共查询到16条相似文献,搜索用时 59 毫秒
1.
2.
针对部分变量误差(partial EIV)模型的加权整体最小二乘(weighted total least squares,WTLS)估值的计算需要多次迭代且效率低下的情况,根据加权LS(least square)原理,通过改进目标函数,并运用矩阵微分运算以及矩阵反演变换,提出了一种计算partial EIV模型WTLS估值的新算法。算例计算结果表明,新算法具有迭代次数少、计算效率高等优点。 相似文献
3.
4.
针对空间平面拟合中系数矩阵含有部分误差的特点,根据Partial EIV模型提取系数矩阵随机元素的思想,将空间平面拟合模型系数矩阵中观测元素作为随机元素提取组成新的未知向量。采用Partial EIV模型线性化的新解法求解拟合参数,简化了计算过程,且保证了系数矩阵相同元素的改正数一致,较EIV模型的总体最小二乘法,理论模型更加严谨。通过算例说明了,本文方法可以用于拟合空间平面,且精度有一定优势。 相似文献
5.
提出了一种EIV(errors-in-variables)模型参数估计的新方法,即根据非线性最小二乘平差理论,并用构造结构矩阵的方法来顾及系数矩阵的重复元素和常数项,推导了其迭代算法和精度评定公式。新方法统一了总体最小二乘、加权总体最小二乘以及结构总体最小二乘三种算法,并给出了详细的解算步骤。新方法的推导过程及其迭代格式较为简单,易于程序实现。最后通过两个实例验证了本文方法的有效性和可行性。 相似文献
6.
杨娟 《测绘科学技术学报》2019,36(6)
利用平差参数间的合理等式约束能够提高解的稳定性。针对变量误差模型EIV(errors-in-variables)引入等式约束,分别针对系数阵良态和病态两种情形建立了约束总体最小二乘准则。基于非线性最小二乘问题的常用解法Newton-Gauss法,由约束准则构建了拉格朗日极值函数并由欧拉-拉格朗日必要条件导出了等式约束EIV模型的Newton-Gauss迭代解。针对精度评定时未考虑参数估值偏差所带来的影响这一不足,基于蒙特卡罗模拟法提出了一种估计约束EIV模型单位权方差和参数估值的协方差阵的数值方法。算例分析结果表明,约束总体最小二乘解严格满足先验等式约束条件;当系数阵病态时,约束条件能够提升解的稳定性和精度。此外,基于蒙特卡罗的数值方法能够获得稳定且合理的精度评定结果。 相似文献
7.
基于模型误差补偿的AR(p)最佳建模方法 总被引:4,自引:0,他引:4
以AR(p)模型为例,讨论识别和补偿模型误差的方法.介绍识别模型误差的均方连差检验法和笔者在有关文献中给出的模型偏差均方误差度量法,给出AR(p)模型的模型误差补偿规则,最后对某台站定点沉降监测5年的数据进行基于模型误差补偿的平差计算,给出AR(p)最佳的建模方法. 相似文献
8.
Partial Errors-in-Variables(Partial EIV)模型是EIV模型的扩展形式,权阵构造简单,当系数矩阵中存在非随机元素和随机元素时,Partial EIV模型的适用性更强。针对Partial EIV模型中随机模型不准确的情况,将系数矩阵和观测向量分别作为一类数据,本文在该模型的基础上,使用最小二乘方差分量估计方法,推导相关计算公式及迭代算法,分别估计出相应的方差分量估值。并对出现的负方差使用非负最小二乘理论,增加约束条件,对随机模型进行修正,得到更加合理的参数估值。试实验结果表明,本文的方法与其他方差分量估计方法等价。 相似文献
9.
10.
在应用整体最小二乘法求解自回归模型的参数时,针对传统的SVD方法和迭代法并没有顾及到系数矩阵和观测向量构成的增]’一矩阵中不同位置上相同元素的改正数却不相同这一不足,推导了一种新的迭代解法,有效地解决了传统方法的不足,使得增]’一矩阵中不同位置的同一元素具有相同的改正数,更加符合实际情况且平差精度也有所提高。最后通过具体的算例,验证了木文方法的可行性和有效性。 相似文献
11.
12.
分析指出了标度总体最小二乘方法(STLS)存在的问题,提出了一种隐式标度因子的标度总体最小二乘方法(Im STLS)。区别于现有STLS方法在平差准则中引入标度因子,Im STLS方法在EIV函数模型中顾及标度因子,从而解决了现有STLS平差准则形式与标度因子实际表征的平差结果不一致的问题。此外,利用所建函数模型的重构表达式推导的Im STLS估计量及其方差-协方差阵,与经典最小二乘平差理论具有形式同构性。最后,验证了所提方法统一表达LS,DLS和TLS的正确性,并讨论给出了标度因子对平差结果的影响及确定方法。 相似文献
13.
14.
15.
回归预测模型是对传统回归模型的进一步扩展,不仅涉及回归模型的固定参数估计,而且将模型预测纳入平差的部分内容,更加符合实际解算需求.针对在回归模型预测中经常出现待预测非公共点(自变量)含有观测误差和随机模型不准确的问题,基于EIV (errors-in-variables)模型提出了一种同时顾及所有变量观测误差的整体解法... 相似文献
16.
加权总体最小二乘法是理论上估计EIV模型参数相对严密的方法,其迭代过程中涉及的矩阵运算较为耗时,在处理大量级数据时尤其明显。PEIV模型有助于提高加权总体最小二乘法的计算效率。本文基于PEIV模型和经典最小二乘准则给出了一种加权总体最小二乘法算法,算法的推导过程简洁,易于理解,迭代过程中无需重构矩阵,减少了矩阵运算量。最后通过仿真试验验证了算法的可靠性。试验结果表明,本文算法可以取得与现有算法相同的参数估计精度且计算效率更高。 相似文献