共查询到19条相似文献,搜索用时 94 毫秒
1.
青藏高原夏季上空水汽含量演变特征及其与降水的关系 总被引:1,自引:0,他引:1
利用青藏高原(以下简称高原) 近30 年(1979-2008 年) 14 个探空站的温度和湿度观测资料以及83 个地面台站的月平均降水资料,分析了高原夏季上空水汽含量与地面降水的联系以及高原地区的降水转化率问题。结果表明:1) 高原夏季水汽含量在空间分布上表现出随海拔高度增高而减少的特征,其中东北部为最大值,东南部为次大值,而西北部为最小值。夏季降水整体上由东南向西北递减;2) EOF分解表明,高原夏季水汽含量存在两种主要的空间分布型:即全区一致变化型和南北反向变化型,其中以唐古拉山脉北侧为界呈现出的水汽含量南北反向型与降水的第一特征向量场表现出的南北反向型在空间分布上十分相似;3) 在年际变化上,高原夏季水汽含量的南北反向型与降水的南北反向型之间存在较一致的对应关系:即水汽含量出现南多北少时,高原南部降水普遍偏多而北部降水普遍偏少,反之亦然;4) 高原夏季平均降水转化率在3%~38%之间,其空间差异非常明显,高原南部降水转化率明显大于北部地区。 相似文献
2.
利用ECMWF和NCEP/NCAR 1979-2016年逐月再分析资料,分析了我国西北地区大气水汽含量的时空分布及其输送特征。结果表明:(1)西北地区水汽含量在20世纪80年代中期至90年代末呈增多趋势,从90年代开始至21世纪初呈减少趋势。就季节而言,西北地区夏季水汽含量最多,占年平均水汽含量的46.6%。(2)西北地区水汽分布与降水分布具有一致性,水汽含量主要集中在西北地区东部及其西部的天山山脉、塔里木盆地东部一带,达12~30 mm,中部水汽含量较少,不足10 mm,水汽含量的空间分布呈现出“两边高中间低”的分布形式。(3)西北地区水汽输送以西风和季风两大环流系统为主,纬向西风水汽输送可达100~500 kg·m-1·s-1,在全年水汽输送中占主要地位,夏季从印度洋来的强度可达100~200 kg·m-1·s-1的西南季风水汽输送对西北地区东部影响较显著。(4)西北地区水汽源主要位于新疆天山山脉、青海中东部、甘肃河西走廊中西段、宁夏和陕西北部等地区,而水汽汇则位于甘肃南部、陕西南部一带。 相似文献
3.
祁连山水源涵养林区降水及温度时空变化研究 总被引:2,自引:0,他引:2
研究大气降水及温度的时空变化对建立气候预警系统有重要的意义。利用气象和水文自动监测仪器沿环境梯度和植被类型对祁连山水源涵养林区温度及降水时空变化进行了动态监测。结果表明,祁连山西水林区降水呈单峰曲线型,主要集中在夏季,占全年降水的72%;在环境梯度上差异较大,表现为乔灌交错带处(3 300 m)降水为最大,交错带以下随海拔的升高降水增大,交错带以上由于降水复杂性导致随海拔的升高而减少;在年际上差异更大,2004年以前降水量随年份的增大有下降趋势,2004年以后降水量增幅较大。祁连山西水林区气温从1986年以来逐渐上升,但年均气温大多在0 ℃以下,最低为-1.33 ℃,从2003年以来气温迅速上升,年均温最高为2.5 ℃,通过研究发现24 a以来气温上升了3.83 ℃;由于气温的上升,导致土壤温度上升较快,尤其是表层和深层土壤温度上升更快,该结论与当前的众多结论是相吻合的。 相似文献
4.
