共查询到20条相似文献,搜索用时 15 毫秒
1.
Michael N. Fardis Antonis Schetakis Elias Strepelias 《Bulletin of Earthquake Engineering》2013,11(5):1541-1561
Adding concrete walls by infilling certain frame bays with reinforced concrete is popular for seismic retrofitting, but is covered by codes only if the connection of the old concrete to the new ensures monolithic behavior. To avoid penalizing the foundation of the new wall with a very high moment resistance, the new concrete should not be thicker than, or surround, the old frame members. A cost-effective connection of these members to a thin new web is proposed, alongside a design procedure and detailing that conform to current codes. Owing to practical difficulties, footings of added walls are often small and weakly connected to the other footings, hence they uplift and rock during the earthquake. The model for uplift of 3D footings consists of two pairs of nonlinear-elastic springs in a cross layout and approximates also moderate nonlinearities in the soil continuum. It is used in nonlinear, static or dynamic, analyses of three buildings with added walls. The analyses of a clean, regular 4-story building show the benefit from uplift to the added walls and a certain adverse effect on some columns but not on beams, as well as the lack of a clear positive effect of tie-beams. The application to a 7-story and a 2-story real building with extreme, yet typical, irregularities in plan and elevation exemplifies the real-life restrictions in the use of added walls and shows their limits for the improvement of seismic performance; certain deficiencies in flexure or shear remain in both and are corrected at very low cost with local fiber reinforced polymer (FRP) jackets without new analysis of the building, as FRPs do not change the member effective stiffness or moment resistance. 相似文献
2.
Esra Mete Güneyisi 《地震工程与结构动力学》2012,41(5):853-874
The present paper investigates the seismic reliability of the application of buckling restrained braces (BRBs) for seismic retrofitting of steel moment resisting framed buildings through fragility analysis. Samples of regular three‐storey and eight‐storey steel moment resisting frames were designed with lateral stiffness insufficient to comply with the code drift limitations imposed for steel moment resisting frame systems in earthquake‐prone regions. The frames were then retrofitted with concentrically chevron conventional braces and BRBs. To obtain robust estimators of the seismic reliability, a database including a wide range of natural earthquake ground motion records with markedly different characteristics was used in the fragility analysis. Nonlinear time history analyses were utilized to analyze the structures subjected to these earthquake records. The improvement of seismic reliability achieved through the use of conventional braces and BRBs was evaluated by comparing the fragility curves of the three‐storey and eight‐storey model frames before and after retrofits, considering the probabilities of four distinct damage states. Moreover, the feasibility of mitigating the seismic response of moment resisting steel structures by using conventional braces and BRBs was determined through seismic risk analysis. The results obtained indicate that both conventional braces and especially BRBs improve significantly the seismic behavior of the original building by increasing the median values of the structural fragility curves and reducing the probabilities of exceedance of each damage state. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
3.
《地震工程与结构动力学》2018,47(5):1329-1351
An effective strategy of seismic retrofitting consists of installing nonlinear viscous dampers between the existing building, with insufficient lateral resistance, and some auxiliary towers, specially designed and erected as reaction structures. This allows improving the seismic performance of the existing building without any major alteration to its structural and nonstructural elements, which makes this approach particularly appealing for buildings with heritage value. In this paper, the nonlinear governing equations of the coupled lateral‐torsional seismic motion are derived from first principles for the general case of a multistory building connected at various locations in plan and in elevation to an arbitrary number of multistory towers. This formulation is then used to assess the performance of the proposed retrofitting strategy for a real case study, namely, a 5‐story student hall of residence in the city of Messina, Italy. The results of extensive time‐history analyses highlight the key design considerations associated with the stiffness of the reaction towers and the mechanical parameters of the nonlinear viscous dampers, confirming the validity of this approach. 相似文献
4.
