首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Altimeter data have been assimilated in an ocean general circulation model using the water property conserving scheme. Two runs of the model have been conducted for the year 2004. In one of the runs, altimeter data have been assimilated sequentially, while in another run, assimilation has been suppressed. Assimilation has been restricted to the tropical Indian Ocean. An assessment of the strength of the scheme has been carried out by comparing the sea surface temperature (SST), simulated in the two runs, with in situ derived as well as remotely sensed observations of the same quantity. It has been found that the assimilation exhibits a significant positive impact on the simulation of SST. The subsurface effect of the assimilation could be judged by comparing the model simulated depth of the 20°C isotherm (hereafter referred to as D20), as a proxy of the thermocline depth, with the same quantity estimated from ARGO observations. In this case also, the impact is noteworthy. Effect on the dynamics has been judged by comparison of simulated surface current with observed current at a moored buoy location, and finally the impact on model sea level forecast in a free run after assimilation has been quantified in a representative example.  相似文献   

2.
Using an airborne scanning IR-radiometer, measurements of sea surface temperature (SST) were made from nine different levels in the Sandheads region of the Bay of Bengal on 5 October 1978. To retrieve SST from the observed radiances a temperature correction scheme, which uses the radiosonde data in the vicinity of flight area, has been generated. Atmospheric effects which have been considered include absorption due to water vapour and carbon dioxide, and the re-emission from different atmospheric layers. The radiances observed at different altitudes when corrected by our scheme yield a fairly consistent value of SST. The special ship measurements of SST, at the same location, are found to have very good agreement with the SST retrieved from the observed radiances using our scheme. The temperature corrections turn out to be 0·3 and 3·3°C at 600 and 3000 meters respectively for the type of atmosphere which has been used in our study.  相似文献   

3.
The Modular Ocean Model (MOM) is perhaps the most versatile ocean model available today for the simulation of the large scale circulation of the ocean. The Topex/Poseidon altimeter which has been operating since September 1992 has been providing sea surface heights (SSH) of the accuracy of 5–10 cms with a repeat cycle of 10 days. We examine in this paper, the SSH in the Indian Ocean obtained from a global simulation of MOM with a resolution of 1° in the longitude, 1/3° in the latitude between 30°S and 30°N and 20 levels in the vertical with climatological windforcing and restoring conditions on temperature and salinity. They are compared with the SSH from the Topex/Poseidon altimeter after suitable filtering in the time domain to remove smaller time and length scales. In addition, unfiltered data from both sources are analysed by estimating the cross-spectral density to find the coherence and crossphase at different frequencies. The agreement between the two, over most of the Northern Indian Ocean, especially the Arabian Sea and the Bay of Bengal is quite good.  相似文献   

4.
A bottom-mounted Recording Doppler Current Profiler was placed at an offshore location (depth of 34 m) in the southeast Chukchi Sea, Alaska, from July through December 2007 (UTC) with the objective of linking observed wave activity—wind-sea and swells—to their synoptic drivers. A total of 47 intervals of elevated wave state were recorded: 29 exceeding 1 m significant wave height (SWH), 16 exceeding 2 m SWH, and 3 m exceeded on two occasions; during one of those, a SWH of 4 m was observed. Detailed analysis of the two large events, including comparison with high-resolution reanalysis wind data (North America Regional Reanalysis), showed wave direction from the east, varied about 15° to the north (counterclockwise) from the wind direction, and current flow in the opposite direction (from the west). This is thought to be the influence of a strong “wind-sea” presence. Regarding classic wave limitations, although the SE Chukchi Sea is a large embayment bordered by land to the east, fetch limitations from the northeast and southeast did not appear to be a constraint for the wind speeds indicated by reanalysis. These two events appeared to be driven by winds associated with cyclonic systems that moved into the eastern Bering Sea and stalled. Examination of smaller waves associated with these events suggested that waves of 1.5 m SWH or less are likely part of another regime and can either be swell or wind-sea, moving in from the open Chukchi Sea to the northwest or through the Bering Strait to the south.  相似文献   

