planes have been tilted upward to the northeast in the Holocene, with gradients decreasing, from the highest to the lowest level, from about 0.34 m km-1 to 0.22 m km-1 in the study area. The Setting level, lower than the Ponton but less well defined, is also documented here for the first time. This mapping conclusively refutes the view, entrenched in the literature from the 1890's to the 1960's, that there has been negligible differential uplift in the region following final drainage of Lake Agassiz. The finding has major consequences regarding correlation of glacial lakes across the mid-continent, the post-glacial history of large lakes in the region, and for interpretation of earth rheology and its implications for ice sheet reconstruction.  相似文献   

10.
Conventional radiocarbon dating of Lake Winnipeg core samples has produced erroneously old ages due to the incorporation of pre-Quaternary carbon derived from carbonaceous rocks, soils and sediments in the watershed, as well as a hard-water effect resulting from leaching of calcareous rocks and soils. To circumvent these problems and develop a reliable chronology for the Lake Winnipeg core series, a total of 64 samples from the Lake Winnipeg core series were processed to isolate well preserved macrofossils suitable for Accelerator Mass Spectrometry (AMS) radiocarbon dating. Here we report six radiocarbon ages derived from plant macrofossils and ostracodes, and reconstruct aspects of the depositional environment of each sample based on the associated macrofossil assemblage.  相似文献   

11.
High resolution sediment physical properties, measured on gravity and piston cores collected during cruises to Lake Winnipeg, include bulk density, acoustic velocity, magnetic susceptibility, shear strength and colour reflectance. The high resolution data are used here to construct complete stratigraphic (composite) sections of Lake Winnipeg sediments from a series of individual, discontinuous cores for the North and South Basins. These composite sections are used to evaluate basin-wide glacial and post-glacial depositional histories and to compare the northern and southern basin histories. In addition, these sections provide a baseline depth reference for interpretation of the biostratigraphy, paleomagnetic record and rock magnetic stratigraphy. Some of the data (density and shear strength) are also be used to estimate sediment stress history for the two major lithostratigraphic units and their variations across the basin.  相似文献   

12.
The Annecy lacustrine depression lies in a tectonic transverse valley of structural origin, linking the present day towns of Annecy and Ugine and bounded by the Bauges and Bornes massifs. Only the last two major glacial periods are represented in the stratigraphic and geomorphic evidence from the area, but its successive glaciations that have been largely responsible for the form of the valley within which the present day lake lies. Of particular importance were the lobes of the Arve glacier, one shaping the depression from the south-east; the other from the north. The retreat of the glaciers left behind a more extensive precursor of the present day Lac d'Annecy, which latter constitutes the residual body of open water after lake level lowering, partial infilling and drainage diversions within the catchment. The drainage basin of the extended lake formed shortly after the last glacial maximum (LGM) in the region. Its extent can be determined from field sampling and coring and its elevation can be established at 460 m above present day sea level. The present day lake is more isolated, since the Fier river, to the north, no longer drains into it. To the southeast, the course of the Chaise river has also been diverted, leaving the lake's drainage basin reduced to half its post-LGM size. The major paleogeographical events in the Late-Quaternary evolution of the basin are described in chronological sequence.  相似文献   

13.
New stratigraphic evidence from the Rossendale area, Manitoba, Canada, provides insight into the early postglacial evolution of the southeastern Assiniboine Delta. In this region, much of the upper 13+ m of sediment accumulation is characterized by multiple cycles of sandy rhythmites interbedded with massive to laminated silt. These sediments were deposited rapidly by traction or turbidity currents and record the construction of the Assiniboine fan-delta during the deep-water Lockhart Phase of glacial Lake Agassiz (>10.8 14C ka BP). Shortly before ∼10 14C ka BP, fluvial incision into deltaic deposits occurred locally at the Rossendale Gully site in response to the regression of glacial Lake Agassiz during the Moorhead Phase. Plant macrofossils deposited in the gully by 10 14C ka BP provide the first information on early postglacial plant colonization of the distal Assiniboine delta. These data suggest initial establishment of Scorpidium scorpioides, Potamogeton spp., Scirpus spp., and other wetland plants, followed by colonization of uplands by a Picea-Populus assemblage. Importantly, because the gully is located in a protected depression behind the Campbell beach, evidence of water table rise from aquatic macrophytes suggests that glacial Lake Agassiz transgressed to the Campbell level during the early Emerson Phase (∼10 14C ka BP). Furthermore, no evidence exists for a post-Lockhart rise in Lake Agassiz above the Upper Campbell beach. If Agassiz stood at the Campbell level during the early Emerson Phase, then drainage through the southern outlet may have been possible at this time. This scenario, if true, may suggest that the northwestern outlet was temporarily closed by a glacial advance shortly before 10 14C ka BP. This is the first in a series of ten papers published in this special issue of Journal of Paleolimnology. These papers were presented at the 47th Annual Meeting of the International Association for Great Lakes Research (2004), held at the University of Waterloo, Waterloo, Ontario, Canada. P.F. Karrow and C.F.M. Lewis were guest editors of this special issue  相似文献   

