首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
研究抗滑桩的受力特征是进行抗滑桩设计工作的关键.我国三峡库区部分堆积层滑坡发育多层滑带,而目前抗滑桩的设计方法仅针对单层滑坡,因此,对多层滑带堆积层滑坡—抗滑桩受力特征的研究具有重要意义.基于三峡库区堆积层滑坡工程地质特征,开展了多层滑带堆积层滑坡物理试验模型,在滑坡的后缘施加推力来模拟滑坡演化过程,同时监测滑坡—抗滑...  相似文献   

2.
位移-时间曲线表征了滑坡变形状态及相对的稳定性程度,是监测滑坡变形和失稳预测至关重要的数据资料。目前所获取的滑坡变形全过程监测资料并不多,大多数是临滑前的短期监测资料,而一些突发型滑坡的变形监测资料更是难以收集。由此,滑坡位移-时间曲线簇的类型及分布特征的研究受到了数据资料不足的约束而难以开展,一些滑坡预警理论都是基于推断和理论分析的基础上而得出的,缺少数据支撑。本文通过物理模拟的办法,自行设计制作了变角度的物理模拟试验框架,开发完成了位移数据的自动采集系统,经一年多的试验测试,对试验设备软硬件及模型材料不断调整、优化,完成了7组12条位移-时间曲线的采集工作,从而获取了不同受力条件下斜坡的变形破坏的时间-位移曲线簇,为进一步的理论研究提供了科学的数据资料。  相似文献   

3.
滑坡变形演化特征一直是滑坡灾害预测与防治领域急需解决的关键问题,但对于多层滑带滑坡的变形演化特征却少有研究.以物理模型试验为手段建立了三层滑带滑坡物理试验模型,完成了多层滑带滑坡变形演化全过程的模拟.基于PPIV技术获取坡表位移数据,通过柔性测斜仪监测滑坡深部位移,同时布设土压力盒获取滑坡内部土压力的变化情况,实现了多...  相似文献   

4.
双排抗滑桩后侧推力分布物理模型试验   总被引:1,自引:0,他引:1  
双排抗滑桩后侧滑坡推力分布是其设计中要考虑的关键要素之一。针对一大型基岩-覆盖层式滑坡,进行四组不同后排桩布设方式的双排桩加固滑坡的室内物理模型试验,通过采用坡体外注水,经过特定通道渗入滑带的方法来模拟强降雨条件对滑带的软化效应,测得不同工况下两排桩后侧滑坡推力分布特征,并通过FLAC3D数值模拟方法对试验结果进一步验证。试验结果表明,后、前排桩上坡体压力均呈两端小、中间大的抛物线型分布模式且峰值点相对靠近滑面位置;桩位不变时,后桩后侧坡体压力峰值随沉埋深度增大而减小且峰值点位置上移,前桩后侧坡体压力峰值随后桩沉埋深度增大而增大,但峰值点位置无明显变化;滑带软化效应并不改变双排桩上推力分布模式,但会增大前、后排桩后侧坡体压力,且相比桩顶和底部,桩身中间部分坡体压力增加幅度较大;注水软化前后,后、前排桩上坡体压力分别增大约14.3%~21.4%与17.9%~24.8%。  相似文献   

5.
滑坡-碎屑流物理模型试验及运动机制探讨   总被引:3,自引:0,他引:3  
郝明辉  许强  杨磊  杨兴国  周家文 《岩土力学》2014,35(Z1):127-132
滑坡-碎屑流由于高速、远程的特点常常引发灾难性事故,其复杂的运动机制导致预测致灾范围非常困难。通过开展室内模型试验,研究了碎屑粒径、滑床糙率和挑坎对运动特性的影响。试验结果发现,滑坡碎屑运动距离受控于前端碎屑,且随着碎屑的粒径增大而增加,增加滑床糙率、挑坎均可使碎屑的运动距离减小。在前人研究成果的基础上结合碎屑材料的力学特性探讨了滑坡-碎屑流出现流态化的原因和高速远程机制,即高速运动中颗粒间的作用力远小于完整岩体,因此颗粒间的“黏聚力”不能维持滑坡体的整体性,同时致使滑坡体与滑床接触的过程中传递至滑坡体内部的摩阻力减少,从而导致碎屑滑坡的远程结果。  相似文献   

