首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Assessment of Major Pools and Fluxes of Carbon in Indian Forests   总被引:3,自引:0,他引:3  
The major pools including phytomass, soil, litter, and fluxes of carbon (C)due to litterfall and landuse changes were estimated for Indian forests. Basedon growing stock-volume approach at the state and district levels, the Indianforest phytomass was estimated in the range of 3.8–4.3 PgC. The totalsoil organic pool in the top 1m depth was estimated as 6.8 PgC, usingestimated soil organic carbon densities and Remote Sensing (RS) based area byforest types. Based on 122 published Indian studies and RS-based forest area,the total litterfall carbon flux was estimated as 208.8 MgCha–1 yr–1.The cumulative net carbon flux (1880–1996) from Indian forests(1880–1996) due to landuse changes (deforestation, afforestation andphytomass degradation) was estimated as 5.4 PgC, using a simple book-keepingapproach. The mean annual net C flux due to landuse changes during1985–1996 was estimated as 9.0 TgC yr–1. For the recentperiod, the Indian forests are nationally a small source with some regionsacting as small sinks of carbon as well. The improved quantification of poolsand fluxes related to forest carbon cycle is important for understanding thecontribution of Indian forests to net carbon emissions as well as theirpotential for carbon sequestration in the context of the Kyoto protocol.  相似文献   

2.
The biomass carbon (C) stock of forests is one of key parameters for the study of regional and global carbon cycles. Literature reviews shows that inventory-based forest C stocks documented for major countries in the middle and high northern latitudes fall within a narrow range of 36–56 Mg C ha−1 with an overall area-weighted mean of 43.6 Mg C ha−1. These estimates are 0.40 to 0.71 times smaller than those (61–108 Mg C ha−1) used in previous analysis of balancing the global carbon budget. A statistical analysis, using the global forest biomass database, implies that aboveground biomass per hectare is proportional to forest mean height [biomass in Mg/ha = 10.63 (height in m)] in closed-canopy forests in the study regions, indicating that forest height can be a proxy of regional biomass C stocks. The narrow range of C stocks is likely a result of similar forest height across the northern regions. The lower biomass C stock obtained in this study strongly suggests that the role of the northern forests in the global carbon cycle needs to be re-evaluated. Our findings also suggest that regional estimates of biomass could be readily made from the use of satellite methods such as lidar that can measure forest canopy height over large regions.  相似文献   

3.
This work studied the temporal and spatial variability of the risk of snow-induced forest damage in Finland under current and changing climatic conditions until the end of this century. The study was based on a snow accumulation model in which cumulative precipitation, air temperature and wind speed were used as input variables. The risk was analyzed in terms of the number of days per year when the accumulated amount of snow exceeded 20 kg m???2. Based on the risk, the forest area and mean carbon stock of seedling, young thinning and advanced thinning stands at risk were calculated. Furthermore, the number of 5-day periods, when the accumulated amount of snow exceeded a risk limit, was calculated for the current and changing climatic conditions in order to study the frequency of damaging snowfalls. Compared to the baseline period 1961–1990, the risk of snow-induced forest damage and the amount of damaging snowfalls were predicted to decrease from the first 30-year period (1991–2020) onwards. Over the whole country, the mean annual number of risk days decreased by 11%, 23% and 56% in the first, second and third 30-year period, respectively, compared to the baseline period. In the most hazardous areas in north-western and north-eastern Finland, the number of risk days decreased from the baseline period of over 30 days to about 8 days per year at the end of the century. Correspondingly, the shares of the forest area at risk were 1.9%, 2.0% and 1.0% in the first, second and third 30-year period, respectively. The highest mean annual carbon stocks of young stands at risk were found in central, north-eastern and north-western Finland in the first and second 30-year period, varying between 0.6 and 1.2 Mg C ha???1 year???1, meaning at highest 3% of the mean carbon stock (Mg C stem wood ha???1) of those areas. This study showed that although the risk of snow-induced forest damage was mainly affected by changes in critical weather events, the development of growing stock under the changing climatic conditions also had an effect on the risk assessment. However, timely management of forest stands in the areas with a high risk of snow-induced damage contributes to the trees’ increased resistance to the damage.  相似文献   

