首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Global warming may result in substantial sea level rise and more intense hurricanes over the next century, leading to more severe coastal flooding. Here, observed climate and sea level trends over the last century (c. 1900s to 2000s) are used to provide insight regarding future coastal inundation trends. The actual impacts of Hurricane Katrina (2005) in New Orleans are compared with the impacts of a similar hypothetical hurricane occurring c. 1900. Estimated regional sea level rise since 1900 of 0.75 m, which contains a dominant land subsidence contribution (0.57 m), serves as a ‘prototype’ for future climate-change induced sea level rise in other regions. Landform conditions c. 1900 were estimated by changing frictional resistance based on expected additional wetlands at lower sea levels. Surge simulations suggest that flood elevations would have been 15 to 60 % lower c. 1900 than the conditions observed in 2005. This drastic change suggests that significantly more flood damage occurred in 2005 than would have occurred if sea level and climate conditions had been like those c. 1900. We further show that, in New Orleans, sea level rise dominates surge-induced flooding changes, not only by increasing mean sea level, but also by leading to decreased wetland area. Together, these effects enable larger surges. Projecting forward, future global sea level changes of the magnitude examined here are expected to lead to increased flooding in coastal regions, even if the storm climate is unchanged. Such flooding increases in densely populated areas would presumably lead to more widespread destruction.  相似文献   

2.
This paper presents a scenario-based study that investigates the interaction between sea-level rise and land subsidence on the storm tides induced fluvial flooding in the Huangpu river floodplain. Two projections of relative sea level rise (RSLR) were presented (2030 and 2050). Water level projections at the gauging stations for different return periods were generated using a simplified algebraic summation of the eustatic sea-level rise, land subsidence and storm tide level. Frequency analysis with relative sea level rise taken into account shows that land subsidence contributes to the majority of the RSLR (between 60 % and 70 %). Furthermore, a 1D/2D coupled flood inundation model (FloodMap) was used to predict the river flow and flood inundation, after calibration using the August 1997 flood event. Numerical simulation with projected RSLR suggests that, the combined impact of eustatic sea-level rise and land subsidence would be a significantly reduced flood return period for a given water level, thus effective degradation of the current flood defences. In the absence of adaptation measures, storm flooding will cause up to 40 % more inundation, particularly in the upstream of the river.  相似文献   

3.
Sea level rise, especially combined with possible changes in storm surges and increased river discharge resulting from climate change, poses a major threat in low-lying river deltas. In this study we focus on a specific example of such a delta: the Netherlands. To evaluate whether the country’s flood protection strategy is capable of coping with future climate conditions, an assessment of low-probability/high-impact scenarios is conducted, focusing mainly on sea level rise. We develop a plausible high-end scenario of 0.55 to 1.15 m global mean sea level rise, and 0.40 to 1.05 m rise on the coast of the Netherlands by 2100 (excluding land subsidence), and more than three times these local values by 2200. Together with projections for changes in storm surge height and peak river discharge, these scenarios depict a complex, enhanced flood risk for the Dutch delta.  相似文献   

4.
Two linear methods, including the simple linear addition and linear addition by expansion, and numerical simulations were employed to estimate storm surges and associated flooding caused by Hurricane Andrew for scenarios of sea level rise (SLR) from 0.15 m to 1.05 m with an interval of 0.15 m. The interaction between storm surge and SLR is almost linear at the open Atlantic Ocean outside Biscayne Bay, with slight reduction in peak storm surge heights as sea level rises. The nonlinear interaction between storm surges and SLR is weak in Biscayne Bay, leading to small differences in peak storm surge heights estimated by three methods. Therefore, it is appropriate to estimate elevated storm surges caused by SLR in these areas by adding the SLR magnitude to storm surge heights. However, the magnitude and extent of inundation at the mainland area by Biscayne Bay estimated by numerical simulations are, respectively, 22–24 % and 16–30 % larger on average than those generated by the linear addition by expansion and the simple linear addition methods, indicating a strong nonlinear interaction between storm surge and SLR. The population and property affected by the storm surge inundation estimated by numerical simulations differ up to 50–140 % from that estimated by two linear addition methods. Therefore, it is inappropriate to estimate the exacerbated magnitude and extent of storm surge flooding and affected population and property caused by SLR by using the linear addition methods. The strong nonlinear interaction between surge flooding and SLR at a specific location occurs at the initial stage of SLR when the water depth under an elevated sea level is less than 0.7 m, while the interaction becomes linear as the depth exceeds 0.7 m.  相似文献   