14.
Lacustrine deposits of the Malanzán Formation record sedimentation in a small and narrow mountain paleovalley. Lake Malanzán was one of several water bodies formed in the Paganzo Basin during the Late Carboniferous deglaciation. Five sedimentary facies have been recognized. Facies A (Dropstones-bearing laminated mudstones) records deposition from suspension fall-out and probably underflow currents coupled with ice-rafting processes in a basin lake setting. Facies B (Ripple cross-laminated sandstones and siltstones) was deposited from low density turbidity currents in a lobe fringe environment. Facies C (Massive or graded sandstones) is thought to represent sedimentation from high and low density turbidity currents in sand lobes. Facies D (Folded sandstones and siltstones) was formed from slumping in proximal lobe environments. Facies E (Wave-rippled sandstones) records wave reworking of sands supplied by turbidity currents above wave base level.The Lake Malanzán succession is formed by stacked turbidite sand lobe deposits. These lobes were probably formed in proximal lacustrine settings, most likely relatively high gradient slopes. Paleocurrents indicate a dominant direction from cratonic areas to the WSW. Although the overall sequence shows a regressive trend from basin fine-grained deposits to deltaic and braided fluvial facies, individual lobe packages lack of definite vertical trends in bed thickness and grain size. This fact suggests aggradation from multiple-point sources, rather than progradation from single-point sources. Sedimentologic and paleoecologic evidence indicate high depositional rate and sediment supply. Deposition within the lake was largely dominated by event sedimentation. Low diversity trace fossil assemblages of opportunistic invertebrates indicate recolonization of event beds under stressed conditions.Three stages of lake evolutionary history have been distinguished. The vertical replacement of braided fluvial deposits by basinal facies indicates high subsidence and a lacustrine transgressive episode. This flooding event was probably linked to a notable base level rise during postglacial times. The second evolutionary stage was typified by the formation of sand turbidite lobes from downslope mass-movements. Lake history culminates with the progradation of deltaic and braided fluvial systems  相似文献   

15.
Sediment cores collected from six sites in Lake Baikal as part of an extensive investigation of sediment records of recent environmental change were dated radiometrically by 210Pb. Although the results obtained were in some respects comparable to those obtained by previous 210Pb studies, there were some significant differences. Most notably, a core from abyssal depths in the centre of the middle basin appeared to record at least wo major episodes of rapid sedimentation, possibly caused by turbidity currents. All cores, including those from the North Basin, contained significant records of weapons test fallout 137Cs, though these were of little chronological value due to the long residence time of 137Cs in the water column. Models and budgets for sediment and radionuclide transport through Baikal are presented and used to help validate the 210Pb results.  相似文献   

16.
We reconstruct postglacial lake-level history within the Lake Michigan basin using soil stratigraphy, ground-penetrating radar (GPR), sedimentology and 14C data from the Silver Lake basin, which lies adjacent to Lake Michigan. Stratigraphy in nine vibracores recovered from the floor of Silver Lake appears to reflect fluctuation of water levels in the Lake Michigan basin. Aeolian activity within the study area from 3,000 years (cal yr. B.P.) to the present was inferred from analysis of buried soils, an aerial photograph sequence, and GPR. Sediments in and around Silver Lake appear to contain a paleoenvironmental record that spans the entire post-glacial history of the Lake Michigan basin. We suggest that (1) a pre-Nipissing rather than a Nipissing barrier separated Silver Lake basin from the Lake Michigan basin, (2) that the Nipissing transgression elevated the water table in the Silver Lake basin about 6,500 cal yr. B.P., resulting in reestablishment of a lake within the basin, and (3) that recent dune migration into Silver Lake is associated with levels of Lake Michigan. This is the fourth in a series of ten papers published in this special issue of Journal of Paleolimnology. These papers were presented at the 47th Annual Meeting of the International Association for Great Lakes Research (2004), held at the University of Waterloo, Waterloo, Ontario, Canada. P.F. Karrow and C.F.M. Lewis were guest editors of this special issue.  相似文献   