长沙大气水汽、降水中稳定同位素季节变化及与水汽输送关系 总被引:5,自引:2,他引:5
基于2010年1月至2012年12月长沙降水事件同位素资料和搭载在Aura卫星上的TES观测仪所反演的2010年3月至2011年12月全球日大气中HDO、H2O资料,对长沙大气水汽、降水中稳定同位素的变化特征以及它们的关系,不同水汽来源及输送强度变化对降水中同位素的影响进行了研究。结果表明:水汽中同位素值随高度增加而贫化,水汽中同位素较降水中同位素大为贫化,降水中同位素为冬春富集、夏秋贫化,水汽中同位素则表现出春夏富集、秋冬贫化,水汽、降水中同位素存在着较大波动。通过对长沙冬、夏季所有降水事件的水汽输送轨迹的分析发现:夏季降水的水汽主要来源于西南季风和东南季风输送的海洋性气团,降水中同位素贫化;冬季降水的水汽主要来源于西风带输送的大陆性气团,降水中同位素富集。另外,长沙2010~2012年夏季的水汽输送通量与降水同位素的关系再次证明环流效应是可信的。 相似文献
5.
我国大陆大气水汽含量的计算 总被引:10,自引:0,他引:10
本文利用高空探测站点的逐日、逐月和多年平均资料,研究了不同时间尺度大气中水汽含量的间接推算方法。结果表明,利用统一公式借助地面水汽压推算的累年月平均值,具有较高的可信度,其平均相对误差一般不超过10%,历年月平均推算值要差一些,其相对误差在13—15%之间,而逐日值则较难利用地面湿度资料进行推算,尤其是南方的夏季。 相似文献
6.
祁连山作为我国西部重要生态安全屏障,是河西走廊内陆河流域核心水源区。通过测定2013年7月~2014年7月收集的降水样品中δ17O与δ17O值,分析了祁连山东部乌鞘岭大气降水中δ17O的特征,在此基础上对水汽来源进行了研究。结果表明:降水稳定同位素17O存在夏高冬低的变化特征;17O存在显著的温度效应而不存在降水量效应,17O与水汽压在干季呈现正相关关系。研究区大气降水的氧同位素降水线方程为:δ′17O = 0.509δ′17O -0.16,低于氧同位素全球降水线斜率;过量δ17O表现出夏低冬高的特点;综合分析氧同位素大气降水方程线和过量δ17O变化,发现该区域大气降水主要受局地水循环和大陆气团控制。祁连山东部地区主要受到西风和东南季风携带水汽影响,东南季风携带水汽对于祁连山东部的影响主要集中于夏季。研究可提高对祁连山区降水同位素演化的认知,为寒旱区同位素水文学的进一步研究奠定基础。 相似文献
7.
利用1960~2009年的日降水量资料,选用13项极端降水指数,采用线性趋势、10年趋势滑动、Mann-kendall等方法,对祁连山及河西走廊地区极端降水的时空变化特征进行了研究。结果表明:极端降水日数呈增多趋势,极端降水强度呈减小趋势,极端降水总量呈增加趋势,连续干旱日数、连续湿润日数呈减少趋势,一日最大降水量、五日最大降水量呈增大趋势;极端降水变化存在一定区域差异,走廊平原中西部的降水明显增加,降水变率在减小,走廊平原中部极端降水的日数在增多,降水极值在增大,走廊平原祁连山东部的降水在增加,降水极值在增大,但连续极端降水的总量在减少,祁连山中部的降水在明显增加,降水的极端性在明显增大,对气候变暖的响应最敏感;不同极端降水指数分别在20世纪60年代中期、70年代中期、80年代初期、80年代中后期、90年代中期发生了突变,这些突变点与东亚季风、南亚季风、西风环流等大尺度环流系统强弱变化的时间点是一致的。 相似文献
8.
9.
科学监测祁连山积雪面积及变化特征对该区域气候研究、雪水资源开发利用、环境灾害预报及生态环境保护等具有重要意义。基于2001—2017年MOD10A2积雪产品和气象数据,分析祁连山积雪面积动态变化特征及与气温降水关系。结果显示:(1) 2001—2017年祁连山积雪面积年际波动趋势较大,呈减小趋势,多年平均积雪面积约为5×104km2,占祁连山总面积的25. 9%;年内变化成"M"型,即在一个积雪年中有两个波峰和波谷,波峰出现在11月和1月,波谷出现在7月;季节变化波动趋势较大,夏冬季积雪面积减小趋势大于春季,秋季呈现略微增加趋势。(2)祁连山区积雪面积主要分布在3 000~4 000 m及4 000~5 000 m,积雪覆盖率随着海拔上升呈现逐渐增大的趋势;祁连山区不同坡向积雪覆盖面积差异较大,积雪覆盖率差异较小;积雪频率高值区呈典型的条带状分布,与祁连山地形相一致,呈西北—东南分布,且分布西部大于东部。(3)初步分析认为祁连山积雪面积变化对气温要素更敏感。 相似文献
10.