4.
Organic matter (OM) is involved in the enhancement of soil quality since it acts on soil structure, nutrient storage and biological activity. Organic carbon (OC), the dominant element constituent of OM, and related soil properties are probably the most widely acknowledged indicator of soil quality. The typically Mediterranean climate of the South of Spain promotes low yields on crops and low organic carbon in soil. The present work was carried out to evaluate the effect of the application of alperujo, olive oil waste difficult to eliminate, on the fixation or emission of carbon on soil in an olive grove situated in Montoro (Córdoba, Spain). In the study three treatments were considered: 15 kg (A), 7.5 kg (B), 0 kg (C) of alperujo per tree and the implementation of the amendment has been made for three consecutive years. The results confirm the benefits of the amendment on the carbon content organic soil with a fixation with respect to control of 4.8 and 6.1 t ha???1 for the first year and 8.7 and 6.8 t ha???1 for the second in treatments A and B, respectively. Of the different climatic agents considered in the study, it was the temperature which had a major influence on the emissions of CO2 into the atmosphere and the flow of gas presented the highest values in soils treated with the highest dose.  相似文献   

5.
A carbon sequestration strategy has recently been proposed in which a forest is actively managed, and a fraction of the wood is selectively harvested and stored to prevent decomposition. The forest serves as a ‘carbon scrubber’ or ‘carbon remover’ that provides continuous sequestration (negative emissions). Earlier estimates of the theoretical potential of wood harvest and storage (WHS) based on coarse wood production rates were 10?±?5 GtC y?1. Starting from this physical limit, here we apply a number of practical constraints: (1) land not available due to agriculture; (2) forest set aside as protected areas, assuming 50 % in the tropics and 20 % in temperate and boreal forests; (3) forests difficult to access due to steep terrain; (4) wood use for other purposes such as timber and paper. This ‘top-down’ approach yields a WHS potential 2.8 GtC y?1. Alternatively, a ‘bottom-up’ approach, assuming more efficient wood use without increasing harvest, finds 0.1–0.5 GtC y?1 available for carbon sequestration. We suggest a range of 1–3 GtC y?1 carbon sequestration potential if major effort is made to expand managed forests and/or to increase harvest intensity. The implementation of such a scheme at our estimated lower value of 1 GtC y?1 would imply a doubling of the current world wood harvest rate. This can be achieved by harvesting wood at a moderate harvesting intensity of 1.2 tC ha?1 y?1, over a forest area of 8 Mkm2 (800 Mha). To achieve the higher value of 3 GtC y?1, forests need to be managed this way on half of the world’s forested land, or on a smaller area but with higher harvest intensity. We recommend WHS be considered part of the portfolio of climate mitigation and adaptation options that needs further research.  相似文献   

6.
The dynamics of terrestrial ecosystems depends on interactions between carbon, nutrient and hydrological cycles. Terrestrial ecosystems retain carbon in live biomass (aboveground and belowground), decomposing organic matter, and soil. Carbon is exchanged naturally between these systems and the atmosphere through photosynthesis, respiration, decomposition, and combustion. Human activities change carbon stock in these pools and exchanges between them and the atmosphere through land-use, land-use change, and forestry.In the present study we estimated the wood (stem) biomass, growing stock (GS) and carbon stock of Indian forests for 1984 and 1994. The forest area, wood biomass, GS, and carbon stock were 63.86 Mha, 4327.99 Mm3, 2398.19 Mt and 1085.06 Mt respectively in 1984 and with the reduction in forest area, 63.34 Mha, in 1994, wood biomass (2395.12 Mt) and carbon stock (1083.69 Mt) also reduced subsequently. The Conifers, of temperate region, stocked maximum carbon in their woods, 28.88 to 65.21 t C ha−1, followed by Mangrove forests, 28.24 t C ha−1, Dipterocarp forests, 28.00 t C ha−1, and Shorea robusta forests, 24.07 t C ha−1. Boswellia serrata, with 0.22 Mha forest area, stocked only 3.91 t C ha−1. To have an idea of rate of carbon loss the negative changes (loss of forest area) in forest area occurred during 1984–1994 (10yrs) and 1991–1994 (4yrs) were also estimated. In India, land-use changes and fuelwood requirements are the main cause of negative change. Total 24.75 Mt C was lost during 1984–1994 and 21.35 Mt C during 1991–94 at a rate of 2.48 Mt C yr−1 and 5.35 Mt C yr−1 respectively. While in other parts of India negative change is due to multiple reasons like fuelwood, extraction of non-wood forest products (NWFPs), illicit felling etc., but in the northeastern region of the country shifting cultivation is the only reason for deforestation. Decrease in forest area due to shifting cultivation accounts for 23.0% of the total deforestation in India, with an annual loss of 0.93 Mt C yr−1.  相似文献   

