首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Sensitivity studies with regional climate models are often performed on the basis of a few simulations for which the difference is analysed and the statistical significance is often taken for granted. In this study we present some simple measures of the confidence limits for these types of experiments by analysing the internal variability of a regional climate model run over West Africa. Two 1-year long simulations, differing only in their initial conditions, are compared. The difference between the two runs gives a measure of the internal variability of the model and an indication of which timescales are reliable for analysis. The results are analysed for a range of timescales and spatial scales, and quantitative measures of the confidence limits for regional model simulations are diagnosed for a selection of study areas for rainfall, low level temperature and wind. As the averaging period or spatial scale is increased, the signal due to internal variability gets smaller and confidence in the simulations increases. This occurs more rapidly for variations in precipitation, which appear essentially random, than for dynamical variables, which show some organisation on larger scales.  相似文献   

3.
This study explores the effects of atmospheric CO2 enrichment and climate change on soil moisture (W r ) and biome-level water limitation (L TA), using a dynamic global vegetation and water balance model forced by five different scenarios of change in temperature, precipitation, radiation, and atmospheric CO2 concentration, all based on the same IS92a emission scenario. L TA is defined as an index that quantifies the degree to which transpiration and photosynthesis are co-limited by soil water shortage (high values indicate low water limitation). Soil moisture decreases in many regions by 2071–2100 compared to 1961–1990, though the regional pattern of change differs substantially among the scenarios due primarily to differences in GCM-specific precipitation changes. In terms of L TA, ecosystems in northern temperate latitudes are at greatest risk of increasing water limitation, while in most other latitudes L TA tends to increase (but again varies the regional pattern of change among the scenarios). The frequently opposite direction of change in W r and L TA suggests that decreases in W r are not necessarily felt by actual vegetation, which is attributable mainly to the physiological vegetation response to elevated CO2. Without this beneficial effect, the sign of change in L TA would be reversed from predominantly positive to predominantly negative.  相似文献   

4.
Summary In one of the first micrometeorological experiments at a tropical site in West Africa, direct measurements of all surface energy balance components were carried out. The experiment NIMEX-1 in Ile-Ife, Nigeria (7°33′ N, 4°33′ E), was conducted from February 19, 2004 to March 9, 2004, during the transition from the dry to the wet season. Three typical weather situations could be observed: firstly, monsoonal winds from the southwest blew over desiccated soils. Almost 100% of the available energy at the surface was transformed into sensible heat flux. Secondly, after several thundershowers, monsoonal winds swept over soils of increased water content, which led to a partitioning of the available energy corresponding to Bowen ratios between 0.3 and 0.5. Thirdly, harmattan winds advected dry dusty air from northern directions, which reduced the incoming shortwave radiation. Again, Bowen ratios range from 0.3 to 0.5 during daytime, whereas latent heat fluxes are still high during the night due to the advection of very dry air. No systematic non-closure of the surface energy balance could be found for the NIMEX-1 dataset. Unlike other experiments in Europe, most of the ogives for the sensible and latent heat flux were found to be convergent during NIMEX-1 in Ile-Ife. This can be attributed to the homogeneity of the surrounding bush, which lacks the defined borders found in agriculturally cultivated landscapes.  相似文献   

5.
6.
Much research focuses on how the terrestrial biosphere influences climate through changes in surface albedo (reflectivity), stomatal conductance and leaf area index (LAI). By using a fully-coupled GCM (HadCM3LC), our research objective was to induce an increase in the growth of global vegetation to isolate the effect of increased LAI on atmospheric exchange of heat and moisture. Our Control simulation had a mean global net primary production (NPP) of 56.3 GtCyr?1 which is half that of our scenario value of 115.1 GtCyr?1. LAI and latent energy (Q E) were simulated to increase globally, except in areas around Antarctica. A highly productive biosphere promotes mid-latitude mean surface cooling of ~2.5°C in the summer, and surface warming of ~1.0°C in the winter. The former response is primarily the result of reduced Bowen ratio (i.e. increased production of Q E) in combination with small increases in planetary albedo. Response in winter temperature is likely due to decreased planetary albedo that in turn permits a greater amount of solar radiation to reach the Earth’s surface. Energy balance calculations show that between 75° and 90°N latitude, an additional 2.4 Wm?2 of surface heat must be advected into the region to maintain energy balance, and ultimately causes high northern latitudes to warm by up to 3°C. We postulate that large increases in Q E promoted by increased growth of terrestrial vegetation could contribute to greater surface-to-atmosphere exchange and convection. Our high growth simulation shows that convective rainfall substantially increases across three latitudinal bands relative to Control; in the tropics, across the monsoonal belt, and in mid-latitude temperate regions. Our theoretical research has implications for applied climatology; in the modeling of past “hot-house” climates, in explaining the greening of northern latitudes in modern-day times, and for predicting future changes in surface temperature with continued increases in atmospheric CO2.  相似文献   