5.
Satellite altimetry can be used to infer subsurface geological structures analogous to gravity anomaly maps generated through ship-borne survey. The Eastern offshore was taken up for analysis using Geosat Exact Repeat Mission (ERM) altimeter data. A methodology is developed to use altimeter data as an aid to offshore hydrocarbon exploration. Processing of altimeter data involves corrections for various atmospheric and oceanographic effects, stacking and averaging of repeat passes, cross-over correction, removal of deeper earth and bathymetric effects, spectral analysis and conversion into free-air gravity anomaly. The final processed results were derived for Eastern offshore in the form of prospecting geoid and gravity anomaly maps and their spectral components. The highs and lows observed in those maps were derived in terms of a number of prominent megastructures e.g., gravity linears, 85°E and 90°E ridges, the Andaman trench complex etc. Satellite-derived gravity profiles along 12°N latitude match well with the existing structures.  相似文献   

6.
An analytical form for the source function is formulated by comparing the fetch-limited approximation of the Ocean Wave Transport equation and the empirical equation for the fetch-dependent wave forecast nomograms. The source function thus generated has been utilised in the numerical model based on Toba’s formulation of wave transport equation and tested for the seas around the Indian subcontinent (5°S to 25°N latitude; 45°E to 100°E longitude). The grid averaged hindcast wave heights are found to be moderately matching with the GEOSAT altimeter measured significant wave heights of the 1987–1989 period, particularly for waves higher than 1 meter.  相似文献   

7.
Two bottom-mounted recording Doppler current profilers (RDCP) were deployed at nearshore locations (approximately 3 and 8 km offshore, in about 18 m water depth) in the southeast Chukchi Sea, Alaska, from October 2009 to September 2010 (UTC) with the goal of linking observed wave activity—wind-sea and swells—to their synoptic drivers. The northerly RDCP recorded a total of 16 events of elevated wave states: 15 exceeding 1 m significant wave height (SWH), and 1 exceeding 2 m SWH. The southerly RDCP recorded a total of 25 events of elevated wave states: 23 exceeding 1 m SWH, 2 m exceeded on two occasions and a SWH of 3 m was observed. Detailed analysis of the three large events (i.e., SWH events ≥2 m), including comparison with high-resolution reanalysis wind data (North America regional reanalysis), strongly suggested the wave energy evolved from a distant storm and would be defined as swell. Due to the close proximity of the shoreline to the east of the instruments, wind speeds based on reanalysis were constrained so fetch was westerly. Wave direction was also westerly, varying about 25° to the north (clockwise) or the south (counterclockwise) from the wind direction which is believed to be influenced by fetch and the strong current flow located where the nearshore RDCPs were deployed. Shore-fast sea ice is also believed to play a role but shown to only dampen wave activity for 3 months (January–April 2010), thus implying early ice breakup in this nearshore region. Two events appeared to be driven by southwesterly winds associated with cyclonic systems that moved into the eastern Chukchi Sea and then stalled. However, the second storm event appeared to be driven by northwesterly winds associated with a cyclonic system over the Brooks Range, a less common occurrence. Given that the typical storm activity in the region occurs as storms move into the Bering Sea in fall, this represents another potential source for wave conditions posing danger to people on the water or to coastal infrastructure.  相似文献   

8.
Numerical simulation of a typical tropical thunder storm event at Pune (18.53°N, 73.85°E), India, has been performed using the three nested domain configuration of Weather Research and Forecasting-Advanced Research Weather Model (version 3.2). The model simulations have been compared with observations. Sensitivity to cumulus parameterization schemes, namely Betts–Miller (BM), Grell–Devenyi (GD), and Kain–Fritsch (KF), for simulation of vertical structure and time evolution of weather parameters has been evaluated using observations from automatic weather station and global positioning system radiosonde ascents. Comparison of spatial distribution of 24-h accumulated rain with Tropical Rainfall Measuring Mission data shows that BM scheme could simulate better rain than GD and KF schemes. The BM scheme could well simulate the development of storm and heavy rain as it could generate sufficiently humid and deep layer in the lower and middle atmosphere, along with co-existence of updrafts and downdrafts and frozen hydrometeors at the middle level and rain water near the surface.  相似文献   