6.
采用理论分析和物理模拟相结合的方法对地震剖面中的波场成份进行了综合研究,波动理论研究表明,地震剖面含有多种波场信息成份,组成了一个各种成份各具变化特征的复合波场,这种复合波场含有P波和PS波成份等。在物理模型中,采用了较先进的实验系统,设计了砂泥岩组成的三层地层模型,(20-280-1220)观测系统,采样率为0.25ms。实验得到了三层地层模型的地震剖面,对所获得的地震剖面进行了波场特征分析,实验地震剖面中含有多种波场成份(P波、PS波和面波等)。波场理论研究结果得到物理模型实验的证实,表明地震剖面属复合波场剖面。这种叠后地震剖面可直接用于进行叠后弹性参数反演等以挖掘更多的有效地质信息,提高勘探效果,扩大地震剖面的应用范围。  相似文献   

7.
在调研四川雅安峡口滑坡的地形地貌、物质组成、岩层特征等基础上,根据相似理论,通过物理模型试验,模拟该滑坡在降雨条件下的变形和破坏特征,探讨滑坡的发生机理和破坏发展过程及演化趋势。模型试验结果表明:在降雨条件作用下,孔隙水压力、土压力和位移呈现一定的变化规律;试验得出了峡口滑坡的破坏方式、运动特性、破坏位置及可能出现的次级灾害及其位置。  相似文献   

8.
以玉树7.1级地震诱发的玉树机场路堆积层滑坡为对象,该滑坡坡度约为10o,长×宽×厚为317 m×482 m×19.8 m,由以碎石土为主的上覆层、卵石土为主的滑动带及基岩3层组成,开展大型振动台模型试验,探究震后边坡再次承受振动荷载的能力以及地震垂直分量对坡体稳定性的贡献,分析其动力响应特征和失稳破坏机制。结果表明,强震作用下堆积层滑坡的永久变形是造成地震地质灾害的重要因素;随着输入地震荷载增大,坡脚率先破碎沉降,坡体中部产生弧形裂隙并产生沉降,坡顶出现贯穿张裂隙和剪切裂隙并向坡腰推进,表现出典型的牵引性滑坡特征;峰值加速度(PGA)、动土压力以及加速度频谱与输入地震波的强度、滑坡高程呈正相关;PGA放大系数呈现出明显的非线性特征,其变化趋势随地震荷载强度增大而减小,地震波垂直分量对滑坡PGA放大系数影响略大于水平分量。  相似文献   

9.
大量穿越山地丘陵区的高压输电线路杆塔基础常位于滑坡灾害高易发斜坡地段,施加适当防护措施提高其稳定性,是保障输电线路持续安全运行的关键.为研究不同防护措施对杆塔基础滑坡的防护效果,以湖北省巴东县燕子滑坡为地质原型,设计制作物理试验模型,分别开展了极端降雨条件下滑坡在无防护、施加抗滑桩与格构护坡时的物理模型试验,从试验角度...  相似文献   

10.
殷坤龙  刘艺梁  汪洋  姜治兵 《地球科学》2012,37(5):1067-1074
三峡水库自2003年开始蓄水以来, 库岸滑坡变形明显加剧, 滑坡变形不仅造成建筑物破坏, 高速滑坡滑入水库还会产生很大的涌浪, 其潜在的危害性远远超过滑坡本身.2003年7月13日发生在三峡库区的千将坪滑坡就是由水库蓄水诱发所致, 滑坡最高涌浪达到39 m, 在水库传播达30 km之远, 涌浪造成了人员伤亡与财产损失.为了更好地研究水库滑坡涌浪特征和传播规律, 以三峡库区重大科研项目为依托, 采用室内大型物理模拟实验手段, 对三峡库区滑坡涌浪开展了深入研究.通过对三峡库区已经开展勘探的潜在滑坡的地质资料进行统计分析, 按照正交试验设计方法, 制定了包含滑坡规模、入水速度、滑动面倾角、水深、岸坡坡角等综合影响因素的试验方案, 以三峡库区白水河滑坡上下游河道为原型, 建立了1∶200比例尺的河道物理模型, 采用试验控制系统、试验量测系统开展了滑坡涌浪三维物理模型试验.通过细致的物理模型实验, 得到了不同试验条件下的三峡库区滑坡涌浪物理模型实验观测数据.分析滑坡涌浪形态变化, 明确了滑坡最大首浪的含义.在此基础上, 以国内外经典的Noda和潘家铮提出的滑坡涌浪公式为基础, 基于试验量测数据, 提出了三峡库区滑坡涌浪计算公式.最后以三峡库区正在变形的白水河滑坡为例进行了滑坡涌浪预测研究, 预测了滑坡最大首浪高度和沿水库传播的涌浪衰减规律.   相似文献   