7.
A present-day climatic model is presented in which extended wet spells of near-decadal duration and dry spells of similar length are explained on the basis of surface and upper tropospheric circulation variations. Wet spells are shown to be the result of increased tropical atmospheric disturbances and tropical-temperate interaction, and to be linked to variations in the Walker Circulation. Conversely, dry spells are shown to result from diminished tropical activity over southern Africa, equatorward movement of westerly storm tracks and temperate perturbations in the westerlies.The present-day analogue is compared to preliminary spatial reconstructions of the climate of southern Africa over the last twenty-five millennia and is shown to have wide applicability in the explanation of the late-Quaternary palaeoclimates of the subcontinent. In particular, it is argued that the Last Glacial Maximum was associated with northward-displaced circulation conditions similar to those of present-day dry spells over the summer rainfall region, whereas the extensive moist conditions that prevailed for several thousand years after 9000 BP were analogous to present-day wet spell conditions with little apparent displacement of major circulation features.  相似文献   

8.
A dominant image of the West African Sahel is one of periodic, and sometimes permanent crisis in terms of food production, environmental degradation, provision of public services and education, and widespread poverty. Recent research, including the West Africa Long-Term Perspective Study (WALTPS) study, offers modifications to this view. Close observation demonstrates that the Sahel, far from stagnating, is undergoing profound change, which may take the form of progress in some areas, and crisis or even regression in others. Two changes of note are the 10-fold increase of the population within the span of a century, and the opening up of the region to the world economy, as globalization advances. These two factors are radically altering West African systems of production and are forcing States and civil society to change radically and quickly. The paper argues that, as has been the case for many other developing regions of the world, intra-regional and domestic migration, urbanization and the densification of population are necessary conditions for the transformation of agriculture, and contribute to long-term regional food security and to the improvement of living standards. Encouraging free circulation of people, goods and services requires that the Sahelian nations not be considered in isolation from the rest of the continent, as it is too often the case.  相似文献   

9.
10.
 The horizontal and vertical structure of the 3–5-day and 6–9-day easterly waves over West Africa and tropical Atlantic are investigated. NCEP/NCAR reanalyses are used for the period 1979–1995 to produce a 17-year climatology of both 3–5-day and 6–9-day easterly waves. Composite patterns of convection, wind, temperature and vertical velocity are analysed with respect to the following: the modulation by 3–5-day and 6–9-day wave regimes; the contrasts between the ITCZ (5°N–10°N) and the Sahelo-Saharan band (15°N–20°N); the difference between land and ocean, and seasonal variations. Similarities and differences in the characteristics of the two wave regimes are identified. Received: 18 August 1999 / Accepted: 14 March 2001  相似文献   