9.
A meteorite shower occurred in Katol (21° 15′ 30″ N; 78° 35′ 00″ E; at an elevation of 415 m above msl), Nagpur district of Maharashtra state, India on May 22, 2012 between 14:00 to 14:30 hrs (Indian Standard Time) with a presently observed strewn field of ~5.0 sq km area. The event was experienced by the hundreds of inhabitants with a loud noise and fire ball between Akola in the west to Nagpur in the east. The Geological Survey of India has so far collected 27 meteorite pieces with a total weight of 3500 gm. The locations, size, shape and surface features of the individual meteorite pieces have been recorded. Based on their physical properties, mineralogy, mineral chemical mapping and REE chemistry, the Katol meteorites have been classified as olivine-rich H5 type differentiated stony meteorite with reconstituted chondrules. The preliminary evidence suggests the presence of pre-solar grains in Katol meteorite.  相似文献   

10.
An integral transform, called in this study as Sundararajan transform, has been used to estimate the parameters of vertical magnetic effect of a fault structure. It differs from the well-known Hilbert transform in the property of phase shift as it yields a phase shift of 270° unlike the Hilbert transform, which is a 90° phase shifter. Other properties of the Sundararajan transform remain almost the same as the Hilbert transform. The transform has been tested on synthetic data and a field example of Lachlan Foldbelts, New South Wales, Australia. The results of this technique agree with the one published in the literature. The noise analysis has been examined and showed that it still provides acceptable results. The application of this transform to geophysical interpretation illustrates its potentiality, and it may be widely applied in various disciplines mainly in the field of communication engineering, signal, and image processing. An interesting property of this transform is that two successive transforms of a function return it to its original form unlike the Hilbert transform, which returns it to the negative of the original form. The procedure discussed may be automated.  相似文献   

11.

The frequency and severity of occurrence of meteorological droughts in different climatic regions depend on regional climatic factors. This study has made an effort to explore the relationship of range of annual temperature variation at a given place with the frequency of occurrence of drought and the maximum magnitude of seasonal rainfall deficit (i.e., severity). The seasonal rainfall refers to sum of monsoon season (rainy season) rainfall in India. The monthly precipitation data of 113 years (1901–2013) for 256 stations in different parts of India have been used to estimate the return period of meteorological drought at different stations. The daily normal values of observed maximum and minimum temperatures from 40 years of records have been utilized to estimate range of temperature variation (θR) during the year at each stations. In various parts of India, the θR ranges from 10 °C in humid regions to 40 °C in arid regions. The various climatic regions have been experiencing maximum deficiency of annual rainfall ranging from 30% (humid) to 90% (arid). The results reveal that places exhibiting θR values between 40 to 30 °C face more frequent droughts with average frequency of once in 3 to once in 6 years. The occurrence of extreme and severe drought events is more frequent in the regions with higher values of θR compare to that in lesser values of θR. The regions with θR values between 30 to 25 °C mostly face severe and moderate events having the average drought return period of 6–9 years, and the occurrence of extreme droughts in these regions is rare. Furthermore, regions with θR?<?20 °C face moderate droughts only with an average return period of 14 years. This study divulges that the average return period and magnitude of deficiency of drought events have notable relationship with the range of temperature variation during the year at a given place.