Resat Oyguc 《Bulletin of Earthquake Engineering》2016,14(3):821-847
School buildings have been classified by many of the design codes as important buildings, which have to withstand the earthquake excitations without any or with minor structural damages, and special care has to be given in their design and construction phases. This paper mainly aims to investigate the seismic performance of reinforced-concrete (RC) school buildings after 2011 Van earthquakes. The seismic performances of two damaged RC school buildings located in the earthquake-affected region are studied. First, the capacities of the selected buildings are assessed using nonlinear static procedures, and then, nonlinear dynamic time history analyses are performed to evaluate the seismic performances of the selected RC school buildings. Reasons for the observed damages are discussed. Further, recommendations are provided from the viewpoint of enhancing the structural capacity of the heavily damaged school building. As a result, to get an idea about the ductility demands imposed on the buildings, spectral acceleration values are compared with the seismic coefficients of the code that the buildings were adapted to. It can be concluded that the construction quality and detailing of the reinforcement are the key issues affecting the seismic performance of RC school buildings. 相似文献
5.
M. Fakharifar M. K. Sharbatdar Z. Lin A. Dalvand A. Sivandi-Pour G. Chen 《地震工程与工程振动(英文版)》2014,13(1):59-73
This paper presents a new FRP retrofi tting scheme to strengthen local beam-column joints in reinforced concrete(RC) frames.The new retrofi tting scheme was proposed following a preliminary study of four different existing retrofi tting schemes.A numerical simulation was conducted to evaluate the effectiveness of FRP-strengthened reinforced concrete frames by bridging behavior of local joints to the whole structure.Local confi nement effects due to varying retrofi tting schemes in the joints were simulated in the frame model.The seismic behavior factor was used to evaluate the seismic performance of the strengthened RC frames.The results demonstrated that the new proposed retrofi tting scheme was robust and promising,and fi nite element analysis appropriately captured the strength and global ductility of the frame due to upgrading of the local joints. 相似文献
6.
A multi‐level seismic vulnerability assessment of reinforced concrete moment frame buildings located in moderate seismic zones (0.25g) is performed on a set of ductile versions of low‐ to mid‐rise two‐dimensional moment frames. The study is illustrated through application to comparative trial designs of two (4‐ and 8‐story) buildings adopting both space‐ and perimeter‐framed approaches. All frames are dimensioned as per the emerging version of the seismic design code in Egypt. These new seismic provisions are in line with current European norms for seismic design of buildings. Code‐compliant designs (CCD), as well as a proposed modified code design relaxing design drift demands for the investigated buildings, are examined to test their effectiveness and reliability. Applying nonlinear inelastic incremental dynamic analyses, fragility curves (FC) for the frames are developed corresponding to various code‐specified performance levels. Code preset lower and upper bounds on design acceleration and drift, respectively, are also addressed along with their implications, if imposed, on the frames seismic performance and vulnerability. Annual spectral acceleration hazard curves for the case study frames are also generated. Estimates for mean annual frequency (MAF) of exceeding various performance levels are then computed through an integration process of the data resulting from the FC with the site hazard curves. The study demonstrates that the proposed design procedure relaxing design drift demands delivers more economic building designs relative to CCDs, yet without risking the global safety of the structure. The relaxed design technique suggested herein, even though scoring higher, as expected by intuition, MAF of exceeding various code‐limiting performance levels expressed in terms of interstory drift ratios, still guarantees a reasonably acceptable actual margin against violating code limits for such levels. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
7.
Francesca Barbagallo Melina Bosco Edoardo M. Marino Pier Paolo Rossi 《地震工程与结构动力学》2018,47(13):2682-2707
A design procedure for seismic retrofitting of concentrically and eccentrically braced frame buildings is proposed and validated in this paper. Rocking walls are added to the existing system to ensure an almost uniform distribution of the interstorey displacement in elevation. To achieve direct and efficient control over the seismic performance, the design procedure is founded on the displacement‐based approach and makes use of overdamped elastic response spectra. The top displacement capacity of the building is evaluated based on a rigid lateral deformed configuration of the structure and on the ductility capacity of the dissipative members of the braced frames. The equivalent viscous damping ratio of the braced structure with rocking walls is calculated based on semi‐empirical relationships specifically calibrated in this paper for concentrically and eccentrically braced frames. If the equivalent viscous damping ratio of the structure is lower than the required equivalent viscous damping ratio, viscous dampers are added and arranged between the rocking walls and adjacent reaction columns. The design internal forces of the rocking walls are evaluated considering the contributions of more than one mode of vibration. The proposed design procedure is applied to a large set of archetype braced frame buildings and its effectiveness verified by nonlinear dynamic analysis. 相似文献
8.
