首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Performance-Based Seismic Design is now widely recognized as the pre-eminent seismic design and assessment methodology for building structures. In recognition of this, seismic codes may require that buildings achieve multiple performance objectives such as withstanding moderate, yet frequently occurring earthquakes with minimal structural and non-structural damage, while withstanding severe, but rare earthquakes without collapse and loss of life. These objectives are presumed to be satisfied by some codes if the force-based design procedures are followed. This paper investigates the efficacy of the Eurocode 8 force-based design provisions with respect to RC frame building design and expected seismic performance. Four, eight, and 16-storey moment frame buildings were designed and analyzed using the code modal response spectrum analysis provisions. Non-linear time-history analyses were subsequently performed to determine the simulated seismic response of the structures and to validate the Eurocode 8 force-based designs. The results indicate the design of flexural members in medium-to-long period structures is not significantly influenced by the choice of effective member stiffness; however, calculated interstorey drift demands are significantly affected. This finding was primarily attributed to the code’s enforcement of a minimum spectral ordinate on the design spectrum. Furthermore, design storey forces and interstorey drift demand estimates (and therefore damage), obtained by application of the code force-based design procedure varied substantially from those found through non-linear time-history analysis. Overall, the results suggest that though the Eurocode 8 may yield life-safe designs, the seismic performance of frame buildings of the same type and ductility class can be highly non-uniform.  相似文献   

2.
Unreinforced Masonry(URM) is the most common partitioning material in framed buildings in India and many other countries.Although it is well-known that under lateral loading the behavior and modes of failure of the frame buildings change significantly due to infill-frame interaction,the general design practice is to treat infills as nonstructural elements and their stiffness,strength and interaction with the frame is often ignored,primarily because of difficulties in simulation and lack of modeling guidelines in design codes.The Indian Standard,like many other national codes,does not provide explicit insight into the anticipated performance and associated vulnerability of infilled frames.This paper presents an analytical study on the seismic performance and fragility analysis of Indian code-designed RC frame buildings with and without URM infills.Infills are modeled as diagonal struts as per ASCE 41 guidelines and various modes of failure are considered.HAZUS methodology along with nonlinear static analysis is used to compare the seismic vulnerability of bare and infilled frames.The comparative study suggests that URM infills result in a significant increase in the seismic vulnerability of RC frames and their effect needs to be properly incorporated in design codes.  相似文献   

3.
The feasibility and efficiency of a seismic retrofit solution for existing reinforced concrete frame systems, designed before the introduction of modern seismic‐oriented design codes in the mid 1970s, is conceptually presented and experimentally investigated. A diagonal metallic haunch system is introduced at the beam–column connections to protect the joint panel zone from extensive damage and brittle shear mechanisms, while inverting the hierarchy of strength within the beam–column subassemblies and forming a plastic hinge in the beam. A complete step‐by‐step design procedure is suggested for the proposed retrofit strategy to achieve the desired reversal of strength hierarchy. Analytical formulations of the internal force flow at the beam–column‐joint level are derived for the retrofitted joints. The study is particularly focused on exterior beam–column joints, since it is recognized that they are the most vulnerable, due to their lack of a reliable joint shear transfer mechanism. Results from an experimental program carried out to validate the concept and the design procedure are also presented. The program consisted of quasi‐static cyclic tests on four exterior, ? scaled, beam–column joint subassemblies, typical of pre‐1970 construction practice using plain round bars with end‐hooks, with limited joint transverse reinforcement and detailed without capacity design considerations. The first (control specimen) emulated the as‐built connection while the three others incorporated the proposed retrofitted configurations. The experimental results demonstrated the effectiveness of the proposed solution for upgrading non‐seismically designed RC frames and also confirmed the applicability of the proposed design procedure and of the analytical derivations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Following several damaging earthquakes in China,research has been devoted to find the causes of the collapse of reinforced concrete(RC) building sand studying the vulnerability of existing buildings.The Chinese Code for Seismic Design of Buildings(CCSDB) has evolved over time,however,there is still reported earthquake induced damage of newly designed RC buildings.Thus,to investigate modern Chinese seismic design code,three low-,mid-and high-rise RC frames were designed according to the 2010 CCSDB and the corresponding vulnerability curves were derived by computing a probabilistic seismic demand model(PSDM).The PSDM was computed by carrying out nonlinear time history analysis using thirty ground motions obtained from the Pacific Earthquake Engineering Research Center.Finally,the PSDM was used to generate fragility curves for immediate occupancy,significant damage,and collapse prevention damage levels.Results of the vulnerability assessment indicate that the seismic demands on the three different frames designed according to the 2010 CCSDB meet the seismic requirements and are almost in the same safety level.  相似文献   