11.
12.
13.
The West African Monsoon has been simulated with the regional climate model PROMES, coupled to the land-surface model ORCHIDEE and nested in ECMWF analysis, within AMMA-EU project. Three different runs are presented to address the influence of changes in two parameterizations (moist convection and radiation) on the simulated West African Monsoon. Another aim of the study is to get an insight into the relationship of simulated precipitation and 2-m temperature with land-surface fluxes. To this effect, data from the AMMA land-surface model intercomparison project (ALMIP) have been used. In ALMIP, offline simulations have been made using the same land-surface model than in the coupled simulation presented here, which makes ALMIP data particularly relevant for the present study, as it enables us to analyse the simulated soil and land-surface fields. The simulation of the monsoon depends clearly on the two analysed parameterizations. The inclusion of shallow convection parametrization affects the intensity of the simulated monsoon precipitation and modifies some dynamical aspects of the monsoon. The use of a fractional cloud-cover parameterization and a more complex radiation scheme is important for better reproducing the amplitude of the latitudinal displacement of the precipitation band. This is associated to an improved simulation of the surface temperature field and the easterly jets. However, the parameterization changes do not affect the timing of the main rainy and break periods of the monsoon. A better representation of downward solar radiation is associated with a smaller bias in the surface heat fluxes. The comparison with ALMIP land-surface and soil fields shows that precipitation and temperature biases in the regional climate model simulation are associated to certain biases in land-surface fluxes. The biases in soil moisture seem to be driven by atmospheric biases as they are strongly affected by the parameterization changes in atmospheric processes.  相似文献   

14.
15.
正Erratum to:Acta Meteor Sinica DOI 10.1007/sl3351-013-0506-z The original version of this article unfortunately contained a mistake.The presentation of DOI number was incorrect.The corrected DOI number is 10.1007/sl3351-013-0503-2  相似文献   

16.
For over twenty years it has been known that energy balance models (EBMs) with snow-albedo feedback are characterized by unstable behavior in some areas of parameter space. This behavior leads to rapid changes in snow area due to small changes in forcing, and has been termed the small ice cap instability (SICI). It has never been clarified whether this behaviour reflects a real feature of the climate system or a limitation in EBMs. In this study we demonstrate that evidence for similar unstable behavior can also be found in an atmospheric general circulation model (GCM), using a realistic set of boundary conditions for the Carboniferous (300 Ma), one of the most extensive periods of glaciation in Earth history. When solar luminosity is sequentially lowered to near values appropriate for the Carboniferous, there is a discontinuous increase in summer snow area. The instability occurs in approximately the same area of parameter space as one previously found in an EBM. Analysis of selected fields indicates that the circulation is primarily affected in the area of snow increase; far-field effects are minimal. There is good agreement between model-generated summer snowcover and one reconstruction of Carboniferous ice cover. Although more work is required on this topic, our results provide increased support for the possibility that the snowline instability represents a real feature of the climate system, and that it may help explain some cases of glacial inception and abrupt transitions in Earth history.  相似文献   

17.
 NCEP/NCAR and ECMWF daily reanalyses are used to investigate the synoptic variability of easterly waves over West Africa and tropical Atlantic at 700 hPa in northern summer between 1979–1995 (1979–1993 for ECMWF). Spectral analysis of the meridional wind component at 700 hPa highlighted two main periodicity bands, between 3 and 5 days, and 6 and 9 days. The 3–5-day easterly wave regime has already been widely investigated, but only on shorter datasets. These waves grow both north and south of the African Easterly Jet (AEJ). The two main tracks, noted over West Africa at 5 °N and 15 °N, converge over the Atlantic on latitude 17.5 °N. These waves are more active in August–September than in June–July. Their average wavelength/phase speed varies from about 3000 km/8 m s-1 north of the jet to 5000 km/12 m s-1 south of the jet. Rainfall, convection and monsoon flux are significantly modulated by these waves, convection in the Inter-Tropical Convergence Zone (ITCZ) being enhanced in the trough and ahead of it, with a wide meridional extension. Compared to the 3–5-day waves, the 6–9-day regime is intermittent and the corresponding wind field pattern has both similar and contrasting characteristics. The only main track is located north of the AEJ along 17.5 °N both over West Africa and the Atlantic. The mean wavelength is higher, about 5000 km long, and the average phase speed is about 7 m s-1. Then the wind field perturbation is mostly evident at the AEJ latitude and north of it. The perturbation structure is similar to that of 3–5-days in the north except that the more developed circulation centers, moving more to the north, lead to a large modulation of the jet zonal wind component. South of the AEJ, the wind field perturbation is weaker and quite different. The zonal wind core of the jet appears to be an almost symmetric axis in the 6–9-day wind field pattern, a clockwise circulation north of the AEJ being associated with a counter-clockwise circulation south of the jet, and vice versa. These 6–9-day easterly waves also affect significantly rainfall, convection and monsoon flux but in a different way, inducing large zonal convective bands in the ITCZ, mostly in the trough and behind it. As opposed to the 3–5-day wave regime, these rainfall anomalies are associated with anomalies of opposite sign over the Guinea coast and the Sahelian regions. Over the continent, these waves are more active in June–July, and in August–September over the ocean. GATE phase I gave an example of such an active 6–9-day wave pattern. Considered as a sequence of weak easterly wave activity, this phase was also a sequence of high 6–9-day easterly wave activity. We suggest that the 6–9-day regime results from an interaction between the 3–5-day easterly wave regime (maintained by the barotropic/baroclinic instability of the AEJ), and the development of strong anticyclonic circulations, north of the jet over West Africa, and both north and south of the jet over the Atlantic, significantly affecting the jet zonal wind component. The permanent subtropical anticyclones (Azores, Libya, St Helena) could help initiation and maintenance of such regime over West Africa and tropical Atlantic. Based on an a priori period-band criterion, our synoptic classification has enabled us to point out two statistical and meteorological easterly wave regimes over West Africa and tropical Atlantic. NCEP/NCAR and ECMWF reanalyses are in good agreement, the main difference being a more developed easterly wave activity in the NCEP/NCAR reanalyses, especially for the 3–5-day regime over the Atlantic. Received: 28 May 1998 / Accepted: 2 May 1999  相似文献   

