首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper introduces and summarizes a series of articles on the potential impacts of sea level rise on Florida??s natural and human communities and what might be done to reduce the severity of those impacts. Most of the papers in this special issue of Climatic Change were developed from presentations at a symposium held at Archbold Biological Station in January 2010, sponsored by the Florida Institute for Conservation Science. Symposium participants agreed that adaptation to sea level rise for the benefit of human communities should be planned in concert with adaptation to reduce vulnerability and impacts to natural communities and native species. The papers in this special issue discuss both of these categories of impacts and adaptation options. In this introductory paper, I place the subject in context by noting that that the literature in conservation biology related to climate change has been concerned largely about increasing temperatures and reduced moisture availability, rather than about sea level rise. The latter, however, is the most immediate and among the most severe impacts of global warming in low-lying regions such as Florida. I then review the content of this special issue by summarizing and interpreting the following 10 papers. I conclude with a review of the recommendations for research and policy that were developed from group discussions at the Archbold symposium. The main lesson that emerges from this volume is that sea level rise, combined with human population growth, urban development in coastal areas, and landscape fragmentation, poses an enormous threat to human and natural well-being in Florida. How Floridians respond to sea level rise will offer lessons, for better or worse, for other low-lying regions worldwide.  相似文献   

2.
While current rates of sea level rise and associated coastal flooding in the New York City region appear to be manageable by stakeholders responsible for communications, energy, transportation, and water infrastructure, projections for sea level rise and associated flooding in the future, especially those associated with rapid icemelt of the Greenland and West Antarctic Icesheets, may be outside the range of current capacity because extreme events might cause flooding beyond today??s planning and preparedness regimes. This paper describes the comprehensive process, approach, and tools for adaptation developed by the New York City Panel on Climate Change (NPCC) in conjunction with the region??s stakeholders who manage its critical infrastructure, much of which lies near the coast. It presents the adaptation framework and the sea-level rise and storm projections related to coastal risks developed through the stakeholder process. Climate change adaptation planning in New York City is characterized by a multi-jurisdictional stakeholder?Cscientist process, state-of-the-art scientific projections and mapping, and development of adaptation strategies based on a risk-management approach.  相似文献   

3.
We synthesize existing evidence on the ecological history of the Florida Everglades since its inception ??7?ka (calibrated kiloannum) and evaluate the relative impacts of sea level rise, climate variability, and human alteration of Everglades hydrology on wetland plant communities. Initial freshwater peat accumulation began between 6 and 7?ka on the platform underlying modern Florida Bay when sea level was ??6.2?m below its current position. By 5?ka, sawgrass and waterlily peats covered the area bounded by Lake Okeechobee to the north and the Florida Keys to the south. Slower rates of relative sea level rise ??3?ka stabilized the south Florida coastline and initiated transitions from freshwater to mangrove peats near the coast. Hydrologic changes in freshwater marshes also are indicated ??3?ka. During the last ??2?ka, the Everglades wetland was affected by a series of hydrologic fluctuations related to regional to global-scale fluctuations in climate and sea level. Pollen evidence indicates that regional-scale droughts lasting two to four centuries occurred ??1?ka and ??0.4?ka, altering wetland community composition and triggering development of characteristic Everglades habitats such as sawgrass ridges and tree islands. Intercalation of mangrove peats with estuarine muds ??1?ka indicates a temporary slowing or stillstand of sea level. Although sustained droughts and Holocene sea level rise played large roles in structuring the greater Everglades ecosystem, twentieth century reductions in freshwater flow, compartmentalization of the wetland, and accelerated rates of sea level rise had unprecedented impacts on oxidation and subsidence of organic soils, changes/loss of key Everglades habitats, and altered distribution of coastal vegetation.  相似文献   