5.
框架隔震建筑设计方法及应用   总被引:1,自引:0,他引:1  
基于《建筑抗震设计规范》(GB50011-2001)的有关规定,介绍了框架结构房屋的隔震设计方法。为方便工程技术人员了解和掌握隔震技术的应用,以框架结构为例,指出了采用隔震技术的设计要点和步骤,并给出实例来具体说明。  相似文献   

6.
This paper discusses an analytical study that quantifies the expected earthquake‐induced losses in typical office steel frame buildings designed with perimeter special moment frames in highly seismic regions. It is shown that for seismic events associated with low probabilities of occurrence, losses due to demolition and collapse may be significantly overestimated when the expected loss computations are based on analytical models that ignore the composite beam effects and the interior gravity framing system of a steel frame building. For frequently occurring seismic events building losses are dominated by non‐structural content repairs. In this case, the choice of the analytical model representation of the steel frame building becomes less important. Losses due to demolition and collapse in steel frame buildings with special moment frames designed with strong‐column/weak‐beam ratio larger than 2.0 are reduced by a factor of two compared with those in the same frames designed with a strong‐column/weak‐beam ratio larger than 1.0 as recommended in ANSI/AISC‐341‐10. The expected annual losses (EALs) of steel frame buildings with SMFs vary from 0.38% to 0.74% over the building life expectancy. The EALs are dominated by repairs of acceleration‐sensitive non‐structural content followed by repairs of drift‐sensitive non‐structural components. It is found that the effect of strong‐column/weak‐beam ratio on EALs is negligible. This is not the case when the present value of life‐cycle costs is selected as a loss‐metric. It is advisable to employ a combination of loss‐metrics to assess the earthquake‐induced losses in steel frame buildings with special moment frames depending on the seismic performance level of interest. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
钢筋混凝土框架中震可修标准及简化抗震设计方法   总被引:4,自引:1,他引:4  
本文对国际上主要建筑抗震设计规范中钢筋混凝土框架可修水准的层间位移角限值进行了比较,讨论了国内的一些相关研究结果,结合中国抗震规范确定钢筋混凝土框架中震可修层间位移角限值和屋顶侧移率限值分别为1/150和1/200。采用安全系数的抗震设计表达、论述了对应于结构层间位移角基于承载力的简化抗震设计方法。最后用实例按反应谱分析和弹性时程分析验证了钢筋混凝土框架中震可修层间位移角限值的有效控制作用,初步确定了简化抗震设计方法中梁柱构件的抗震安全系数并分析了提高目前结构抗震安全度的措施。  相似文献   

8.
中国古建木构架在水平反复荷载作用下变形及内力特征   总被引:2,自引:4,他引:2  
通过对三个严格按照中国宋·《营造法式》中有关大木作的形制与构造要求制作的木构架模型在水平反复荷载作用下的试验研究,分析与探讨了中国古代木造结构在相应状态下的变形及受力特征及其榫卯节点工作机制,通过对榫卯节点的转动弯矩与相应转角试验数据的分析与研究,确定了榫卯节点的转动刚度,提出了该类型结构在水平地震作用下的计算模型,并就额枋正截面上的最大应变与内力,作了理论计算与试验数据的对比,两者吻合较好,从而证明了所选模型的合理性,为中国古建木构架在水平地震作用下的抗震分析提供了一种可资借鉴的方法。  相似文献   