11.
三段式岩质滑坡是一种典型的斜坡变形破坏模式,运用二维地质力学加载系统对其变形破坏全过程进行物理模拟试验研究,采用激光位移计对坡顶和坡脚位置进行位移监测。结果表明:位移监测曲线总体上表现为锁固段经历长时间的能量积累与应力调整后的突发脆性破坏;由于软弱夹层具有蠕滑特性,前缘蠕滑阶段呈现出与土质滑坡相似的初始变形→等速变形→加速变形特征;后缘拉裂阶段作为最短暂的变形阶段,其位移监测曲线表现为“减-增-减-增”的“W”型变化趋势;锁固段是三段式岩质边坡维持稳定的关键所在,其受剪变形的顺序为先上后下,损伤变形由端部向中部递进,最终锁固段剪断形成突发脆性破坏,滑坡高速启动。  相似文献   

12.
刘卫南  谢谟文 《岩土力学》2020,41(11):3748-3756
激光扫描仪对同一目标两次采集的点并不重合,无法通过点云的直接比较快速确定滑坡位移。考虑到单个点云位置的不确定性和区域点云密度的稳定性,将点云的密度作为滑坡表面变形的表征,提出了基于点云密度特征的滑坡位移监测方法。将离散的三维点云转化为二维的密度图像,再利用粒子图像测速技术分析位移前后两幅点云密度图像的相关性,从而计算栅格图像中各子集的相对位移值;当各子集的位移全部计算完成后,得到目标区域的平面位移场。室内块体移动试验表明该方法的计算精度受变形梯度的影响,在地表变化剧烈处会产生一定程度的误差,且子集相关性系数无法达到1。在黄藏寺滑坡的位移监测中,利用本方法识别出了边坡的变动区域,计算出了滑坡的平面位移场,直观地反映了滑坡表面变形状况,验证了该方法的实用性。  相似文献   

13.
滑坡位移多重分形特征与滑坡演化预测   总被引:2,自引:1,他引:2  
樊晓一 《岩土力学》2011,32(6):1831-1837
在系统分析滑坡位移监测资料和位移演化特征的基础上,根据多重分形理论基本原理,对滑坡位移演化所具有的复杂性、突变性和非线性特征进行了分析和研究。单一分形维数对滑坡位移的演化趋势预测存在不足,文中分别以新滩滑坡、丹巴滑坡和黄蜡石滑坡为例,计算了滑坡位移时序演化的多重分维数演化特征。分析和评价位移演化规律与多重分维数演化特征的关系发现,多重分维数D1 > D2 > … > D∞时,滑坡趋于稳定;D1 < D2 < … < D∞时,滑坡向失稳破坏演化。当滑坡位移时序多重分维数演化特征出现拐点时,即分维数由D1 > D2 > … > D∞,经D1 > … > Dn < Dn+1 < … < D∞到 D1 < D2 < … < D∞的演化过程时,滑坡向不稳定的状态演化;当分维数由D1 < D2 < … < D∞,经D1 > … > Dn D2 > … > D∞的演化过程时,滑坡向趋于稳定的状态演化。研究表明,可以运用多重分维数演化特征对滑坡位移演化趋势与规律进行评价与预测。  相似文献   

14.
15.
在详细分析滑坡坡面位移特征的基础上,提出根据坡面位移矢量确定滑坡滑动面,预报滑坡发生时间的原理和方法。  相似文献   

16.
滑坡坡面位移特征及其应用   总被引:2,自引:0,他引:2  
在详细分析滑坡坡面位移特征的基础上,提出根据坡面位移矢量确定滑坡滑动面,预报滑坡发生时间的原理和方法。  相似文献   