4.
We investigate the effects of Hurricane Wilma??s storm surge (23?C24 October 2005) on the dominant tree Pinus elliottii var densa (South Florida slash pine) and rare plant species in subtropical pine rocklands of the Lower Florida Keys. We examine the role of elevation on species abundance in 1995 (Hurricane Betsy in 1965), 2005 (Hurricane Georges in 1998), and 2008 (Hurricane Wilma in 2005) to investigate if hurricanes influence abundance by eliminating plants at lower elevation on Big Pine Key, the largest island in the Lower Florida Keys. We compare densities before and after Hurricane Wilma over the 2005?C2008 sampling period and examine the role of elevation on changes in pine and rare species densities three years after Hurricane Wilma. We use elevation to assess the impact of hurricanes because elevation determined whether a location was influenced by storm surge (maximum surge of 2 m) in the Lower Florida Keys, where pine rocklands occur at a maximum elevation of 3 m. In 1995 (30 years after a major storm), elevation did not explain the abundance of South Florida slash pine or Chamaecrista lineata, but explained significant variation in abundance of Chamaesyce deltoidea. The latter two species are rare herbaceous plants restricted to pine rocklands. In 2008, 3 years after Hurricane Wilma, the positive relationship between elevation and abundance was strongest for South Florida slash pine, C. deltoidea, and C. lineata. Effects of Hurricane Wilma were not significant for rare species with wider distribution, occurring in plant communities adjacent to pine rocklands and in disturbed rocklands. Our results suggest that hurricanes drive population dynamics of South Florida slash pine and rare species that occur exclusively in pine rocklands at higher elevations. Rare species restricted to pine rocklands showed dramatic declines after Hurricane Wilma and were eliminated at elevations <0.5 m. Widely distributed rare species did not show significant changes in density after Hurricane Wilma. Abundance increased with elevation for South Florida slash pine and C. lineata after the hurricane. In an environment influenced by sea level rise, concrete plans to conserve pine ecosystems are warranted. Results from this study will help define conservation strategies by strengthening predictive understanding of plant responses to disturbance in the backdrop of sea level rise.  相似文献   

5.
Projections by the Intergovernmental Panel on Climate Change suggest that there will be an increase in the frequency and intensity of climate extremes in the 21st century. Kolkata, a megacity in India, has been singled out as one of the urban centers vulnerable to climate risks. Modest flooding during monsoons at high tide in the Hooghly River is a recurring hazard in Kolkata. More intense rainfall, riverine flooding, sea level rise, and coastal storm surges in a changing climate can lead to widespread and severe flooding and bring the city to a standstill for several days. Using rainfall data, high and low emissions scenarios, and sea level rise of 27 cm by 2050, this paper assesses the vulnerability of Kolkata to increasingly intense precipitation events for return periods of 30, 50, and 100 years. It makes location-specific inundation depth and duration projections using hydrological, hydraulic, and urban storm models with geographic overlays. High resolution spatial analysis provides a roadmap for designing adaptation schemes to minimize the impacts of climate change. The modeling results show that de-silting of the main sewers would reduce vulnerable population estimates by at least 5 %.  相似文献   

6.
Tens of millions of people around the world are already exposed to coastal flooding from tropical cyclones. Global warming has the potential to increase hurricane flooding, both by hurricane intensification and by sea level rise. In this paper, the impact of hurricane intensification and sea level rise are evaluated using hydrodynamic surge models and by considering the future climate projections of the Intergovernmental Panel on Climate Change. For the Corpus Christi, Texas, United States study region, mean projections indicate hurricane flood elevation (meteorologically generated storm surge plus sea level rise) will, on average, rise by 0.3 m by the 2030s and by 0.8 m by the 2080s. For catastrophic-type hurricane surge events, flood elevations are projected to rise by as much as 0.5 m and 1.8 m by the 2030s and 2080s, respectively.  相似文献   