5.
To develop improved estimates of (1) flooding due to storm surges, and (2) wetland losses due to accelerated sea-level rise, the work of Hoozemans et al. (1993) is extended to a dynamic analysis. It considers the effects of several simultaneously changing factors, including: (1) global sea-level rise and subsidence; (2) increasing coastal population; and (3) improving standards of flood defence (using GNP/capita as an “ability-to-pay” parameter). The global sea-level rise scenarios are derived from two General Circulation Model (GCM) experiments of the Hadley Centre: (1) the HadCM2 greenhouse gas only ensemble experiment and (2) the more recent HadCM3 greenhouse gas only experiment. In all cases there is a global rise in sea level of about 38 cm from 1990 to the 2080s. No other climate change is considered. Relative to an evolving reference scenario without sea-level rise, this analysis suggests that the number of people flooded by storm surge in a typical year will be more than five times higher due to sea-level rise by the 2080s. Many of these people will experience annual or more frequent flooding, suggesting that the increase in flood frequency will be more than nuisance level and some response (increased protection, migration, etc.) will be required. In absolute terms, the areas most vulnerable to flooding are the southern Mediterranean, Africa, and most particularly, South and South-east Asia where there is a concentration of low-lying populated deltas. However, the Caribbean, the Indian Ocean islands and the Pacific Ocean small islands may experience the largest relative increase in flood risk. By the 2080s, sea-level rise could cause the loss of up to 22% of the world's coastal wetlands. When combined with other losses due to direct human action, up to 70% of the world's coastal wetlands could be lost by the 2080s, although there is considerable uncertainty. Therefore, sea-level rise would reinforce other adverse trends of wetland loss. The largest losses due to sea-level rise will be around the Mediterranean and Baltic and to a lesser extent on the Atlantic coast of Central and North America and the smaller islands of the Caribbean. Collectively, these results show that a relatively small global rise in sea level could have significant adverse impacts if there is no adaptive response. Given the “commitment to sea-level rise” irrespective of any realistic future emissions policy, there is a need to start strategic planning of appropriate responses now. Given that coastal flooding and wetland loss are already important problems, such planning could have immediate benefits.  相似文献   

6.
Storm surges and wind waves in the Taganrog Bay (the Sea of Azov) are simulated with the ADCIRC+SWAN numerical model, and the mechanisms of the Don River delta flooding are analyzed. It is demonstrated that the most intensive flooding of the Don River delta occurs in case of southwestern wind with the speed of not less than 15 m/s. A storm surge leads to the intensification of wind waves in the whole Taganrog Bay due to the general sea level rise. As a result, the significant wave height near the Don River delta increases by 0.5–0.6 m.  相似文献   

7.
Belmadani  Ali  Dalphinet  Alice  Chauvin  Fabrice  Pilon  Romain  Palany  Philippe 《Climate Dynamics》2021,56(11):3687-3708

Tropical cyclones are a major hazard for numerous countries surrounding the tropical-to-subtropical North Atlantic sub-basin including the Caribbean Sea and Gulf of Mexico. Their intense winds, which can exceed 300 km h−1, can cause serious damage, particularly along coastlines where the combined action of waves, currents and low atmospheric pressure leads to storm surge and coastal flooding. This work presents future projections of North Atlantic tropical cyclone-related wave climate. A new configuration of the ARPEGE-Climat global atmospheric model on a stretched grid reaching ~ 14 km resolution to the north-east of the eastern Caribbean is able to reproduce the distribution of tropical cyclone winds, including Category 5 hurricanes. Historical (1984–2013, 5 members) and future (2051–2080, 5 members) simulations with the IPCC RCP8.5 scenario are used to drive the MFWAM (Météo-France Wave Action Model) spectral wave model over the Atlantic basin during the hurricane season. An intermediate 50-km resolution grid is used to propagate mid-latitude swells into a higher 10-km resolution grid over the tropical cyclone main development region. Wave model performance is evaluated over the historical period with the ERA5 reanalysis and satellite altimetry data. Future projections exhibit a modest but widespread reduction in seasonal mean wave heights in response to weakening subtropical anticyclone, yet marked increases in tropical cyclone-related wind sea and extreme wave heights within a large region extending from the African coasts to the North American continent.

  相似文献   

8.
What could happen to the Netherlands if, in 2030, the sea level starts to rise and eventually, after 100 years, a sea level of 5 m above current level would be reached? This question is addressed by studying literature, by interviewing experts in widely differing fields, and by holding an expert workshop on this question. Although most experts believe that geomorphology and current engineering skills would enable the country to largely maintain its territorial integrity, there are reasons to assume that this is not likely to happen. Social processes that precede important political decisions – such as the growth of the belief in the reality of sea level rise and the framing of such decisions in a proper political context (policy window) – evolve slowly. A flood disaster would speed up the decision-making process. The shared opinion of the experts surveyed is that eventually part of the Netherlands would be abandoned.  相似文献   