17.
Lake Elsinore is the largest natural lake in Southern California. As such, the lake provides a unique opportunity to investigate terrestrial climate on timescales otherwise underrepresented in the region’s terrestrial environment. In November 2003, three ∼10 m drill cores were extracted from the depocenter region of Lake Elsinore. These drill cores, spanning the past 9,500–11,200 calendar years, represent the first complete Holocene record of terrestrial climate from Southern California. In this paper, we focus on two adjacent, depocenter cores (LEGC03-2 and LEGC03-3), which have been correlated to develop a single composite core. Twenty-two AMS 14C dates on bulk organic matter and one cross-correlated exotic pollen age constitute the composite core’s age control. Several methods of analysis, including mass magnetic susceptibility, % total organic matter, % total carbonate, % HCl-extractable Al, and total inorganic P are used to infer climate for the past 9,500 calendar years in Southern California. Together, these data indicate a wet early Holocene followed by a long-term drying trend. Recent lake-level reconstructions from Owens Lake and Tulare Lake support our contention for a wetter-than-today early Holocene. Lacustrine sediments from the Mojave Desert also support our conclusions. We suggest that over the duration of the Holocene changing summer/winter insolation alters the region’s long-term hydrologic balance through its modulation of atmospheric circulation and its associated storm tracks. Minimum early Holocene winter insolation and maximum summer insolation act together to increase the region’s total annual precipitation by increasing the frequency of winter storms as well as enhancing the magnitude and spatial extent of the North American monsoon, the frequency of land-falling tropical cyclones in Southern California, and regional convective storms, respectively. Gradual decreases in summer insolation and increases in winter insolation produce the opposite effect with maximum drying in the late Holocene.  相似文献   

18.
Sediments are typically analyzed for C, N, and P for characterization, sediment quality assessment, and in nutrient and contaminant studies. Cost and time required for analysis of these constituents by conventional chemical techniques can be limiting factors in these studies. Determination of these constituents by near-infrared reflectance spectroscopy (NIRS) may be a rapid, cost-effective method provided the technology can be applied generally across aquatic ecosystems. In this study, we explored the feasibility of using NIRS to predict total C, CO3 –2 organic C, N, and P in deep-water sediment cores from four Canadian lakes varying over 19 degrees of latitude. Concentration ranges of constituents in the samples (dry weight basis) were total C, 12-55; CO3 –2, 6-26; organic C, 7-31; N, 0.6-3.1; and P, 0.22-2.1 mg g–1. Coefficients of determination, r2, between results from conventional chemical analysis and NIR-predicted concentrations, based on calibrations across all the four lakes, were 0.97-0.99 for total C, organic C, and N. Prediction for CO3 –2 was good for the hard water lake from a calibration across all four lakes, but this constituent in the three soft water lakes was better predicted by a calibration across the soft water lakes. The NIR calibration for P fell below acceptable levels for the technique, but proved useful in the identification of outliers from the chemical method that were later removed with the re-analysis of several samples. This study demonstrated that NIRS is useful for rapid, simultaneous, cost-effective analysis of total C, CO3 –2, organic C, N, and P in dried sediments from lakes at widely varying latitudes. Also, this study showed that NIRS is an independent analytical tool useful for the identification of outliers that may be due to error during the analysis or to distinctive composition of the samples.  相似文献   

19.
The recognition of ice-marginal deltas constructed during the formation of the Nakina II moraine and a previously unrecognized spillway, in the vicinity of Longlac, northern Ontario, indicates that existing concepts of ancestral lake level history and drainage systems in the Lake Superior–Lake Nipigon region is inadequate. Based on isostatically corrected digital elevation maps, ice-marginal deltas of the Nakina II moraine probably formed at the level of glacial Lake Minong, most likely Minong III, and not glacial Lake Nakina as has been commonly suggested. In addition, the presence of a spillway near Longlac indicates that lake water drained southward through the Mullet Outlet–Pic River system immediately following ice-marginal retreat from the Nakina II moraine and not eastward as previously proposed. Architectural-element analysis of exposures within the spillway indicates hyperconcentrated outbursts of meltwater produced thick channel-fill elements during flood conditions with peak-velocities exceeding 3 m/s. Subsequent retreat of ice from the Pic River valley to the east, may have allowed waters of Lake Agassiz, Lake Barlow–Ojibway, or both, to drain into post-Minong lake levels in the Lake Superior basin. These findings place major constraints on previously proposed concepts of northeastern or eastern outlets of Lake Agassiz.  相似文献   

20.
Prokopenko and Kendall (J Paleolimnol doi:, 2008) criticise the work presented in Fedotov et al. (J Paleolimnol 39:335–348, 2008), and instead propose an alternative interpretation for the grain-size evolution recorded in the KDP-01 core, retrieved from the central part of Lake Khubsugul. Their interpretation is based (i) on a seismic-stratigraphic re-interpretation of sparker seismic profile khub012 (which they copied from Fedotov et al. (EOS Trans 87:246–250, 2006)), (ii) on the presupposition that changes in lake level are the dominant control on facies distribution in Lake Khubsugul, and (iii) on the invalidation of our age-depth model. In this reply to their comment, we demonstrate that they interpreted seismic artefacts and geometries caused by changes in profile orientation as true stratigraphic features and that the lake-level reconstruction they derive from this interpretation is therefore incorrect. We also demonstrate that their grain-size predictions, which they consider to be predominantly driven by changes in lake level, are inconsistent with the measured sulphate concentration, which is a demonstrated proxy of lake level in Lake Khubsugul, and with the measured grain-size record. Finally, we point out that even if there would be a problem with the age-depth model, this problem would not affect the part of the sedimentary sequence discussed in Fedotov et al. (J Paleolimnol 39:335–348, 2008).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号