Chunyang Liu Junji Shi Kuramoto Hiroshi Takashi Taguchi Takashi Kamiya 《地震工程与工程振动(英文版)》2016,15(3):563-574
A new retrofitting method is proposed herein for reinforced concrete (RC) structures through attachment of an external structure. The external structure consists of a fiber concrete encased steel frame, connection slab and transverse beams. The external structure is connected to the existing structure through a connection slab and transverse beams. Pseudostatic experiments were carried out on one unretrofitted specimen and three retrofitted frame specimens. The characteristics, including failure mode, crack pattern, hysteresis loops behavior, relationship of strain and displacement of the concrete slab, are demonstrated. The results show that the load carrying capacity is obviously increased, and the extension length of the slab and the number of columns within the external frame are important influence factors on the working performance of the existing structure. In addition, the displacement difference between the existing structure and the outer structure was caused mainly by three factors: shear deformation of the slab, extraction of transverse beams, and drift of the conjunction part between the slab and the existing frame. Furthermore, the total deformation determined by the first two factors accounted for approximately 80% of the damage, therefore these factors should be carefully considered in engineering practice to enhance the effects of this new retrofitting method. 相似文献
9.
Stefano De Santis Paolo Casadei Gerardo De Canio Gianmarco de Felice Marialaura Malena Marialuisa Mongelli Ivan Roselli 《地震工程与结构动力学》2016,45(2):229-251
An innovative solution for the seismic protection of existing masonry structures is proposed and investigated through shake table tests on a natural scale wall assemblage. After a former test series carried out without reinforcement, the specimen was retrofitted using Steel Reinforced Grout. The strengthening system comprises horizontal strips of ultra‐high strength steel cords, externally bonded to the masonry with hydraulic lime mortar, and connectors to transversal walls, applied within the thickness of the plaster layer. In order to assess the seismic performance of the retrofitted wall, natural accelerograms were applied with increasing intensity up to failure. Test results provide a deep understanding of the effectiveness of mortar‐based composites for improving the out‐of‐plane seismic capacity of masonry walls, in comparison with traditional reinforcements with steel tie‐bars. The structural implications of the proposed solution in terms of dynamic properties and damage development under earthquake loads are also discussed.Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
10.
Seismic behavior of asymmetric RC wall buildings: principles and new deformation‐based design method
The seismic design of multi‐story buildings asymmetric in plan yet regular in elevation and stiffened with ductile RC structural walls is addressed. A realistic modeling of the non‐linear ductile behavior of the RC walls is considered in combination with the characteristics of the dynamic torsional response of asymmetric buildings. Design criteria such as the determination of the system ductility, taking into account the location and ductility demand of the RC walls, the story‐drift demand at the softer (most displaced) edge of the building under the design earthquake, the allowable ductility (ultimate limit state) and the allowable story‐drift (performance goals) are discussed. The definition of an eccentricity of the earthquake‐equivalent lateral force is proposed and used to determine the effective displacement profile of the building yet not the strength distribution under the design earthquake. Furthermore, an appropriate procedure is proposed to calculate the fundamental frequency and the earthquake‐equivalent lateral force. A new deformation‐based seismic design method taking into account the characteristics of the dynamic torsional response, the ductility of the RC walls, the system ductility and the story‐drift at the softer (most displaced) edge of the building is presented and illustrated with an example of seismic design of a multi‐story asymmetric RC wall building. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
11.
This paper proposes an aseismic design concept in which the superstructure of a base-isolated building is divided into several segments. Each segment may comprise a few storeys and is interconnected by additional vibrational isolation systems. The dynamic characteristics of the segmental buildings are investigated. The optimum parameters of the vibration isolation systems are determined by minimizing the mean square acceleration response. The seismic response of a typical segmental building subjected to the N—S component of the 1940 El Centro earthquake input is evaluated and compared with the responses of the corresponding fixed-base and conventional base-isolated buildings. The comparisons show that, when the superstructure is segmented, while the acceleration response in the superstructure remains as small as that in the conventional base-isolated building, the displacement across the base isolation system at foundation level is substantially reduced. 相似文献
12.