9.
Vibration measurements were performed on two adjacent, three-storey reinforced concrete frame buildings with hollow clay brick infill panels. The first building was a bare frame and the second one was a similar frame infilled with brick panels. The fundamental period for the infilled frame building was much smaller than that of the bare frame building. Using shear beam lumped mass models and the vibration data the actual lateral stiffness of both buildings was identified. The lateral stiffness of the infilled frame building was found to be seven times that of the bare frame building. Four numerical models of the infilled frame building were constructed. The frame and floors were represented using an experimentally validated model and the infill panels by one of three commonly used ‘equivalent diagonal truss’ models or by plane stress finite elements. Only the plane stress finite element model produced a reasonable agreement with the experimental results. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
Simplified seismic sidesway collapse analysis of frame buildings   总被引:1,自引:0,他引:1       下载免费PDF全文
This paper presents the development and assessment of a simplified procedure for estimating the seismic sidesway collapse margin ratio of building structures. The proposed procedure is based on the development of a robust database of seismic peak displacement responses of nonlinear single‐degree‐of‐freedom systems for various seismic intensities and uses nonlinear static (pushover) analysis without the need for nonlinear time history dynamic analysis. The proposed simplified procedure is assessed by comparing its collapse capacity predictions on 72 different building structures with those obtained by nonlinear incremental dynamic analyses. The proposed simplified procedure offers a simple, yet efficient, computational/analytical tool that is capable of predicting collapse capacities with acceptable accuracy for a wide variety of frame building structures. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
12.
单层砖柱排架厂房是我国中小企业生产用房的主要形式,目前此类结构仍广泛存在于经济欠发达的地区。历次地震震害资料表明,单层砖柱排架厂房在地震中比较容易损坏。本文通过对芦山地震中单层砖柱排架厂房的震害现场调查,总结了单层砖柱排架厂房的震害特征并分析其破坏原因;统计了几次地震中单层砖柱排架厂房的震害资料,给出了修正的未设防单层砖柱排架厂房地震易损性矩阵;最后,采用了逐步回归法,柱顶位移角法及模糊震害指数法分别对单层砖柱排架厂房进行震害预测,并将各种方法的震害预测结果与实际震害情况进行了对比分析。本文研究对认识该类结构的易损性、震害机理和抗震薄弱部位,指导抗震加固有着重要意义。  相似文献   

13.
A comprehensive parametric study on the inelastic seismic response of seismically isolated RC frame buildings, designed for gravity loads only, is presented. Four building prototypes, with 23 m × 10 m floor plan dimensions and number of storeys ranging from 2 to 8, are considered. All the buildings present internal resistant frames in one direction only, identified as the strong direction of the building. In the orthogonal weak direction, the buildings present outer resistant frames only, with infilled masonry panels. This structural configuration is typical of many existing RC buildings, realized in Italy and other European countries in the 60s and 70s. The parametric study is based on the results of extensive nonlinear response‐time history analyses of 2‐DOF systems, using a set of seven artificial and natural seismic ground motions. In the parametric study, buildings with strength ratio (Fy/W) ranging from 0.03 to 0.15 and post‐yield stiffness ratio ranging from 0% to 6% are examined. Three different types of isolation systems are considered, that is, high damping rubber bearings, lead rubber bearings and friction pendulum bearings. The isolation systems have been designed accepting the occurrence of plastic hinges in the superstructure during the design earthquake. The nonlinear response‐time history analyses results show that structures with seismic isolation experience fewer inelastic cycles compared with fixed‐base structures. As a consequence, although limited plastic deformations can be accepted, the collapse limit state of seismically isolated structures should be based on the lateral capacity of the superstructure without significant reliance on its inherent hysteretic damping or ductility capacity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
古建筑木构架的整体稳定性分析   总被引:4,自引:0,他引:4  
中国古代木构建筑具有较好的抗震性能,其独特的分层结构形式对整体稳定性有一定的影响.通过对木构架的构造形式、连接方式进行研究,总结出对称结构形式,柱列侧脚与生起做法,普柏枋、阑额与地桴的联结作用,厚重屋顶构造以及榫卯连接技术是其具有较好整体稳定性的主要原因.  相似文献   

15.
通过对华蓥山断裂带5级以上地震以及现今中小地震活动性的分析,认识了该地区背景性和区域性的地震活动特征,认为该断裂带南段是地震活动的主体,尤其是宜宾地区地震活动较频繁,中段、北段次之。总结得到的5级以上地震的“平静—活跃”时段分布特征,3级以上地震的“弱活动—增强”规律,以及2019年长宁MS6.0地震发生后应变能释放速率加速现象,均可为该地区5级以上地震预测预报提供参考依据。   相似文献   

