首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Explicit vacuum field equations in the general scalar-tensor theory of gravitation proposed by Nordtvedt are obtained with the aid of the most general conformally flat spherically-symmetric static space-time. It is shown that the most general conformally flat spherically-symmetric static solution of Nordtvedt-Barker vacuum field equations is simply the empty flat space-time of general relativity.  相似文献   

2.
The post-Newtonian approximation of the gravitational field of a perfect fluid for a previously stated theory of gravitation in flat space-time is studied. The conservation laws of energy-momentum and angular-momentum are derived and the equivalence of the conservation law of energy-momentum and the equations of motion is shown to the studied accuracy. The equations of motion are stated. All the results of the post-Newtonian approximation of the gravitation theory in flat space-time and of the general theory of relativity, as considered by Will in his famous book, agree to the studied accuracy.  相似文献   

3.
Vacuum quantum effects in a conformally coupled scalar field on the background of a conformally flat geometry of brane worlds are studied. Based on the corresponding results for a Minkowski space-time in the general case of mixed boundary conditions on the branes, formulas are derived for the vacuum averaged energy-momentum tensor and for the vacuum forces acting on the boundaries. The important special case of AdS background is examined and applications to the Randall-Sundrum model are discussed. The possible stabilization of the radion by vacuum forces is demonstrated.  相似文献   

4.
Starting from a previously studied theory of gravitation in flat space-time the post-Newtonian approximation of the gravitational field of an nonstationary spherically symmetric star is derived. To the post-Newtonian order the equations of motion and the conserved total energy of a collapsing star are given. Birkhoff's theorem holds to this accuracy.  相似文献   

5.
The integration of the Einstein-Maxwell equations for an anisotropic charged fluid sphere acting as a source of the Reissner-Nordström metric is considered, under the assumption of a conformally flat interior metric. The solutions asymptotically tend to static configurations. In the isotropic pressure limiting case, the non-static solutions are found to be incompatible with charged models.  相似文献   

6.
A previously studied theory of gravitation in flat space-time is applied to homogeneous, isotropic cosmological models. In addition to radiation a two-component fluid model consisting of dust and of a background field is studied. This universe starts from a nonsingular state and expands for ever. The energy of radiation, of dust and of the background are emerged from the gravitational energy. Entropy is produced. The age of the universe is infinite measured in units of absolute time whereas the proper-time of the universe is finite. The sum of the density parameters of dust, of radiation and of the background field is about one. There is no flatness and no monopole problem.  相似文献   

7.
Relativistic cosmological field equations are obtained for a non-static stationary Bertotti-Robinson-type space-time for interacting perfect fluid and electromagnetic field. The cosmological solution to the field equations are obtained and the nature of the electromagnetic field as well the perfect fluid are studied. The electromagnetic field generated here corresponds to a special generic case and the perfect fluid distribution degenerates into a barotropic perfect fluid with equation of statep+=0, >0. It is shown here that the interacting barotropic fluid can generate gravitation only when the cosmological constant being a function ofx in a dynamic field.  相似文献   

8.
The f(R) theories of gravity have been interested in recent years. A considerable amount of work has been devoted to the study of modified field equations with the assumption of constant Ricci scalar which may be zero or nonzero. In this paper, the exact vacuum solutions of plane symmetric spacetime are analyzed in f(R) theory of gravity. The modified field equations are studied not only for R=constant but also for general case R≠constant. In particular, we show that the Novotný-Horský and anti-de Sitter spacetimes are the exact solutions of the field equations with the non-zero constant Ricci scalar. Finally, the family of solutions with R≠constant is obtained explicitly which includes the Novotný-Horský, Kottler-Whittaker, Taub and conformally flat spacetimes.  相似文献   

9.
The paper deals with a spatially homogeneous and isotropic FRW space-time filled with perfect fluid and dark energy components. The two sources are assumed to interact minimally, and therefore their energy momentum tensors are conserved separately. A special law of variation for the Hubble parameter proposed by Berman (Nuovo Cimento B 74:182, 1983) has been utilized to solve the field equations. The Berman’s law yields two explicit forms of the scale factor governing the FRW space-time and constant values of deceleration parameter. The role of dark energy with variable equation of state parameter has been studied in detail in the evolution of FRW universe. It has been found that dark energy dominates the universe at the present epoch, which is consistent with the observations. The physical behavior of the universe has been discussed in detail.  相似文献   

10.
Exact solutions of the semi-classical Einstein equations for conformally invariant free quantum fields in an homogeneous and isotropic space-time, with cosmological constant and containing a classical scalar field, dust matter, an unquantised Dirac field and electromagnetic radiation are found. The initial behaviour of the semiclassical models is investigated. Some of the solutions found avoid the singularity and do not have particle horizons. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Assuming a perfect fluid distribution of matter Bianchi type Vspace-time is considered and using a new generation techniqueit is shown that the field equations are solvable for anyarbitrary cosmic scale function. Solutions for particularforms of cosmic scale functions are obtained, and thegeometrical and physical properties of these solutions discussed.  相似文献   