This study presents a nonlinear modelling technique for reinforced concrete (RC) frames retrofitted with metallic yielding devices to predict the seismic response using a computer software OpenSees. The numerical model considers the axial–flexure interaction, shear force–displacement response and the bond-slip characteristics of the frame members. The predicted hysteretic response has been compared with the results of slow-cyclic testing. The validated numerical model is then used to predict the seismic response of a five-story RC frame with soft-story. Nonlinear cyclic pushover and dynamic analyses are conducted to investigate the effectiveness of the proposed retrofitting scheme in enhancing the lateral strength and energy dissipation potential and in controlling the premature failure of the study frame. Analysis results showed significant improvement in the seismic response of RC frames with soft-story using the proposed retrofitting technique. 相似文献
13.
Seismic fragility assessment of RC frame structure designed according to modern Chinese code for seismic design of buildings 总被引:1,自引:0,他引:1
Following several damaging earthquakes in China,research has been devoted to find the causes of the collapse of reinforced concrete(RC) building sand studying the vulnerability of existing buildings.The Chinese Code for Seismic Design of Buildings(CCSDB) has evolved over time,however,there is still reported earthquake induced damage of newly designed RC buildings.Thus,to investigate modern Chinese seismic design code,three low-,mid-and high-rise RC frames were designed according to the 2010 CCSDB and the corresponding vulnerability curves were derived by computing a probabilistic seismic demand model(PSDM).The PSDM was computed by carrying out nonlinear time history analysis using thirty ground motions obtained from the Pacific Earthquake Engineering Research Center.Finally,the PSDM was used to generate fragility curves for immediate occupancy,significant damage,and collapse prevention damage levels.Results of the vulnerability assessment indicate that the seismic demands on the three different frames designed according to the 2010 CCSDB meet the seismic requirements and are almost in the same safety level. 相似文献
14.
In this study, the seismic fragility curves of two reinforced concrete (RC) columns that were lap-spliced at the bottom and retrofitted with steel wrapping jackets were generated. Their seismic performance was probabilistically assessed in comparison to that of lap-spliced or continuous reinforcement RC columns. This study used two types of steel wrapping jackets, a full jacket and a split jacket. Analytical models of the four types of columns were developed based on the experimental results of the columns using OpenSEES, which is effective in conducting nonlinear time history analyses. A suite of ten artificial ground motions, modified from recorded ground motions, was used to perform nonlinear time history analyses of the analytical models with scaling of the peak ground acceleration from 0.1 g to 1.0 g in increments of 0.1 g. The steel wrapping jackets did not increase the medians for yield (slight damage state) of the lap-spiced column and did not exceed the corresponding median of the continuous reinforcement column. However, the two steel jackets increased the medians for failure by 1.872 and 2.017 times, respectively, and exceeded the corresponding median of the continuous reinforcement column by 11.8% and 20.5%, respectively. 相似文献
15.
A probabilistic approach to lifetime assessment of seismic resilience of deteriorating concrete structures is presented. The effects of environmental damage on the seismic performance are evaluated by means of a methodology for lifetime assessment of concrete structures in aggressive environment under uncertainty. The time‐variant seismic capacity associated with different limit states, from damage limitation up to collapse, is assumed as functionality indicator. The role of the deterioration process on seismic resilience is then investigated over the structural lifetime by evaluating the post‐event residual functionality and recovery of the deteriorating system as a function of the time of occurrence of the seismic event. The proposed approach is applied to a three‐story concrete frame building and a four‐span continuous concrete bridge under corrosion. The results show the combined effects of structural deterioration and seismic damage on the time‐variant system functionality and resilience and indicate the importance of a multi‐hazard life‐cycle‐oriented approach to seismic design of resilient structure and infrastructure systems. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
16.