  相似文献   

12.
Surface seawater samples from Kamaran Strait of Yemen were collected for physical and chemical parameter determinations. This work reports the results of air and surface seawater temperature, salinity, pH, and total alkalinity measurements. The air temperature ranged from 29.9°C to 36.5°C with an average value of 31.5?±?1.5°C, whereas the seawater surface temperature ranged from 34.0°C to 36.0°C with a mean value of 34.5?±?0.5°C. The salinity was observed to be high, ranging from 38.03 to 38.81 with an average value of 38.45?±?0.22. The pH ranged from 7.74 to 8.27 with a mean value of 8.11?±?0.10. The total alkalinity was found to range from 2.3860 to 2.5000 meq L?1 with an average value of 2.4288?±?0.0351 meq L?1. The result of the study showed that there was a negative correlation between the pH and surface seawater temperature and salinity. The surface seawater of the Kamaran Strait was found to be several fold supersaturated with respect to calcium carbonate. The measured percent degree of saturation ranged from 454% to 668% with respect to calcite and from 246% to 361% with respect to aragonite. The lowest value of supersaturation with respect to both calcite and aragonite were found in front of as-Salif port, where human and developmental activities are intensively increased. The visual inspection of coral reefs distribution and their intensity were obviously observed in areas of high value of supersaturation with respect to both minerals, high transparency of seawater column, and low human activities. Further studies are needed to investigate the occurrence, distribution, and mineralogy of corals and the effects of physical and chemical parameters upon their growth in the region.  相似文献   

13.
Abstract

Mineral dust emissions from arid regions are influenced by the surface features encountered in the source regions. These surface features control both the erosion threshold and the intensity of the dust flux. Recently, a soil-derived dust emission scheme has been designed in order to provide an explicit representation of the mineral dust accounting for the influence of the surface features on the dust emissions. This physical scheme has been validated with micro-scale field measurements. Its large scale application has required the development of additional relations to estimate the input parameters from more accessible data: the mean height and the covering rate of the roughness elements and the min-eralogical soil type. The determination of these surface data has been based on a geomorphologic approach which describes the surface features of arid areas in a 1 × l° grid. Inside each square degree, up to five different areas characterised by different surface features have been distinguished. However, these areas have not been located inside the square degree. Each area can be constituted by several combined surface features, including roughness, vegetation, granulometry. Five main types of landscapes and eight main types of surface features have been distinguished. This approach is based on the combination of various data, mainly topographical, geological maps and climatological analysis. In addition to the problem of scale transfer, the main constraints to obtain a quantitative assessment are the confidence level of the existing data and the number of parameters to document. On the opposite, with this method, the fine scale required by the dust modelling can be separated from the scale accessible by the mapping approach, of the order of the square degree. This method can also be easily improved by aggregating new data and can be extended to other deserts. An example of application is given for the north-west of the Algerian Sahara where the method has been elaborated. The data provided by the modelling of the surface have been used to simulate dust emissions for 1990, 1991 and 1992 over the central and western Sahara. Over these three years, the mean annual dust emission is about 760 Mt-year?1 Although a significant interannual variability exists (mainly due to changes in the wind pattern), the most intensive emissions remain quite constant in terms of location. The percentage of agreement with satellite observations higher than 0.7 is 74 %, but only 32 % when using a model having a single threshold function for dust emission (i.e. the same surface feature for the whole Sahara) (cf. later Marticorena et al., 1997). © 2000 Éditions scientifiques et médicales Elsevier SAS  相似文献   

14.
The effect of whitecaps and foam on wind speed extraction with a pulse limited radar altimeter has been studied using a specular point model. By modelling foam and water as a two-layer media, we have investigated the changes in reflectivity as a function of thickness using electro-magnetic field theory. Our analysis indicated a change of reflectivity from a value of 0.617 at 13.9 GHz normal incidence to a value of 0.10 for a foam thickness of less than 1 cm. The values of reflectivity computed from a two-layer model compared fairly well with these derived using an emissivity model. The modified specular point model gave an improved relationship between σo and wind speed in comparison to Brown’s model. The Seasat altimeter’s data analysis over the Arabian sea and the Bay of Bengal gave an rms difference of 2.2 m/sec in wind speed retrieval using the present modified model and Brown’s model.  相似文献   

