首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A photometric study of a contact binary system, GV Leo is presented. New observations were done using the B VR filter bands. We find that a revised orbital period is 0.26673171 d and the orbital period of this system is decreasing at a rate of dP/ dt = -4.95 × 10-7 d yr-1. The photometric solutions are fairly well fitted at a mass ratio of q = 0.1879, with a fillout factor of f = 17.74%. The results indicate that there exists mass transfer from the more massive component to the less massive one at a rate of relative mass exchange, 6zl/m = -1.09× 10-7 yr-1. It is possible that this weak- contact system, that shows a decreasing orbital period, may undergo contraction of the inner and outer critical Roche lobes and evolve into a deep-contact binary.  相似文献   

2.
Solar H-flares now reported with their distinctive visual features have been statistically examined for a period of about eight years in relation to their different characteristics, flare-burst and flare-sunspot association. Important results obtained are: (i) Integrated intensity changes from the highest to the lowest values in the order F, H, E, and D flare type, whereas, impulsiveness in the order H, F, E, and D type, (ii) Flare-burst association is frequency dependent and is highest and lowest for H and D types respectively in almost all the frequencies, (iii) Most of the flares of D, E, and F types are associated with sunspots of p , p , and configurations having field strength 1500–2500 G, while that of H type with p and configurations having field strength 1000–2000 G.  相似文献   

3.
The combination of seasonal and orbital changes in Martian insolation result in complex latitude dependent surface temperature variations that effect the total radiance of the planet as seen from the earth. These surface temperature variations have been calculated, based upon a computer simulation of the thermal environment of the planet. The temperature variations are then integrated to yield the total radiance of the planet as seen from the earth as a function of time. The absolute radiance of Mars was measured on April 4, 1971, with a balloon-borne radiometer system operating in the wavelength range between 10.5 and 12.5 μm. The average brightness temperature of the Mars disk determined from these measurements was 254°K with a 1 σ error of 4°K.  相似文献   

4.
C.M. Anderson  E.F. Young  C.P. McKay 《Icarus》2008,194(2):721-745
We report on the analysis of high spatial resolution visible to near-infrared spectral images of Titan at Ls=240° in November 2000, obtained with the Space Telescope Imaging Spectrograph instrument on board the Hubble Space Telescope as part of program GO-8580. We employ a radiative transfer fractal particle aerosol model with a Bayesian parameter estimation routine that computes Titan's absolute reflectivity per pixel for 122 wavelengths by modeling the vertical distribution of the lower atmosphere haze and tropospheric methane. Analysis of these data suggests that Titan's haze concentration in the lower atmosphere varies in strength with latitude. We find Titan's tropospheric methane profile to be fairly consistent with latitude and longitude, and we find evidence for local areas of a CH4-N2 binary saturation in Titan's troposphere. Our results suggest that a methane and haze profile at one location on Titan would not be representative of global conditions.  相似文献   

5.
《Icarus》1987,69(2):230-238
Radiometric measurement of Uranus and Neptune near 21 and 32 μm have been made with filters with widths of 8 and 5 μm, respectively. The observations at 21 μm, made on 1985 June 19 at the NASA Infrared telescope facility at Mauna Kea, Hawaii, were calibrated against α Boo and corresponded to brightness temperatures of 54.1 ± 0.3 K for Uranus and 58.1 ± 0.3 K for Neptune. The observations at 32 μm were made on three nights: 1983 May 1 and 1984 May 30 and 31, also at the NASA IRTF. Calibrated against the Jovian satellites Callisto (J4) and Ganymede (J3), these measurements corresponded to brightness temperatures of 51.8 ± 1.5 K for Uranus and 55.6 ± 1.2 K for Neptune. The observations are consistent with higher-resolution studies and confirm the general decrease of brightness temperatures going from about 20 to 30 μm.  相似文献   

6.
We present CCD BV and JHK s 2MASS photometric data for the open cluster NGC 1513. We observed 609 stars in the direction of the cluster up to a limiting magnitude of V∼19 mag. The star-count method showed that the centre of the cluster lies at α 2000=04 h 09 m 36 s , δ 2000=49°2843 and its angular size is r=10 arcmin. The optical and near-infrared two-colour diagrams revealed the colour excesses in the direction of the cluster as E(BV)=0.68±0.06, E(JH)=0.21±0.02 and E(JK s )=0.33±0.04 mag. These results are consistent with normal interstellar extinction values. Optical and near-infrared Zero Age Main-Sequences (ZAMS) provided an average distance modulus of (mM)0=10.80±0.13 mag, which can be translated into a distance of 1440±80 pc. Finally, using Padova isochrones we determined the metallicity and age of the cluster as Z=0.015±0.004 ([M/H]=−0.10±0.10 dex) and log (t/yr)=8.40±0.04, respectively.  相似文献   