Evaluation of displacement coefficient method for seismically retrofitted buildings with various ductility capacities 下载免费PDF全文
This research study is aimed at evaluating the accuracy of the displacement coefficient method (DCM) of FEMA 440 and associated nonlinear static procedure (NLSP) for actual buildings with soft story mechanism and various ductility capacities. The DCM and associated NLSP are evaluated using two existing seismically vulnerable buildings with soft story mechanism. The buildings are first retrofitted using a ductile steel‐brace‐link system to represent those with good ductility capacity and then retrofitted with RC squat infill shear panels (SISPs) to represent those with relatively poor ductility capacity. The evaluation of the DCM of FEMA 440 and associated NLSP is then performed by comparing the roof displacements (target displacements), maximum interstory drifts, and maximum plastic hinge rotations of the original and retrofitted buildings obtained from NLSP (at the target displacement level of DCM) with those obtained from nonlinear response history (NRH) analyses for three different seismic performance levels. It is observed that the DCM, and hence, the NLSP fail to accurately predict the NRH analyses results mainly due to uncertainties in the coefficient C1 of the DCM in the short period range, the inability of the DCM to capture the failure of structural members beyond a certain lateral displacement or plastic rotation limit and associated soft story mechanism. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
17.
A parametric study is carried out to evaluate the seismic displacements at the flexible edge of torsionally unbalanced (TU) structural systems. Guidelines are provided to estimate these displacements so that they can be incorporated in the formulation of the displacement-based seismic design approach for the design of TU buildings. The ability of three code procedures to estimate the flexible-edge displacement is examined to show that not all procedures lead to conservative estimates. Finally, it is shown that elastic spectrum analysis incorporating accidental torsion effect is a viable means to estimate the flexible-edge displacements. 相似文献
18.
基于OpenSees的CFRP加固RC短柱抗震性能数值模拟 总被引:2,自引:1,他引:2
采用地震工程开源模拟软件OpenSees对CFRP加固RC短柱进行了静力Push over分析和低周往复加载分析,并与通用有限元软件ANSYS模拟结果进行对比研究.研究结果表明:利用CFRP进行加固,不仅阻止了RC短柱的脆性剪切破坏,而且使破坏模式转化为延性弯曲破坏,增强了结构延性,进而有效地提高其抗震性能;同ANSYS相比,OpenSees可以宏观的反映CFRP与混凝土共同作用的非线性力学特征,有效地对构件和结构进行加固后的承载力及抗震性能分析. 相似文献
19.
It is critical to ensure the functionality of highway bridges after earthquakes to provide access to important facilities. Since the 1971 San Fernando earthquake, there has been a better understanding of the seismic performance of bridges. Nonetheless, there are no detailed guidelines addressing the performance of skewed highway bridges. Several parameters affect the response of skewed highway bridges under both service and seismic loads which makes their behavior complex. Therefore, there is a need for more research to study the effect of skew angle and other related factors on the performance of highway bridges. This paper examines the seismic performance of a three-span continuous concrete box girder bridge with skew angles from 0 to 60 degrees, analytically. Finite element (FE) and simplified beam-stick (BS) models of the bridge were developed using SAP2000. Different types of analysis were considered on both models such as: nonlinear static pushover, and linear and nonlinear time history analyses. A comparison was conducted between FE and BS, different skew angles, abutment support conditions, and time history and pushover analysis. It is shown that the BS model has the capability to capture the coupling due to skew and the significant modes for moderate skew angles. Boundary conditions and pushover load profile are determined to have a major effect on pushover analysis. Pushover analysis may be used to predict the maximum deformation and hinge formation adequately. 相似文献
20.
The paper proposes an alternative method for the earthquake-resistant design of HDC external beam-column joints which is based
on the assumption that the load transferred from the beam and column elements to the joint is predominantly resisted by a
diagonal strut mechanism. The validity of the proposed method is verified experimentally through a comparative study of the
behaviour of seven full-size beam-column joint sub-assemblages—three of them designed in compliance with the current European
Codes and four in accordance with the proposed method—under cyclic loading. The results obtained indicate that, in contrast
with the specimens designed in compliance with current code provisions, those designed so as to comply with the proposed specifications
fully satisfy the code performance requirements. 相似文献