7.
A wide variety of scenarios for future development have played significant roles in climate policy discussions. This paper presents projections of greenhouse gas (GHG) concentrations, sea level rise due to thermal expansion and glacial melt, oceanic acidity, and global mean temperature increases computed with the MIT Integrated Global Systems Model (IGSM) using scenarios for twenty-first century emissions developed by three different groups: intergovernmental (represented by the Intergovernmental Panel on Climate Change), government (represented by the U.S. government Climate Change Science Program) and industry (represented by Royal Dutch Shell plc). In all these scenarios the climate system undergoes substantial changes. By 2100, the CO2 concentration ranges from 470 to 1020 ppm compared to a 2000 level of 365 ppm, the CO2-equivalent concentration of all greenhouse gases ranges from 550 to 1780 ppm in comparison to a 2000 level of 415 ppm, oceanic acidity changes from a current pH of around 8 to a range from 7.63 to 7.91, in comparison to a pH change from a preindustrial level by 0.1 unit. The global mean temperature increases by 1.8 to 7.0°C relative to 2000. Such increases will require considerable adaptation of many human systems and will leave some aspects of the earth??s environment irreversibly changed. Thus, the remarkable aspect of these different approaches to scenario development is not the differences in detail and philosophy but rather the similar picture they paint of a world at risk from climate change even if there is substantial effort to reduce emissions.  相似文献   

8.
This study illustrates a methodology to assess the economic impacts of climate change at a city scale and benefits of adaptation, taking the case of sea level rise and storm surge risk in the city of Copenhagen, capital of Denmark. The approach is a simplified catastrophe risk assessment, to calculate the direct costs of storm surges under scenarios of sea level rise, coupled to an economic input–output (IO) model. The output is a risk assessment of the direct and indirect economic impacts of storm surge under climate change, including, for example, production and job losses and reconstruction duration, and the benefits of investment in upgraded sea defences. The simplified catastrophe risk assessment entails a statistical analysis of storm surge characteristics, geographical-information analysis of population and asset exposure combined with aggregated vulnerability information. For the city of Copenhagen, it is found that in absence of adaptation, sea level rise would significantly increase flood risks. Results call for the introduction of adaptation in long-term urban planning, as one part of a comprehensive strategy to manage the implications of climate change in the city. Mitigation policies can also aid adaptation by limiting the pace of future sea level rise.  相似文献   

9.
The State of Florida (USA) is especially threatened by sea level rise due to extensive low elevation coastal habitats (approximately 8,000?km2?<?1?m above sea level) where the majority of the human population resides. We used the Sea Level Affecting Marshes Model (SLAMM) simulation to improve understanding of the magnitude and location of these changes for 58,000?ha of the Waccasassa Bay region of Florida??s central Gulf of Mexico coast. To assess how well SLAMM portrays changes in coastal wetland systems resulting from sea level rise, we conducted a hindcast in which we compared model results to 30?years of field plot data. Overall, the model showed the same pattern of coastal forest loss as observed. Prospective runs of SLAMM using 0.64?m, 1?m and 2?m sea level rise scenarios predict substantial changes over this century in the area covered by coastal wetland systems including net losses of coastal forests (69%, 83%, and 99%, respectively) and inland forests (33%, 50%, and 88%), but net gains of tidal flats (17%, 142%, and 3,837%). One implication of these findings at the site level is that undeveloped, unprotected lands inland from the coastal forest should be protected to accommodate upslope migration of this natural community in response to rising seas. At a broader scale, our results suggest that coastal wetland systems will be unevenly affected across the Gulf of Mexico as sea level rises. Species vulnerable to these anticipated changes will experience a net loss or even elimination.  相似文献   

10.
The sea level history of the northern Gulf of Mexico during recent geologic time has closely followed global eustatic sea level change. Regional effects due to tectonics and glacio-isostasy have been minimal. Over the past several million years the northern Gulf coast, like most stable coastal regions of the globe, has experienced major swings of sea level below and above present level, accompanied by major shifts in shoreline position. During advances of the northern hemisphere ice sheets, sea level dropped by more than 100 m, extending the shoreline in places more than 100 km onto the shelf. For much of the period since the last glacial maximum (LGM), 20,000 years ago, the region has seen rates of sea level rise far in excess of those experienced during the period represented by long-term tide gauges. The regional tide gauge record reveals that sea level has been rising at about 2 mm/year for the past century, while the average rate of rise since the LGM has been 6 mm/year, with some periods of abrupt rise exceeding 40 mm/year. During times of abrupt rise, Gulf of Mexico shorelines were drowned in place and overstepped. The relative stability of modern coastal systems is due primarily to stabilization of sea level approximately 6,000 years ago, resulting in the slow rates of rise experienced during historic time. Recent model projections of sea level rise over the next century and beyond may move northern Gulf coastal environments into a new equilibrium regime, more similar to that experienced during the deglaciation than that which has existed during historic time.  相似文献   