7.
Development trends of Russian forests and their impact on the global carbon budget were assessed at the national level on the basis of long-term forest inventory data (1961–1998). Over this period, vegetation of Russian forest lands are estimated as a carbon sink, with an annual average level of carbon sequestration in vegetational organic matter of 210 ± 30 Tg C · yr–1 (soil carbon is not considered in this study), of which 153 Tg C · yr–1 were accumulated in live biomass and 57 Tg C · yr–1 in dead wood. The temporal variability of the sink is very large; for the five-year averages used in the analysis, the C sequestration varies from about 60 to above 300 Tg C· yr–1. It is shown that long-term forest inventory data could serve as an important information base for assessing crucial indicators of full carbon accounting of forests.  相似文献   

8.
1980~2010年华北平原农田土壤有机碳的时空变化   总被引:2,自引:0,他引:2  
利用农业生态系统过程模型(Agricultural Production Systems s IMulator,APSIM),研究了1980~2010年间中国华北平原农田土壤有机碳(Soil Organic Carbon,SOC)的时空变化。模型验证结果表明,校正后的APSIM模型总体能够较好地模拟徐州、郑州和昌平3个长期定位试验站点中各处理下小麦和玉米的产量变化以及SOC的变化。区域模拟结果显示,1980~2010年间华北平原大部分农田SOC呈增加趋势,仅河北省的北部、山东省中部和东部部分地区农田SOC减少。华北平原总的农田面积约为24.52 Mha(1 ha=0.01 km2),其SOC密度的平均变化速率为0.35 Mg(C)ha-1 a-1,总的SOC贮量增加了约257.43 Tg。在京津冀地区、山东省以及河南省的农田中,SOC分别平均增加了102.05、59.82、95.56 Tg。SOC的增加,主要归功于过去几十年里外源碳投入量的增加。  相似文献   

9.
10.
As land use change (LUC), including deforestation, is a patchy process, estimating the impact of LUC on carbon emissions requires spatially accurate underlying data on biomass distribution and change. The methods currently adopted to estimate the spatial variation of above- and below-ground biomass in tropical forests, in particular the Brazilian Amazon, are usually based on remote sensing analyses coupled with field datasets, which tend to be relatively scarce and often limited in their spatial distribution. There are notable differences among the resulting biomass maps found in the literature. These differences subsequently result in relatively high uncertainties in the carbon emissions calculated from land use change, and have a larger impact when biomass maps are coded into biomass classes referring to specific ranges of biomass values. In this paper we analyze the differences among recently-published biomass maps of the Amazon region, including the official information used by the Brazilian government for its communication to the United Nation Framework on Climate Change Convention of the United Nations. The estimated average pre-deforestation biomass in the four maps, for the areas of the Amazon region that had been deforested during the 1990–2009 period, varied from 205?±?32 Mg ha?1 during 1990–1999, to 216?±?31 Mg ha?1 during 2000–2009. The biomass values of the deforested areas in 2011 were between 7 and 24 % higher than for the average deforested areas during 1990–1999, suggesting that although there was variation in the mean value, deforestation was tending to occur in increasingly carbon-dense areas, with consequences for carbon emissions. To summarize, our key findings were: (i) the current maps of Amazonian biomass show substantial variation in both total biomass and its spatial distribution; (ii) carbon emissions estimates from deforestation are highly dependent on the spatial distribution of biomass as determined by any single biomass map, and on the deforestation process itself; (iii) future deforestation in the Brazilian Amazon is likely to affect forests with higher biomass than those deforested in the past, resulting in smaller reductions in carbon dioxide emissions than expected purely from the recent reductions in deforestation rates; and (iv) the current official estimate of carbon emissions from Amazonian deforestation is probably overestimated, because the recent loss of higher-biomass forests has not been taken into account.  相似文献   