15.
The Jurassic shale is an important source rock for the found gas reservoirs in the Tarim Basin, northwestern China, but has never been researched for shale gas potential. The geological effects on methane adsorption capacity for the gas shale have been investigated in this paper through the geochemical, mineralogical and adsorption analyses on samples from wells and sections. The methane adsorption capacity ranges from 0.58 to 16.57 cm3/g, and the total organic carbon (TOC) content is between 0.5 and 13.5 wt%. The organic maturity measured by Tmax is between 410 °C (immature) and 499 °C (overmature). The methane adsorption capacity of the Jurassic continental shale in the Tarim Basin is affected by many geological factors, including the TOC content, organic matter maturity, mineral composition, surface area and pore size distribution. The TOC content is the most significant factor with a positive effect on the adsorption capacity of the Jurassic shale, and the influence varies piecewise according to the TOC content. The TOC content contributes much more to the methane adsorption capacity of organic‐rich shale samples (TOC content > 0.7 wt%) than to the organic‐lean samples (TOC content < 0.7 wt%). The mineral composition is a secondary factor, and the abundance of clay content has a positive effect on the methane adsorption capacity despite its relatively weaker adsorption ability compared to TOC. The pore size distribution has different effects on surface area and pore volume. Mesopores and micropores provide the major surface area and are mainly derived from TOC and illite, which has a positive influence on the adsorption capacity. Mesopores and macropores offer the major pore volume and are mainly formed by illite, which is the major contributor for pore volume rather than surface area. In addition, the TOC and illite contents of the Jurassic shale in the Tarim Basin are closely related to the origin, maturity and diagenesis evolution of the shale: (1) both TOC and illite content variations are related to the different provenances and depositional environments of shale; (2) the decrease of TOC content with increasing maturity is also partly attributed to hydrocarbon generation; and (3) the increase of illite content with increasing maturity is due to illitization in the diagenesis of shale. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The stibnite ore deposits of the French Palaeozoic basement are spatially related to major Late Variscan strike-slip faults. They occur as small discontinuous veins mostly hosted in epizonal or catazonal siliciclastics. Stibnite crystallizes in the final stage of a polymetallic paragenesis from an antimony-bearing solution, which deposits a first discrete Fe-As assemblage at 300–400°C and 0.5–0.8 Kbar. Experimental data have shown that antimony solubility drastically decreases on cooling. Characterization of the Late Variscan antimony-bearing fluids enables us to predict the temperature range - 270/150°C - under which stibnite was precipitated. Since the latter coincides with the fluid inclusion homogenization temperature range, the pressure at which stibnite crystallized can be estimated from vapour pressure data to have been around 0.1 Kbar. Extensional brittle shear zones, developed at the end of the Late Variscan orogeny (probably at the Westphalian/Stephanian boundary), drained the hydrothermal fluids near to the surface (c. 1000 m ?) reaching the critical P-T conditions for stibnite crystallization.  相似文献   

17.
Geosynthetic is widely used to reinforce the weak rock mass, mine waste dump, soil slopes road cut slopes, etc. The present paper discusses the effect of geogrids on the stability of mine waste dump. The stability of mine waste dump has been done by Fast Langrage Analysis of Continua (FLAC) slope software, which is based on finite difference method. Reinforcement by geogrids mainly depends on the tensile strength, aperture size of geogrids, and particle size distribution of dump rock mass. Different permutations and combinations of spacing between two geogrid sheets have been taken into consideration to study the stability of mine waste dump. The factor of safety is calculated to quantify the effect of geogrids on waste dump slope. It has been observed from numerical modeling that the maximum slope angle is 45° at a height of 10 m. The scope of increasing slope angle from 45 to 60° is evaluated using geogrids. It has been found from the study that the factor of safety increases as the spacing between geogrids decreases. Maximum strain is also plotted of each case to identify the slip circle. The positions of geogrids modify the probable slip circle or failure plane of mine waste dump. Using ten geogrids at a spacing of 1 m, the slope angle can be increased up to 60° with factor of safety of 1.4.  相似文献   