17.
基于计算机辅助检测技术的滑坡模型试验坡面位移场测量   总被引:1,自引:0,他引:1  
马俊伟  胡新丽  唐辉明  雍睿  夏浩 《岩土力学》2013,34(Z2):477-485
将计算机辅助检测技术(computer aided inspection, CAI)引入到滑坡物理模型试验坡面位移场测量中,采用高精度的三维激光扫描设备对滑坡物理模型试验中坡体表面的位移和变形进行全方位的监测,采用“3D比较”测量坡体表面位移场。提出采用计算机辅助检测技术测量滑坡模型试验中坡体表面位移场的技术路线,并通过抗滑桩加固滑坡模型进行了实例测试,获得满意的结果。结果表明,计算机辅助检测技术可以最大限度的采集坡体表面的三维数据,获取坡体信息丰富、全面的位移场结果,避免传统单点监测以点带面的局限性;应用计算机辅助检测技术直观展现传统监测方法难以观察到的坡体边界效应、土拱效应等试验现象;计算机辅助检测技术所测位移场规律性好,与定性及理论结果相符,与试验过程中各种现象符合很好,结果可信、可靠。  相似文献   

18.
在复杂艰险山区修建无砟轨道路基时,现有常规抗滑桩或桩板结构等均难以同时解决大型滑坡区潜在滑移和沉降控制问题。为适应无砟轨道路基通过大型滑坡区的需要,创新设计了抗滑桩-桩板结构,并结合贵阳至广州高速铁路建设,开展了大型滑坡抗滑桩-桩板结构现场监测试验。结果表明:抗滑桩和桩板结构基桩的最大侧向位移均位于桩顶,沿深度方向侧向位移先缓慢衰减再加速衰减;滑面附近侧向约束作用的差异,往往会导致桩身侧向位移发生突变;抗滑桩和基桩的桩身弯矩均呈先增大至峰值点再减小的趋势,沿桩深方向具有单峰曲线变化特征;雨季降水作用导致桩身弯矩增加,旱季蒸发作用导致桩身弯矩减小;结构系统中抗滑桩充分发挥了承担滑坡推力控制滑体稳定的作用,基桩则主要用于承担竖向荷载控制路基沉降,承担的滑坡推力较小。抗滑桩-桩板结构可作为滑坡区无砟轨道路基通过的加固型式,对今后类似复杂艰险山区高速铁路修建具有重要的参考价值。  相似文献   

19.
现行的抗滑桩滑坡推力以及抗滑桩内力计算方法本质上属于定值方法,由于该方法未考虑边坡岩土体材料参数的变异性等不确定性因素,存在着抗滑桩支护不足或过度支护等问题,因此提出基于有限元强度折减法(SRFEM)的抗滑桩滑坡推力及抗滑桩内力可靠性分析方法。将极限分析法、有限元方法和可靠性分析法三者耦合,用2结点梁单元模拟抗滑桩受力状态,采用拉丁超立方抽样法(LHS)进行可靠度计算,分析求解边坡抗滑桩可靠性问题,并将该过程在数值计算程序中得以实现。对抗滑桩滑坡推力以及抗滑桩内力进行概率统计,得出函数分布关系,并根据已给定的失效概率控制值,反算出滑坡推力以及抗滑桩内力设计值。结合典型算例分析结果表明该法显著区别于一般方法,能较全面地反映出边坡整体现状特征和岩土体材料强度参数的变异性,相对更加合理,且更符合工程实际。  相似文献   

20.
通过3组不同桩间距下双排微型桩加固碎石土滑坡室内模型试验,研究微型桩受力变形特性和滑坡推力传递规律。试验结果表明:双排微型桩承受的滑坡推力主要集中在滑面以上1/3桩身范围内,桩身最大弯矩位于滑面附近,且桩群均以第一排桩达到其弹性受力极限而失效;桩间距为5d时,微型桩群对桩间土的遮蔽阻挡效果最好,桩群能承受的滑坡推力最大,且桩顶位移最小,滑坡推力在排桩间分布最合理,其传递系数α在(0.5,0.7)间取值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号