11.
This paper presents a scenario-based study that investigates the interaction between sea-level rise and land subsidence on the storm tides induced fluvial flooding in the Huangpu river floodplain. Two projections of relative sea level rise (RSLR) were presented (2030 and 2050). Water level projections at the gauging stations for different return periods were generated using a simplified algebraic summation of the eustatic sea-level rise, land subsidence and storm tide level. Frequency analysis with relative sea level rise taken into account shows that land subsidence contributes to the majority of the RSLR (between 60 % and 70 %). Furthermore, a 1D/2D coupled flood inundation model (FloodMap) was used to predict the river flow and flood inundation, after calibration using the August 1997 flood event. Numerical simulation with projected RSLR suggests that, the combined impact of eustatic sea-level rise and land subsidence would be a significantly reduced flood return period for a given water level, thus effective degradation of the current flood defences. In the absence of adaptation measures, storm flooding will cause up to 40 % more inundation, particularly in the upstream of the river.  相似文献   

12.
Global warming may result in substantial sea level rise and more intense hurricanes over the next century, leading to more severe coastal flooding. Here, observed climate and sea level trends over the last century (c. 1900s to 2000s) are used to provide insight regarding future coastal inundation trends. The actual impacts of Hurricane Katrina (2005) in New Orleans are compared with the impacts of a similar hypothetical hurricane occurring c. 1900. Estimated regional sea level rise since 1900 of 0.75 m, which contains a dominant land subsidence contribution (0.57 m), serves as a ‘prototype’ for future climate-change induced sea level rise in other regions. Landform conditions c. 1900 were estimated by changing frictional resistance based on expected additional wetlands at lower sea levels. Surge simulations suggest that flood elevations would have been 15 to 60 % lower c. 1900 than the conditions observed in 2005. This drastic change suggests that significantly more flood damage occurred in 2005 than would have occurred if sea level and climate conditions had been like those c. 1900. We further show that, in New Orleans, sea level rise dominates surge-induced flooding changes, not only by increasing mean sea level, but also by leading to decreased wetland area. Together, these effects enable larger surges. Projecting forward, future global sea level changes of the magnitude examined here are expected to lead to increased flooding in coastal regions, even if the storm climate is unchanged. Such flooding increases in densely populated areas would presumably lead to more widespread destruction.  相似文献   

13.
The Sundarbans mangrove ecosystem, shared by India and Bangladesh, is recognized as a global priority for biodiversity conservation. Sea level rise, due to climate change, threatens the long term persistence of the Sundarbans forests and its biodiversity. Among the forests’ biota is the only tiger (Panthera tigris) population in the world adapted for life in mangrove forests. Prior predictions on the impacts of sea level rise on the Sundarbans have been hampered by coarse elevation data in this low-lying region, where every centimeter counts. Using high resolution elevation data, we estimate that with a 28 cm rise above 2000 sea levels, remaining tiger habitat in Bangladesh’s Sundarbans would decline by 96% and the number of breeding individuals would be reduced to less than 20. Assuming current sea level rise predictions and local conditions do not change, a 28 cm sea level rise is likely to occur in the next 50–90 years. If actions to both limit green house gas emissions and increase resilience of the Sundarbans are not initiated soon, the tigers of the Sundarbans may join the Arctic’s polar bears (Ursus maritimus) as early victims of climate change-induced habitat loss.  相似文献   