雅鲁藏布江流域降水时空变化特征 总被引:1,自引:0,他引:1
雅鲁藏布江流域是全球气候变化的敏感区,该流域降水变化对青藏高原的水系统、生态系统和山地灾害系统的演变具有重要影响。本文通过流域水文分析,将雅鲁藏布江流域的三大水资源区细分为9个分区。基于雅鲁藏布江流域1979—2018年降水数据,综合分析了雅鲁藏布江流域及9个分区的年、干湿季、月降水量以及日、小时尺度极端降水的时空变化特征,探讨了降水和典型大尺度大气环流因子的相关性。结果表明:① 1979—2018年间,在流域尺度上,各时间尺度降水整体上均呈上升趋势。其中,年降水量上升趋势最大,为2.5 mm·a-1;年、干湿季降水量以及典型小时尺度极端降水(Rx3hour、Rx12hour)均在95%信度水平下显著上升。在水资源分区尺度上,各分区不同时间尺度降水的变化趋势呈现更明显的非一致性,所有分区除小时尺度极端降水均呈上升趋势外,其余时间尺度降水的趋势变化方向各异。② 雅鲁藏布江流域降水存在明显的空间分异性,且降水空间分异性会随着降水指标时间尺度的缩短而增强。各时间尺度降水整体上均呈现出自东部向西部逐渐减少的趋势,流域东南部(分区Ⅲ-2)始终是高值中心,流域中西部(分区Ⅰ-2、Ⅱ-1)存在区域性高值中心。③ 北半球副热带高压和北半球极涡对雅鲁藏布江流域降水变化具有显著影响。研究结果有助于掌握当地降水的多尺度变化特征,可为雅鲁藏布江流域和青藏高原地区的水循环研究、水资源开发利用和山洪灾害防治等提供科学基础。 相似文献
11.
青藏高原夏季上空水汽含量演变特征及其与降水的关系(英文) 总被引:4,自引:0,他引:4
By using the observed monthly mean temperature and humidity datasets of 14 radiosonde stations and monthly mean precipitation data of 83 surface stations from 1979 to 2008 over the Tibetan Plateau(TP),the relationship between the atmospheric water vapor(WV) and precipitation in summer and the precipitation conversion efficiency(PEC) over the TP are analyzed.The results are obtained as follows.(1) The summer WV decreases with increasing altitude,with the largest value area observed in the northeastern part of the TP,and the second largest value area in the southeastern part of the TP,while the northwestern part is the lowest value area.The summer precipitation decreases from southeast to northwest.(2) The summer WV presents two main patterns based on the EOF analysis:the whole region consistent-type and the north-south opposite-type.The north-south opposite-type of the summer WV is similar to the first EOF mode of the summer precipitation and both of their zero lines are located to the north of the Tanggula Mountains.(3) The summer precipitation is more(less) in the southern(northern) TP in the years with the distribution of deficient summer WV in the north while abundant in the south,and vice versa.(4) The PEC over the TP is between 3% and 38% and it has significant spatial difference in summer,which is obviously bigger in the southern TP than that in the northern TP. 相似文献
12.
2008-2014年祁连山区夏季降水的日变化特征及其影响因素 总被引:1,自引:0,他引:1
基于中国自动气象站与CMORPH降水产品融合的逐时降水量0.1°×0.1°网格数据集通过逐时降水量、降水频率和降水强度等指标研究了2008-2014年祁连山区夏季降水的日变化特征,并结合ERA-Interim再分析资料分析了气象要素对降水日变化的影响。结果表明:① 祁连山区逐时平均降水量和降水频率的时空分布特征较为一致,即东中段大于西段,且7月最大,6月次之,8月最小;降水强度的空间分布则与降水量和降水频率的存在差异,且6月的降水强度平均值最大。② 白天和夜间的降水量均表现出东中段多于西段、山区多于平原的特点,并有明显的夜雨现象;从年际差异来看,2008-2014年白天和夜间的降水量均呈增加趋势。③ 祁连山区夏季降水平均相对变率介于5%~38%之间,全区20:00平均相对变率最大;逐时降水量和降水频率普遍存在较好的相关性,尤其是在东中段。④ 对比再分析资料发现,祁连山区降水日变化与相对湿度和地面温度等气象要素有关。 相似文献
13.