11.
Many savannas in West Africa have been converted to croplands and are among the world’s regions most vulnerable to climate change due to deteriorating soil quality. We focused on the savanna-derived cropland in northern Ghana to simulate its sensitivity to projected climate change and nitrogen fertilization scenarios. Here we show that progressive warming–drying stress over the twenty-first century will enhance soil carbon emissions from all kinds of lands of which the natural ecosystems will be more vulnerable to variation in climate variables, particularly in annual precipitation. The carbon emissions from all croplands, however, could be mitigated by applying nitrogen fertilizer at 30–60 kg N ha???1 year???1. The uncertainties of soil organic carbon budgets and crop yields depend mainly on the nitrogen fertilization rate during the first 40 years and then are dominated by climate drying stress. The replenishment of soil nutrients, especially of nitrogen through fertilization, could be one of the priority options for policy makers and farm managers as they evaluate mitigation and adaptation strategies of cropping systems and management practices to sustain agriculture and ensure food security under a changing climate.  相似文献   

12.
Increased Carbon Sink in Temperate and Boreal Forests   总被引:6,自引:0,他引:6  
An intense search is under way to identify the `missing sink' in the world carbon budget of perhaps 2 Pg year–1 (petagrams, or billiontonnes) of carbon, but its location and mechanism have proved elusive. Here we use a new forest inventory data set to estimate the carbon sink and the carbon pool of woody biomass in 55 countries that account for nearly all temperate or boreal forests and approximately half the world's total forest area. In each country there was a net accumulation of biomass; together, the carbon sink of woody biomass was 0.88 Pg year–1 during the 1990swith estimated uncertainty from 0.71 to 1.1 Pg year–1. Thisestimate, already about half of the missing sink, would probably be even larger if carbon accumulation in soil and detritus were also accounted for, but we are unable to quantify that additional sink. The sink is twice that estimated for the woody biomass of these forests a decade ago due to higher estimates for tree growth throughout the region and decreased timber harvests in Russia. In contrast, the new data indicate a carbon pool that is smaller than earlier estimates because of improved data for Russia and Australia.  相似文献   

13.
Livestock constitutes an integral component of Indian agriculture sector and also a major source of GHGs emissions. The study presents a detailed inventory of GHG emissions at district/state level from different age-groups, indigenous and exotic breed of different Indian livestock categories estimated using the recent census 2003 and country-specific emission coefficients based on IPCC guidelines. The total methane emission including enteric fermentation and manure management of livestock was estimated at 11.75 Tg/year for the year 2003. Enteric fermentation constitutes ~91 % of the total methane emissions from Indian livestock. Dairy buffalo and indigenous dairy cattle together contribute 60 % of the methane emissions. The total nitrous oxide emission from Indian livestock for the year 2003 is estimated at 1.42 Gg/year, with 86.1 % contribution from poultry. The total GHGs emission from Indian livestock is estimated at 247.2 Mt in terms of CO2 equivalent emissions. Although the Indian livestock contributes substantially to the methane budget, the per capita emission is only 24.23 kgCH4/animal/year. Using the remote sensing derived potential feed/fodder area available for livestock, the average methane flux was calculated as 74.4 kg/ha. The spatial patterns derived in GIS environment indicated the regions with high GHGs emissions that need to be focused subsequently for mitigation measures. The projected estimates indicate a likely increase of 40 % in methane emissions from buffalo population.  相似文献   

14.
Ecological limits to terrestrial biological carbon dioxide removal   总被引:1,自引:1,他引:0  
Terrestrial biological atmospheric carbon dioxide removal (BCDR) through bioenergy with carbon capture and storage (BECS), afforestation/reforestation, and forest and soil management is a family of proposed climate change mitigation strategies. Very high sequestration potentials for these strategies have been reported, but there has been no systematic analysis of the potential ecological limits to and environmental impacts of implementation at the scale relevant to climate change mitigation. In this analysis, we identified site-specific aspects of land, water, nutrients, and habitat that will affect local project-scale carbon sequestration and ecological impacts. Using this framework, we estimated global-scale land and resource requirements for BCDR, implemented at a rate of 1 Pg C y?1. We estimate that removing 1 Pg C y?1 via tropical afforestation would require at least 7?×?106 ha y?1 of land, 0.09 Tg y?1 of nitrogen, and 0.2 Tg y?1 of phosphorous, and would increase evapotranspiration from those lands by almost 50 %. Switchgrass BECS would require at least 2?×?108 ha of land (20 times U.S. area currently under bioethanol production) and 20 Tg y?1 of nitrogen (20 % of global fertilizer nitrogen production), consuming 4?×?1012?m3 y?1 of water. While BCDR promises some direct (climate) and ancillary (restoration, habitat protection) benefits, Pg C-scale implementation may be constrained by ecological factors, and may compromise the ultimate goals of climate change mitigation.  相似文献   