14.
Sea level rise, especially combined with possible changes in storm surges and increased river discharge resulting from climate change, poses a major threat in low-lying river deltas. In this study we focus on a specific example of such a delta: the Netherlands. To evaluate whether the country’s flood protection strategy is capable of coping with future climate conditions, an assessment of low-probability/high-impact scenarios is conducted, focusing mainly on sea level rise. We develop a plausible high-end scenario of 0.55 to 1.15 m global mean sea level rise, and 0.40 to 1.05 m rise on the coast of the Netherlands by 2100 (excluding land subsidence), and more than three times these local values by 2200. Together with projections for changes in storm surge height and peak river discharge, these scenarios depict a complex, enhanced flood risk for the Dutch delta.  相似文献   

15.
A mathematical model was used to predict the effect of climate change on soft and hard rock coasts in a 2 m tidal environment. Erosional equations represented the effect of wave impact and bottom generated shear stresses in the intertidal and subtidal zones. Model runs were made for: 2900 years with constant sea level; a further 100 years, representing the last century, with either constant or slow sea level rise (0.2 m per century); and another 100 years, representing the present century, with either slow or fast (1 m per century) sea level rise, and with either no change in storm frequency or with a 10% increase in the frequency of the highest waves. The results suggest that rising sea level will trigger faster rates of cliff recession, whereas increased storm wave frequency may have only a fairly minor effect on erosional efficacy. Model runs were used to derive a series of predictive equations relating cliff recession during the present and last centuries.  相似文献   

16.
Sea level rise and South Florida coastal forests   总被引:1,自引:0,他引:1  
Coastal ecosystems lie at the forefront of sea level rise. We posit that before the onset of actual inundation, sea level rise will influence the species composition of coastal hardwood hammocks and buttonwood (Conocarpus erectus L.) forests of the Everglades National Park based on tolerance to drought and salinity. Precipitation is the major water source in coastal hammocks and is stored in the soil vadose zone, but vadose water will diminish with the rising water table as a consequence of sea level rise, thereby subjecting plants to salt water stress. A model is used to demonstrate that the constraining effect of salinity on transpiration limits the distribution of freshwater-dependent communities. Field data collected in hardwood hammocks and coastal buttonwood forests over 11 years show that halophytes have replaced glycophytes. We establish that sea level rise threatens 21 rare coastal species in Everglades National Park and estimate the relative risk to each species using basic life history and population traits. We review salinity conditions in the estuarine region over 1999?C2009 and associate wide variability in the extent of the annual seawater intrusion to variation in freshwater inflows and precipitation. We also examine species composition in coastal and inland hammocks in connection with distance from the coast, depth to water table, and groundwater salinity. Though this study focuses on coastal forests and rare species of South Florida, it has implications for coastal forests threatened by saltwater intrusion across the globe.  相似文献   

17.
Here we present a set of regional climate scenarios of sea level rise for the northeast Atlantic Ocean. In this study, the latest observations and results obtained with state-of-the-art climate models are combined. In addition, regional effects due to ocean dynamics and changes in the Earth’s gravity field induced by melting of land-based ice masses have been taken into account. The climate scenarios are constructed for the target years 2050 and 2100, for both a moderate and a large rise in global mean atmospheric temperature (2 °C and 4 °C in 2100 respectively). The climate scenarios contain contributions from changes in ocean density (global thermal expansion and local steric changes related to changing ocean dynamics) and changes in ocean mass (melting of mountain glaciers and ice caps, changes in the Greenland and Antarctic ice sheets, and (minor) terrestrial water-storage contributions). All major components depend on the global temperature rise achieved in the target periods considered. The resulting set of climate scenarios represents our best estimate of twenty-first century sea level rise in the northeast Atlantic Ocean, given the current understanding of the various contributions. For 2100, they yield a local rise of 30 to 55 cm and 40 to 80 cm for the moderate and large rise in global mean atmospheric temperature, respectively.  相似文献   