18.
19.
The evolution of precipitating convective systems in West Africa has been a research topic throughout the past three decades and is considered to be influenced by surface–atmosphere interactions. This study builds on the previous research by examining the sensitivity of a mesoscale convective system (MCS) to a change in the vegetation cover by using a regional atmospheric model with a high horizontal resolution. Vegetation cover values in the region between 10 and 15°N have increased by 10–30% over the last 20 years. The effect of both an increase and a decrease in vegetation cover by 10, 20 and 30% is investigated. The MCS case selected occurred on 11 June 2006 and was observed during the African Monsoon Multidisciplinary Analysis field campaign in Dano, Burkina Faso. The model is able to reproduce the most important characteristics of the MCS and the atmospheric environment. For the investigated case, no clear precipitation response of the MCS to the applied vegetation scenarios is found. The vegetation changes do alter the surface fluxes in the days before the MCS arrives, which have a clear effect on the modelled convective available potential energy (CAPE) values. However, a link between CAPE, mesoscale circulation and rainfall amounts could not be demonstrated as a dynamical mechanism is found to counteract the CAPE signal. By using a kilometre-scale model, a change in the cold pool dynamics of the MCS could be detected which results from alterations in boundary layer moisture. The effect of vegetation changes on the MCS is thus not straightforward and a complex interaction between different processes should be taken into account.  相似文献   

20.
An empirical orthogonal functions analysis of the onshore flow of moisture along the west coast of southern Africa using NCEP-DOE AMIP II Re-analyses suggests two dominant modes of variability that are linked to (a) variations in the circulation linked with the South Atlantic anticyclone (b) the intensity of the flow that penetrates from the tropical Atlantic. The second mode, referred as the Equatorial Westerly mode, contributes the most to moisture input from the Atlantic onto the subcontinent at tropical latitudes. Substantial correlations in austral summer between the Atlantic moisture flux in the tropics and rainfall over the upper lands surrounding the Congo basin suggest the potential role played by this zonal mode of water vapour transport. Composites for austral summer months when this Equatorial Westerly mode had a particularly strong expression, show an enhanced moisture input at tropical latitudes that feeds into the deep convection occurring over the Congo basin. Sustained meridional energy fluxes result in above normal rainfall east and south of the Congo belt. During years of reduced equatorial westerly moisture flux, a deficit of available humidity occurs in the southern tropics. A concomitant eastward shift of deep convection to the southwest Indian ocean and southeastern Africa, leads to below normal rainfall over the uplands surrounding the Congo basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号