15.
Net greenhouse gas (GHG) emissions from Canadian crop and livestock production were estimated for 1990, 1996 and 2001 and projected to 2008. Net emissions were also estimated for three scenarios (low (L), medium (M) and high (H)) of adoption of sink enhancing practices above the projected 2008 level. Carbon sequestration estimates were based on four sink-enhancing activities: conversion from conventional to zero tillage (ZT), reduced frequency of summerfallow (SF), the conversion of cropland to permanent cover crops (PC), and improved grazing land management (GM). GHG emissions were estimated with the Canadian Economic and Emissions Model for Agriculture (CEEMA). CEEMA estimates levels of production activities within the Canadian agriculture sector and calculates the emissions and removals associated with those levels of activities. The estimates indicate a decline in net emissions from 54 Tg CO2–Eq yr–1 in1990 to 52 Tg CO2–Eq yr–1 in 2008. Adoption of thesink-enhancing practices above the level projected for 2008 resulted in further declines in emissions to 48 Tg CO2–Eq yr–1 (L), 42 TgCO2–Eq yr–1 (M) or 36 Tg CO2–Eq yr–1 (H). Among thesink-enhancing practices, the conversion from conventional tillage to ZT provided the largest C sequestration potential and net reduction in GHG emissions among the scenarios. Although rates of C sequestration were generally higher for conversion of cropland to PC and adoption of improved GM, those scenarios involved smaller areas of land and therefore less C sequestration. Also, increased areas of PC were associated with an increase in livestock numbers and CH4 and N2O emissions from enteric fermentation andmanure, which partially offset the carbon sink. The CEEMA estimates indicate that soil C sinks are a viable option for achieving the UNFCCC objective of protecting and enhancing GHG sinks and reservoirs as a means of reducing GHG emissions (UNFCCC, 1992).  相似文献   

16.
The soil C balance is determined by the difference between inputs (e.g., plant litter, organic amendments, depositional C) and outputs (e.g., soil respiration, dissolved organic C leaching, and eroded C). There is a need to improve our understanding of whether soil erosion is a sink or a source of atmospheric CO2. The objective of this paper is to discover the long-term influence of soil erosion on the C cycle of managed watersheds near Coshocton, OH. We hypothesize that the amount of eroded C that is deposited in or out of a watershed compares in magnitude to the soil C changes induced via microbial respiration. We applied the erosion productivity impact calculator (EPIC) model to evaluate the role of erosion–deposition processes on the C balance of three small watersheds (∼1 ha). Experimental records from the USDA North Appalachian Experimental Watershed facility north of Coshocton, OH were used in the study. Soils are predominantly silt loam and have developed from loess-like deposits over residual bedrock. Management practices in the three watersheds have changed over time. Currently, watershed 118 (W118) is under a corn (Zea mays L.)–soybean (Glycine max [L.] Merr.) no till rotation, W128 is under conventional till continuous corn, and W188 is under no till continuous corn. Simulations of a comprehensive set of ecosystem processes including plant growth, runoff, and water erosion were used to quantify sediment C yields. A simulated sediment C yield of 43 ± 22 kg C ha−1 year−1 compared favorably against the observed 31 ± 12 kg C ha−1 year−1 in W118. EPIC overestimated the soil C stock in the top 30-cm soil depth in W118 by 21% of the measured value (36.8 Mg C ha−1). Simulations of soil C stocks in the other two watersheds (42.3 Mg C ha−1 in W128 and 50.4 Mg C ha−1 in W188) were off by <1 Mg C ha−1. Simulated eroded C re-deposited inside (30–212 kg C ha−1 year−1) or outside (73–179 kg C ha−1 year−1) watershed boundaries compared in magnitude to a simulated soil C sequestration rate of 225 kg C ha−1 year−1 and to literature values. An analysis of net ecosystem carbon balance revealed that the watershed currently under a plow till system (W128) was a source of C to the atmosphere while the watersheds currently under a no till system (W118 and W188) behaved as C sinks of atmospheric CO2. Our results demonstrate a clear need for documenting and modeling the proportion of eroded soil C that is transported outside watershed boundaries and the proportion that evolves as CO2 to the atmosphere.  相似文献   