12.
A theoretical scheme is developed to deal with the problems of stellar winds in three-dimensional situations, and relativistic fluid equations are integrated formally under isentropic and quasi-stationary conditions, in a flat space-time.The relativistic Euler equation for a one-component plasma is expressed in the same form as the ideal-MHD condition for the effective electromagnetic field which combines the inertial and pressure terms with the true electromagnetic field. This equation and that of mass continuity are integrated formally by introducing Euler-type potentials for the effective magnetic field and for the mass flux in the rotating frame, respectively. Functional form of one of these Euler potentials, which represents the total energy per unit charge in the rotating frame, is specified as an integral of motion. For an electron-proton plasma, the integrals for both components are combined to yield the energy integral of the plasma as a whole and the integrated Ohm's law, in the limit of vanishing mass ratio of an electron to a proton.Maxwell's equations are divided in two parts: i.e., the co-rotational and non-corotational parts. It is shown that the electromagnetic potentials for these parts are derived from a scalar super-potential and a vector super-potential, respectively.  相似文献   

13.
Spherically symmetric kink space-time is considered in the framework of f(R,T) gravity proposed by Harko et al. (Phys. Rev. D 84:024020, 2011) in the presence of a cloud of massive strings with perfect fluid. Solving the field equations of this modified theory of gravity, we observe that cosmic strings and perfect fluid do not survive in this theory of gravitation and in this particular space-time. Hence a vacuum kink model, which is asymptotically flat, is presented.  相似文献   

14.
Exact solutions of the semi-classical Einstein equations with cosmological constant for conformally invariant free quantum fields in a spatially flat Robertson-Walker metric are found when a classical perfect fluid is present. The stability of the asymptotically Friedmann-de Sitter solutions is studied. The formers are found to be stable if < 0, while the stability of the latter depends of the signs of , and A.Fellow of the Consejo Nacional de Investigaciones Científicas y Técnicas.Supported by scholarship of the Universidad de Buenos Aires.  相似文献   

15.
Vacuum field equations for the conformally-flat spherically-symmetric static space-time are obtained in a self-creation theory of gravitation proposed by Barber. It is shown that the most general conformally-flat spherically-symmetric static vacuum model in this theory represents only purely flat space-time.  相似文献   

16.
Several authors have studied solutions of Einstein's field equations for a conformally invariant scalar field with trace-free energy-momentum tensor for the Robertson-Walker models forK = 0, ± 1. The relationship of these solutions to a previously existing one by Som (1985) is discussed. TheK = 0 model derived by Innaiah and Reddy (1985) is shown to be a special case of the Bianchi type-I models due to Accioly, Vaidya and Som (1983a).  相似文献   

17.
Recently, Innaiah and Reddy (1985) obtained a flat Robertson-Walker-type solution for the Einstein field equations with the trace-free energy-momentum tensor of a conformally invariant scalar field as source. Here we show that the field equations force the scalar field to be independent of time. Furthermore, we obtain open and closed Robertson-Walker-type solutions and observe that, once again, the scalar field has to be independent of time.  相似文献   

18.
The 1-post-Newtonian approximation of perfect fluid in cosmological models of the theory of gravitation in flat space-time is studied. The equations of motion are given in evolution form. At high redshifts the terms of post-Newtonian approximation are important in studying the development of inhomogeneities on scales smaller than galaxies but at present time these terms only take effect on very large scales. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Exact solution of Einstein’s field equations is obtained for massive string cosmological model of Bianchi III space-time using the technique given by Letelier (Phys. Rev. D 20:2414, 1983) in presence of perfect fluid and decaying vacuum energy density Λ. To get the deterministic solution of the field equations the expansion θ in the model is considered as proportional to the eigen value s2 2\sigma^{2}_{~2} of the shear tensor sj i\sigma^{j}_{~i} and also the fluid obeys the barotropic equation of state. The vacuum energy density Λ is found to be positive and a decreasing function of time which is supported by the results from recent supernovae Ia observations. It is also observed that in early stage of the evolution of the universe string dominates over the particle whereas the universe is dominated by massive string at the late time. Some physical and geometric properties of the model are also discussed.  相似文献   

20.
We have studied Locally Rotationally Symmetric (LRS) Bianchi type-I space-time having constant deceleration parameter and filled with perfect fluid in the Hoyle-Narlikar C-field cosmology. Here, the creation field C is a function of time t only. The geometrical and physical aspects for the models are also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号