7.
R.W. Russell  B.T. Soifer 《Icarus》1977,30(2):282-285
Moderate-resolution spectrophotometry (Δλ/λ~0.015) has shown the effects of known atmospheric constituents (NH3, CH4, C2H6) on the 5–8 μm spectrum of Jupiter. Broadband observations of Saturn at 6.5 μm are also reported.  相似文献   

8.
We have analysed the available spectra of WW And and for the first time obtained a reasonably well defined radial velocity curve of the primary star. Combined with the available radial velocity curve of the secondary component, these data led to the first determination of the spectroscopic mass ratio of the system at qspec = 0.16 ± 0.03. We also determined the radius of the accretion disc from analysis of the double-peaked Hα emission lines. Our new, high-precision, Johnson VRI and the previously-available Strömgren vby light curves were modelled with stellar and accretion disc models. A consistent model for WW And – a semidetached system harbouring an accretion disc which is optically thick in its inner region, but optically thin in the outer parts – agrees well with both spectroscopic and photometric data.  相似文献   

9.
A spectrum of Jupiter in the two micron region has been analyzed to determine the Jovian ammonia abundance. The result is a ?4 cm - amagat, assuming an airmass factor η = 2.5 and a single effective reflecting layer for this wavelength. This is compared with the abundances observed at other wavelengths.  相似文献   

10.
We present near-infrared K -band imaging and spectroscopy of a sample of galaxy mergers, which we use to derive light profile indices, absolute magnitudes and central velocity dispersions. We find that the light distributions of mergers more nearly resemble those of ellipticals than those of bulges, but that the mergers lie well away from the Fundamental Plane defined by the ellipticals. We interpret this as being due to enhancement of the K -band surface brightness of the mergers by a significant population of supergiant stars, and independent evidence for such a population is inferred from measurements of the depth of the 2.3-μm CO absorption feature.  相似文献   

11.
We present radiative transfer modelling of thermal emission from the nightside of Venus in two ‘spectral window’ regions at 1.51 and 1.55 μm. The first discovery of these windows, reported by Erard et al. [Erard, S., Drossart, P., Piccioni, G., 2009. J. Geophys. Res. Planets 114, doi:10.1029/2008JE003116. E00B27], was achieved using a principal component analysis of data from the VIRTIS instrument on Venus Express. These windows are spectrally narrow, with a full-width at half-maximum of ∼20 nm, and less bright than the well-known 1.7 and 2.3 μm spectral windows by two orders of magnitude.In this note we present the first radiative transfer analysis of these windows. We conclude that the radiation in these windows originates at an altitude of 20-35 km. As is the case for the other infrared window regions, the brightness of the windows is affected primarily by the optical depth of the overlying clouds; in addition, the 1.51 μm radiance shows a very weak sensitivity to water vapour abundance.  相似文献   

12.
We have used the ESO 10 m camera, TIMMI, to image with a very high angular resolution (PFoV: 0.3; FWHM:0.9) several main-sequence star disk candidates. Information on the -Pictoris dust disk has been obtained in a region largely inaccessible to previous observations: 0–80 AU, with a resolution of about 5 AU after deconvolution. Another promising target for 10 m imaging, 51 Ophiuchi, appears point-like.based on data collected at the European Southern Observatory (ESO), La Silla, Chile  相似文献   

13.
Laboratory spectra of SiO particles of 1 m radius show a broad structureless extinction peak at 9.6m. The wavelength dependence of extinction from SiO, an amorphous silicon oxide, provides a good match to that of interstellar dust.  相似文献   

14.
《Icarus》1987,70(1):1-12
An array spectrometer was used on the nights of 1985 May 30–June 1 to observe the disks of Uranus and Neptune in the spectral regions 7–14 and 17–23 μm with effective resolution elements ranging from 0.23 to 0.87 μm. In the long-wavelength region, the spectra are relatively smooth with the broad S(1) H2 collision-induced rotation line showing strong emission for Neptune. In the short-wavelength spectrum of Uranus, an emission feature attributable to C2H2 with a maximum stratospheric mixing ratio of 9 × 10−9 is apparent. An upper limit of 2 × 10−8 is placed on the maximum stratospheric mixing ratio of C2H6. The spectrum of Uranus is otherwise smooth and quantitatively consistent with the opacity provided by H2 collision-induced absorption and spectrally continuous stratospheric emission, as would be produced by aerosols. Upper limits to detecting the planet near 8 μm indicate a CH4 stratospheric mixing ratio of 1 × 10−5 or less, below a value consistent with saturation equilibrium at the temperature minimum. In the short-wavelength spectrum of Neptune, strong emission features of CH4 and C2H6 are evident and are consistent with local saturation equilibrium with maximum stratospheric mixing ratios of 0.02 and 6 × 10−6, respectively. Emission at 8–10 μm is most consistent with a [CH3D]/[CH4] volume abundance ratio of 5 × 10−5. The spectrum of Neptune near 13.5 μm is consistent with emission by stratospheric C2H2 in local saturation equilibrium and a maximum mixing ratio of 9 × 10−7. Radiance detected near 10.5 μm could be attributed to stratospheric C2H4 emission for a maximum mixing ratio of approximately 3 × 10−9. Quantitative results are considered preliminary, as some absolute radiance differences are noted with respect to earlier observations with discrete filters.  相似文献   