17.
This paper presents carbon flux estimates arising from the effect of increasing demand on harvests and management of industrial forests in a global timber market. Results are presented for specific regions and the globe. Harvests and management of forests are predicted to store an additional 184 Tg (1 Tg = 1012 grams) of carbon per year in forests and wood products over the next 50 years, with a range of 108 to 251 Tg per year. Although harvests in natural boreal and tropical forest regions will cause carbon releases, new plantation establishment in subtropical emerging regions more than offsets these losses. Unlike many existing studies, these results suggest that harvests and management of North American forests will lead to carbon emissions from that region over the next 50 years. The results are quantitatively sensitive to the assumed growth in demand although the results are qualitatively similar in the sensitivity analysis.  相似文献   

18.
Soil Carbon Sequestration in India   总被引:4,自引:0,他引:4  
R. Lal 《Climatic change》2004,65(3):277-296
With a large land area and diverse ecoregions, there is a considerable potential of terrestrial/soil carbon sequestration in India. Of the total land area of 329 million hectares (Mha), 297 Mha is the land area comprising 162 Mha of arable land, 69 Mha of forest and woodland, 11 Mha of permanent pasture, 8 Mha of permanent crops and 58 Mha is other land uses. Thesoil organic carbon (SOC) pool is estimated at 21 Pg (petagram = Pg = 1 ×1015 g= billion ton) to 30-cm depth and 63 Pg to 150-cm depth. The soil inorganic carbon (SIC) pool is estimated at 196 Pg to 1-m depth. The SOC concentration in most cultivated soils is less than 5 g/kg compared with 15 to 20 g/kg in uncultivated soils. Low SOC concentration is attributed to plowing, removal of crop residue and other biosolids, and mining of soil fertility. Accelerated soil erosion by water leads to emission of 6 Tg C/y. Important strategies of soil C sequestration include restoration of degraded soils, and adoption of recommended management practices (RMPs) of agricultural and forestry soils. Potential of soil C sequestration in India is estimated at 7 to 10 Tg C/y for restoration of degraded soils and ecosystems, 5 to 7 Tg C/y for erosion control, 6 to 7 Tg C/y for adoption of RMPs on agricultural soils, and 22 to 26 Tg C/y for secondary carbonates. Thus, total potential of soil C sequestration is 39 to 49 (44± 5) Tg C/y.  相似文献   

19.
Forest inventories and remote sensing are the two principal data sources used to estimate carbon (C) stocks and fluxes for large forest regions. National governments have historically relied on forest inventories for assessments but developments in remote sensing technology provide additional opportunities for operational C monitoring. The estimate of total C stock in live forest biomass modeled from Landsat imagery for the St. Petersburg region was consistent with estimates derived from forest inventory data for the early 1990s (272 and 269 TgC, respectively). The estimates of mean C sink in live forest biomass also agreed well (0.36 and 0.34 Mg C ha–1 yr–1). Virtually all forest lands were accumulating C in live biomass, however when the net change in total ecosystem C stock was considered, 19% of the forest area were a net source of C. The average net C sink in total ecosystem biomass is quite weak (0.08 MgC ha–1 yr–1 and could be reversed by minor increases in harvest rates or a small decline in biomass growth rates.  相似文献   

20.
Forest inventories and remote sensing are the two principal data sources used to estimate carbon (C) stocks and fluxes for large forest regions. National governments have historically relied on forest inventories for assessments but developments in remote sensing technology provide additional opportunities for operational C monitoring. The estimate of total C stock in live forest biomass modeled from Landsat imagery for the St. Petersburg region was consistent with estimates derived from forest inventory data for the early 1990s (272 and 269 TgC, respectively). The estimates of mean C sink in live forest biomass also agreed well (0.36 and 0.34 Mg C ha–1 yr–1). Virtually all forest lands were accumulating C in live biomass, however when the net change in total ecosystem C stock was considered, 19% of the forest area were a net source of C. The average net C sink in total ecosystem biomass is quite weak (0.08 MgC ha–1 yr–1 and could be reversed by minor increases in harvest rates or a small decline in biomass growth rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号