祁连山层状云的时空分布及其环流特征分析 总被引:1,自引:1,他引:1
利用祁连山区29个测站1961—2001年1—12月云状资料,分析了过去41 a祁连山区层状云的时空分布特征及其与大环流变化的关系。结果表明:①祁连山区层状云从西北向东南递增,祁连山主区层状云出现频次高于周边地区。②大部区域层状云显著减少,其中河西走廊东部减少幅度最大。③层状云年平均和季度的年际变化阶段性基本一致,1990年以前以偏多为主,1990年发生突变性减少,以后一直处于偏少的状态。④层状云出现频率与各月降水正相关显著。⑤层状云偏多年与偏少年差值最大的月份是8月和5月,偏多年和偏少年在亚洲500 hPa高度场上有明显的差异。⑥与层状云频率显著相关的环流特征量主要有:副高面积、强度、极涡强度、青藏高原高度场指数。祁连山层状云的减少趋势主要是副高面积增大和强度增强的结果。最后,用前期环流特征量为因子建立了祁连山主区层状云频率的预测模型。 相似文献
14.
近50 年来祁连山及河西走廊降水的时空变化 总被引:8,自引:2,他引:8
利用1960-2009 年的日降水量资料,采用线性趋势、5 年趋势滑动、IDW 空间插值、Morlet 小波分析、Mann-Kendall 突变检验等方法,对祁连山及河西走廊地区不同等级降水日数和降水强度的时空变化特征进行了研究。结果表明:不同等级降水日数和降水强度的多年平均在空间上既表现出东西分异,也表现出南北分异;不同等级降水日数的年际变化在绝大部分区域呈增多趋势,且自东向西增幅减小,大雨强度的年际变化在绝大部分区域呈增大趋势,其它等级降水强度为部分区域呈增大趋势,部分区域呈减小趋势;小雨、中雨日数的年际变化呈显著增多趋势,大雨日数呈明显增多趋势,暴雨日数呈不明显增多趋势,小雨、大雨强度的年际变化呈不明显减小趋势,中雨、暴雨强度呈不明显增大趋势;不同等级降水日数变化的周期集中在2a、5a、8a、11a、19a,不同等级降水强度变化的周期集中在2a、5a、11a、15a、25a;除小雨强度突变减小外,其它等级降水日数均突变增多,降水强度均突变增大,降水量的增加主要是降水日数的增多造成的,其中小雨、中雨日数的增多贡献最大。 相似文献
15.
阿尔泰山横亘于亚欧大陆中部,是中纬度西风带气候研究的重点区域之一。利用阿尔泰山地区4个站点的监测数据,研究了该区域降水氢氧稳定同位素的年内变化特征及大气降水线方程,分析了降水同位素的温度效应,并利用后向轨迹探讨了水汽来源。结果表明:(1) 阿尔泰山各站点降水同位素比率在季节上表现为夏高冬低,且南侧站点的季节差异比北侧大,除Novosibirsk外大多数站点的降水氘盈余值为夏低冬高。(2) 除Novosibirsk外,研究区大多数站点大气降水线方程的斜率和截距都低于全球平均值。(3) 各站点降水同位素存在明显的温度效应,体现在季节变化和空间分布上。(4) 后向轨迹表明,研究区受到西风水汽、极地水汽和近源水汽路径的影响,且偏北站点可能受极地水汽路径的影响更大。上述认识有助于明确阿尔泰山不同区域降水同位素时空变化反映的水文气候信息,并为该区域大气水循环及气候变化研究提供参考。 相似文献
16.