15.
The lunar photometric function, which describes the dependency of the observed radiance on the observation geometry, is used for photometric correction of lunar visible/near-infrared data. A precise photometric correction parameter set is crucial for many applications including mineral identification and reflectance map mosaics. We present, for the first time, spectrally continuous photometric correction parameters for both sides of the Moon for wavelengths in the range 0.5-1.6 μm and solar phase angles between 5° and 85°, derived from Kaguya (SELENE) Spectral Profiler (SP) data. Since the measured radiance also depends on the surface albedo, we developed a statistical method for selecting areas with relatively uniform albedos from a nearly 7000-orbit SP data set. Using the selected data set, we obtained empirical photometric correction parameter sets for three albedo groups (high, medium, and low). We did this because the photometric function depends on the albedo, especially at phase angles below about 20° for which the shadow hiding opposition effect is appreciable. We determined the parameters in 160 bands and discovered a small variation in the opposition effect due to the albedo variation of mafic mineral absorption. The consistency of the photometric correction was checked by comparing observations made at different times of the same area on the lunar surface. Variations in the spectra obtained were lower than 2%, except for the large phase angle data in mare. Lastly, we developed a correction method for low solar elevation data, which is required for high latitude regions. By investigating low solar elevation data, we introduced an additional correction method. We used the new photometric correction to generate a 1° mesh global lunar reflectance map cube in a wavelength range of 0.5-1.6 μm. Surprisingly, these maps reveal that high latitude (?75°) regions in both the north and south have much lower spectral continuum slopes (color ratio r1547.7nm/r752.8nm ? 1.8) than the low and medium latitude regions, which implies lower degrees of space weathering.  相似文献   

16.
K.M. Merrill 《Icarus》1974,23(4):566-567
Spectrophotometry of Comet Kohoutek (1973f) covering the wavelength range 8–13 μm is presented. The spectral shape of the derived flux excess above a blackbody closely resembles that seen in circumstellar and interstellar dust and generally attributed to metallic silicates.  相似文献   

17.
Microorganisms sealed in KBr dises have an absorption spectrum over the 2.5–15 m waveband that shows thermal stability as they are heated in an inert atmosphere to temperatures of about 400°C. Microfossils tightly sealed within cavities in rocks could be endowed with similar properties of thermal stability. The observed absorption of interstellar material along the line of sight from the solar system to the galactic centre is remarkably similar to the spectrum of dry micro-organisms over the 3.15–3.7 m waveband.  相似文献   

18.
We present 9.7 and 11.8 m narrow band (/=10%) images of three carbon (C-) rich proto-planetary nebulae with an unusual 21 m feature: IRAS 07134+ 1005, IRAS 22272+5435, and IRAS 04296+3429. The images were taken at UKIRT using the Berkeley/IGPP/LEA mid-IR camera. All three objects have a bipolar shape adding to the existing evidence that C-rich PPNe are by nature bipolar. Furthermore, we find the same bipolar morphology in a previous study of the C-rich, young planetary nebula, IRAS 21282+5050. We believe these four objects form an evolutionary sequence which links the C-rich asymptotic giant branch (AGB) stars with the C-rich planetary nebulae (PNe). From this evolutionary sequence, we conclude that bipolarity in C-rich PNe begins on the AGB and that the dynamical ages of these PPNe are in fair agreement with theoretical ages for a 0.6 M hydrogen burning core star.  相似文献   

19.
Dale P. Cruikshank 《Icarus》1980,41(2):240-245
The reflectance spectrum of Io is presented from 2.8 to 5.2 μm, extending the earlier results of D. P. Cruikshank, T. J. Jones, and C. B. Pilcher (1978, Astrophys. J. 225, L89–L92), and demonstrating the full extent of the broad and deep spectral absorption between 3.5 and 4.8 μm. Laboratory spectra of nitrates and carborates diluted with sulfur do not satisfactorily reproduce the Io spectrum, but new information based on the recently discovered volcanic activity on the satellite lead to consideration of other classes of compounds as reported in a companion paper (F. P. Fanale, R. H. Brown, D. P. Cruikshank, and R. N. Clark, 1979, Nature280, 761–763).  相似文献   

20.
An infrared solar spectrum observed by ground-based telescopes is seriously affected by the background radiation both from the telescope and sky, relative to the visible wavelengths. Its accuracy is also influenced by the spectral resolution of the Fourier transform spectrometer. In the paper, we developed a CO2 gas cell and installed it in the sample compartment to calibrate the spectral resolution of the Bruker IFS-125HR at infrared wavelengths. The measured spectral resolution is 0...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号