18.
December 2004 tsunami in the Indian Ocean region has been simulated using MIKE-21 HD model. The vertical displacement of the seabed is incorporated into the numerical simulation by using time-varying bathymetry data. In the open ocean, sea surface height from altimeter observation has been used to validate the model results. To the west of the rupture zone, the crest is observed to precede the trough of the tsunami waves while to the east, trough preceded the crest. The model performance along the coastal region has been validated using de-tided sea levels from tide gauge measurements at Tuticorin, Chennai, Vishakapattanam, and Paradip ports along the east coast of India. Unique coastal characteristics of the tsunami waves, wave height, and wave celerity are reasonably simulated by the numerical model. Spectral analysis of tide gauge observations and corresponding model results has been done, and the distribution of frequency peaks from the analysis of gauge observations and the model results is observed to have a reasonable comparison. Low-frequency waves, contributed from the coastally trapped edge waves, are found to dominate both the tide gauge observations and the model results. The subsequent increase in the tsunami wave height observed at Chennai, Vishakapattanam, and Paradip has been explained on the basis of coastally trapped edge waves. From the validation studies using altimeter data and tide gauge data, it is observed that the model can be used effectively to simulate the tsunami wave height in the offshore as well as in the coastal region with satisfying performance.  相似文献   

19.
Prediction of heavy rainfall events due to severe convective storms in terms of their spatial and temporal scales is a challenging task for an operational forecaster. The present study is about a record-breaking heavy rainfall event observed in Pune (18°31′N, 73°55′E) on October 4, 2010. The day witnessed highest 24-h accumulated precipitation of 181.3 mm and caused flash floods in the city. The WRF model-based real-time weather system, operating daily at Centre for Development of Advanced Computing using PARAM Yuva supercomputer showed the signature of this convective event 4-h before, but failed to capture the actual peak rainfall and its location with reference to the city’s observational network. To investigate further, five numerical experiments were conducted to check the impact of assimilation of observations in the WRF model forecast. First, a control experiment was conducted with initialization using National Centre for Environmental Prediction (NCEP)’s Global Forecast System 0.5° data, while surface observational data from NCEP Prepbufr system were assimilated in the second experiment (VARSFC). In the third experiment (VARAMV), NCEP Prepbufr atmospheric motion vectors were assimilated. Fourth experiment (VARPRO) was assimilated with conventional soundings data, and all the available NCEP Prepbufr observations were assimilated in the fifth experiment (VARALL). Model runs were compared with observations from automated weather stations (AWS), synoptic charts of Indian Meteorological Department (IMD). Comparison of 24-h accumulated rainfall with IMD AWS 24-h gridded data showed that the fifth experiment (VARALL) produced better picture of heavy rainfall, maximum up to 251 mm/day toward the southern side, 31 km away from Pune’s IMD observatory. It was noticed that the effect of soundings observations experiment (VARPRO) caused heavy precipitation of 210 mm toward the southern side 49 km away from Pune. The wind analysis at 850 and 200 hPa indicated that the surface and atmospheric motion vector observations (VARAMV) helped in shifting its peak rainfall toward Pune, IMD observatory by 18 km, though VARALL over-predicted rainfall by 60 mm than the observed.  相似文献   

20.
We present interesting application of artificial intelligence for investigating effect of the COVID-19 lockdown on 3-dimensional temperature variation across Nigeria (2°–15° E, 4°–14° N), in equatorial Africa. Artificial neural networks were trained to learn time-series temperature variation patterns using radio occultation measurements of atmospheric temperature from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC). Data used for training, validation and testing of the neural networks covered period prior to the lockdown. There was also an investigation into the viability of solar activity indicator (represented by the sunspot number) as an input for the process. The results indicated that including the sunspot number as an input for the training did not improve the network prediction accuracy. The trained network was then used to predict values for the lockdown period. Since the network was trained using pre-lockdown dataset, predictions from the network are regarded as expected temperatures, should there have been no lockdown. By comparing with the actual COSMIC measurements during the lockdown period, effects of the lockdown on atmospheric temperatures were deduced. In overall, the mean altitudinal temperatures rose by about 1.1 °C above expected values during the lockdown. An altitudinal breakdown, at 1 km resolution, reveals that the values were typically below 0.5 °C at most of the altitudes, but exceeded 1 °C at 28 and 29 km altitudes. The temperatures were also observed to drop below expected values at altitudes of 0–2 km, and 17–20 km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号