18.
Four accelerated sea level rise scenarios, 30 and 100 cm by the year 2100, and 10 and 30 cm by the year 2030, have been assumed as boundary conditions (along with some wind climate changes) for the entire Polish coast, under two recent programmes completed in 1992 and 1995. Three adaptation strategies, i.e., retreat, limited protection and full protection have been adopted and compared in physical and socio-economic terms. Over 2,200 km2 and 230,000 people are found vulnerable in the most severe case of 100-cm rise by 2100. The total cost of land at loss in that case is estimated at nearly 30 USD billion (plus some 18 USD billion at risk of flooding), while the cost of full protection reaches 6 USD billion. Particular features of vulnerability and adaptation schemes have been examined as well, including specific sites and the effects of not only sea level rise but also other climate change factors, and interactions with other climate change studies in Poland. Planning of coastal zone management facing climate change can be facilitated by the use of a GIS-supported coastal information and analysis system. An example of the application of such a system for a selected Polish coastal site is shown to illustrate the most recent smaller-scale research activities undertaken in the wake of the overall assessment of the vulnerability to climate change for the entire Polish coastal zone.  相似文献   

19.
A simple technique for estimating an allowance for uncertain sea-level rise   总被引:2,自引:1,他引:1  
John Hunter 《Climatic change》2012,113(2):239-252
Projections of climate change are inherently uncertain, leading to considerable debate over suitable allowances for future changes such as sea-level rise (an ??allowance?? is, in this context, the amount by which something, such as the height of coastal infrastructure, needs to be altered to cope with climate change). Words such as ??plausible?? and ??high-end?? abound, with little objective or statistically valid support. It is firstly shown that, in cases in which extreme events are modified by an uncertain change in the average (e.g. flooding caused by a rise in mean sea level), it is preferable to base future allowances on estimates of the expected frequency of exceedances rather than on the probability of at least one exceedance. A simple method of determining a future sea-level rise allowance is then derived, based on the projected rise in mean sea level and its uncertainty, and on the variability of present tides and storm surges (??storm tides??). The method preserves the expected frequency of flooding events under a given projection of sea-level rise. It is assumed that the statistics of storm tides relative to mean sea level are unchanged. The method is demonstrated using the GESLA (Global Extreme Sea-Level Analysis) data set of roughly hourly sea levels, covering 198 sites over much of the globe. Two possible projections of sea-level rise are assumed for the 21st century: one based on the Third and Fourth Assessment Reports of the Intergovernmental Panel on Climate Change and a larger one based on research since the Fourth Assessment Report.  相似文献   

20.
Projecting the impacts of climate change includes various uncertainties from physical, biophysical, and socioeconomic processes. Providing a more comprehensive impact projection that better represents the uncertainties is a priority research issue. We used an ensemble-based projection approach that accounts for the uncertainties in climate projections associated with general circulation models (GCMs) and biophysical and empirical parameter values in a crop model. We applied the approach to address the paddy rice yield change in Japan in the 2050s (2046–2065) and 2090s (2081–2100) relative to the 1990s (1981–2000). Seventeen climate projections, nine (eight) climate projections performed by seven (six) GCMs conditional on the Special Report on Emission Scenarios (SRES) A1B (A2), were included in this projection. In addition, 50 sets of biophysical and empirical parameter values of a large-scale process-based crop model for irrigated paddy rice were included to represent the uncertainties of crop parameter values. The planting windows, cultivation practices, and crop cultivars in the future were assumed to be the same as the level in the baseline period (1990s). The resulting probability density functions conditioned on SRES A1B and A2 indicate projected median yield changes of +?17.2% and +?26.9% in Hokkaido, the northern part of Japan, in the 2050s and 2090s with 90% probability intervals of (??5.2%, +?40.3%) and (+?6.3%, +?51.2%), relative to the 1990s mean yield, respectively. The corresponding values in Aichi, on the Pacific side of Western Japan, are 2.2% and ??0.8%, with 90% probability intervals of (??15.0%, +?14.9%) and (??33.4%, +?17.9%), respectively. We also provided geographical maps of the probability that the future 20-year mean yield will decrease and that the future standard deviation of yield for 20 years will increase. Finally, we investigated the relative contributions of the climate projection and crop parameter values to the uncertainty in projecting yield change in the 2090s. The choice of GCM yielded a relatively larger spread of projected yield changes than that of the other factors. The choice of crop parameter values could be more important than that of GCM in a specific prefecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号