16.
从地震活动间隔时间的角度出发,结合1970~2003年台湾及邻近地区的地震活动,对其震级一最大间隔时间对数的关系进行了分析。从地震活动等待时间的角度出发,分析了地震活动次数百分比与等待时间的关系,最后简略地介绍了地震活动次数百分比等值线图的一些特征。  相似文献   

17.
Estimation of peak inelastic deformation demands is a key component of any displacement-based procedure for earthquake-resistant design of new structures or for seismic evaluation of existing structures. On the basis of the results of over a thousand non-linear dynamic analyses, rules are developed for the estimation of mean and upper-characteristic peak inelastic interstorey drifts and member chord rotations in multistorey RC frame buildings, either bare or infilled in all storeys but the first. For bare frame structures, mean inelastic deformation demands can be estimated from a linear, equivalent static, or preferably multimodal response spectrum analysis with 5 per cent damping and with the RC members considered with their secant stiffness at yielding. 95 per cent characteristic values can be estimated as multiples of the mean deformations. For open-first-storey buildings, the linear analysis can be equivalent static, with the infills modelled as rigid bidiagonal struts and all RC members considered with their secant stiffness to yielding. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
The fundamental period has a primary role in seismic design and assessment as it is the main feature of the structure that allows one to determine the elastic demand and, indirectly, the required inelastic performance in static procedures. In fact, the definition of easy to manage relationships for the assessment of the elastic period has been the subject of a significant deal of both experimental and numerical/analytical studies, some of which have been acknowledged by codes and guidelines worldwide. Moreover, this kind of information is useful for territorial-scale seismic loss assessment methodologies. In the majority of cases, the assessment of the period is considered as function of the structural system classification and number of storeys or height. Reinforced concrete structures, comprising most of the building stock in Italy and in seismic prone areas in Europe and in the Mediterranean region, were built after the Second World War and are designed with obsolete seismic codes, if not for gravity loads only. Therefore, a class of buildings featuring the same height and/or number of storeys may show a significant variability of the structural system. This, along with the contribution of the stair module, may affect the elastic periods in the two main directions of a three-dimensional building. In the study presented these issues are investigated with reference to a population of existing RC structures designed acknowledging the practice at the time of supposed construction (e.g., simulated design) and with reference to the relative enforced code. The elastic period is evaluated for both main directions of the buildings of the considered sample, and regression analysis is employed to capture the dependency of the elastic dynamic properties of the structures as a function of mass and stiffness.  相似文献   

19.
钢结构房屋动力特性脉动法测试研究   总被引:3,自引:0,他引:3  
对上海地区的10幢钢结构建筑进行脉动法测试并采集数据,得到广义钢结构房屋的动力特性。选取其中1栋典型建筑通过多次测试和数值模拟分别验证测试的稳定性和准确性。通过分析处理测试数据建立钢结构建筑一阶周期与结构层数或高度的线性关系式,并归纳总结了等效阻尼比的测试结果,为验证结构动力特性理论计算结果、钢结构建筑减震隔震设计以及鉴定、加固改造、损伤识别提供依据。  相似文献   

20.
龙门山断裂带最新地震活动特征及其意义   总被引:1,自引:0,他引:1       下载免费PDF全文

综合最新布设的龙门山断裂带地震空段台阵(LmsSGA)与四川省地震局固定地震台网数据,对龙门山断裂带新近一年(2016年11月21日到2017年10月28日)的23479个地震事件开展双差定位工作,共获取包括汶川地震余震和芦山地震余震在内的6111个重定位地震事件.在此基础上,分别与汶川地震和芦山地震的早期余震空间分布特征进行比较.研究发现在汶川地震发生近十年后,其余震活动依旧活跃.汶川地震现今余震活动主要分布在10~25 km的深度区间,震源深度呈现西南段较东北段偏深的特征.此外,汶川近年余震分布相比早期余震偏深,破裂带西南段的余震活动有向深部迁移的趋势.对于芦山地震,其近期余震活动较弱,余震主要分布在10~15 km的深度区间,比早期余震的分布区间偏浅.龙门山断裂带最新余震活动分布特征表明,余震活动随着时间的推移有迁移的现象.考虑到距离主震事件已分别有5~10年的流逝时间,余震迁移现象可能由以流体扩散方式为主的准静态应力机制触发.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号