利用美国宇航局(NASA)发布的2003年1月~2015年12月的AIRS Standard Physical Retrieval Edition 6. 0中的level2的反演数据,对新疆及其周边地区——特别是三大山区近13 a的可降水量的时空分布特征进行了研究。结果表明,从空间分布看,可降水量高值区主要集中在盆地地区,尤其在塔里木盆地、准噶尔盆地及吐鲁番盆地。低值区主要分布在新疆南部的昆仑山脉和北部的阿尔泰山脉。最高值达14. 74 mm,最低值达1. 92 mm;新疆及其周边地区可降水量所有格点13a平均值来看,总体上,夏季最高,冬季最低。从时间分布看,对新疆及其周边地区、天山、昆仑山和阿尔泰山4个研究区域分别进行区域平均,发现以上4个区域年变化呈单峰型,从1~7月的可降水量逐渐增加,8~12月份的可降水量逐月减少;可降水量的整体年际变化趋势是一致的,2003—2010年呈上升趋势,2010—2015年呈下降趋势。 相似文献
17.
基于格点数据的1961-2012年祁连山面雨量特征分析 总被引:1,自引:0,他引:1
基于国家气象信息中心发布的全国0.5°×0.5°逐日降水量数据集和气象站点日降水量实测资料,利用主成分分析(PCA)和回归分析,研究了1961-2012年祁连山面雨量年际变化以及面雨量距平与干旱累计强度的关系。结果表明,该套格点数据能够很好地反映出祁连山及其周边区域降水的时空分布格局,山区降水量大于平原区降水量,山区东段降水量大于西段降水量。1961-2012年祁连山面雨量的多年平均值为724.9×108 m3,其中,春、夏、秋、冬的面雨量分别为118.9×108 m3、469.4×108 m3、122.5×108 m3、14.1×108 m3,夏季面雨量最大,占全年的64.76%。除春季外,其他季节面雨量都呈现逐年增加趋势,夏季增幅最大,平均每年增加1.7×108 m3。山区面雨量与祁连山及其周边区域的干湿程度表现出较好的相关性,干旱累计强度与面雨量表现出负相关性,山区面雨量较多时这一地区的干旱强度也较弱。 相似文献
18.
基于1961—2020年9个国家气象观测站逐日资料,采用气候统计学方法分析了塔城地区不同相态降水的时空分布及变化规律,探讨了降水相态的变化成因及其可能影响。结果表明:(1)近60 a塔城地区年平均降水日数88.1 d,其中降雨日数最多,降雪日数次之,雨夹雪日数最少;3种相态降水在空间上呈现地区西北部多、中东部少的分布格局。(2)从不同相态降水日数的月际分布来看,降雨主要出现在4—9月,降雪在11月—翌年3月较多,3—4月和10—11月期间3种相态降水共存。(3)近60 a塔城地区各站不同相态降水的变化趋势存在一定的差异,总体呈现降雨日数增加而降雪日数减少的变化趋势,且降雨量的增速高于降雪量增速,其结果导致雪雨比率以-0.33%·(10a)-1的速率减小。(4)气温增暖是塔城地区降水相态向多雨化转变的主要原因,同时北极涛动指数(Arctic oscillation index,AO)、北大西洋涛动指数(North Atlantic oscillation index,NAO)以及北半球极涡指数对降水相态的变化也有一定的影响。 相似文献
19.
Assessment of diurnal variation of summer precipitation over the Qilian Mountains based on an hourly merged dataset from 2008 to 2014 总被引:1,自引:0,他引:1
Xuemei Liu Mingjun Zhang Shengjie Wang Jie Wang Peipei Zhao Panpan Zhou 《地理学报(英文版)》2017,27(3):326-336
To investigate the diurnal variation of summer precipitation in the Qilian Mountains in the northeast Tibetan Plateau, the hourly precipitation amount for this region during the summers of 2008–2014 are analyzed using an hourly merged precipitation product at 0.1°×0.1° resolution. The main results are as follows. (1) The spatial distribution and temporal variation of mean hourly precipitation amount and frequency are generally similar and hourly precipitations in the eastern and middle portions are larger and more frequent than that in the western portion. The high value area of precipitation intensity is obviously different from that of precipitation amount and frequency. (2) The spatial distribution of daytime precipitation is generally similar to that of nighttime precipitation, and the daytime precipitation is heavier than the nighttime precipitation. (3) The change rate of precipitation has a maximum at 20:00 Beijing time, and a minimum at 12:00. The hourly precipitation amount significantly correlated with frequency, especially for the middle and eastern portions. 相似文献