9.
The sea level history of the northern Gulf of Mexico during recent geologic time has closely followed global eustatic sea level change. Regional effects due to tectonics and glacio-isostasy have been minimal. Over the past several million years the northern Gulf coast, like most stable coastal regions of the globe, has experienced major swings of sea level below and above present level, accompanied by major shifts in shoreline position. During advances of the northern hemisphere ice sheets, sea level dropped by more than 100 m, extending the shoreline in places more than 100 km onto the shelf. For much of the period since the last glacial maximum (LGM), 20,000 years ago, the region has seen rates of sea level rise far in excess of those experienced during the period represented by long-term tide gauges. The regional tide gauge record reveals that sea level has been rising at about 2 mm/year for the past century, while the average rate of rise since the LGM has been 6 mm/year, with some periods of abrupt rise exceeding 40 mm/year. During times of abrupt rise, Gulf of Mexico shorelines were drowned in place and overstepped. The relative stability of modern coastal systems is due primarily to stabilization of sea level approximately 6,000 years ago, resulting in the slow rates of rise experienced during historic time. Recent model projections of sea level rise over the next century and beyond may move northern Gulf coastal environments into a new equilibrium regime, more similar to that experienced during the deglaciation than that which has existed during historic time.  相似文献   

10.
Water resource management in South Florida faces nearly intractable problems, in part due to weather and climate variability. Rising sea level and coastal storm surge are two phenomena with significant impacts on natural systems, fresh water supplies and flood drainage capability. However, decision support information regarding management of water resources in response to storm surge is not well developed. In an effort to address this need we analyze long term tidal records from Key West, Pensacola and Mayport Florida to extract surge distributions, to which we apply a nonlinear eustatic sea level rise model to project storm surge return levels and periods. Examination of climate connections reveals a statistically significant dependence between surge distributions and the Atlantic Multidecadal Oscillation (AMO). Based on a recent probabilistic model for AMO phase changes, we develop AMO-dependent surge distributions. These AMO-dependent surge projections are used to examine the flood control response of a coastal water management structure as an example of how climate dependent water resource forcings can be used in the formulation of decision support tools.  相似文献   

11.
Projections by the Intergovernmental Panel on Climate Change suggest that there will be an increase in the frequency and intensity of climate extremes in the 21st century. Kolkata, a megacity in India, has been singled out as one of the urban centers vulnerable to climate risks. Modest flooding during monsoons at high tide in the Hooghly River is a recurring hazard in Kolkata. More intense rainfall, riverine flooding, sea level rise, and coastal storm surges in a changing climate can lead to widespread and severe flooding and bring the city to a standstill for several days. Using rainfall data, high and low emissions scenarios, and sea level rise of 27 cm by 2050, this paper assesses the vulnerability of Kolkata to increasingly intense precipitation events for return periods of 30, 50, and 100 years. It makes location-specific inundation depth and duration projections using hydrological, hydraulic, and urban storm models with geographic overlays. High resolution spatial analysis provides a roadmap for designing adaptation schemes to minimize the impacts of climate change. The modeling results show that de-silting of the main sewers would reduce vulnerable population estimates by at least 5 %.  相似文献   

12.
In the fall of 2009 the City of Satellite Beach (City), Florida, authorized a study designed to assess municipal vulnerability to rising sea level and facilitate discussion of potential adaptation strategies. The project is one of the first in Florida to seriously address the potential consequences of global sea level rise, now forecast to rise a meter or more by the year 2100. Results suggest the tipping point between relatively benign impacts and those that disrupt important elements of the municipal landscape is +?2 ft (0.6 m) above present. Seasonal flooding to an elevation of +?2 ft is forecast to begin around 2050 and thus the City has about 40 years to formulate and implement an adaptation plan. As an initial step, the Comprehensive Planning Advisory Board, a volunteer citizen committee serving as the City??s local planning authority, has recommended a series of updates and revisions to the City??s Comprehensive Plan. If approved by the City Council and Florida??s Department of Community Affairs, the amendments will provide a legal basis for implementing specific policies designed to reduce the City??s vulnerability to sea level rise.  相似文献   

13.
Estimates of future flood hazards made under the assumption of stationary mean sea level are biased low due to sea-level rise (SLR). However, adjustments to flood return levels made assuming fixed increases of sea level are also inadequate when applied to sea level that is rising over time at an uncertain rate. SLR allowances—the height adjustment from historic flood levels that maintain under uncertainty the annual expected probability of flooding—are typically estimated independently of individual decision-makers’ preferences, such as time horizon, risk tolerance, and confidence in SLR projections. We provide a framework of SLR allowances that employs complete probability distributions of local SLR and a range of user-defined flood risk management preferences. Given non-stationary and uncertain sea-level rise, these metrics provide estimates of flood protection heights and offsets for different planning horizons in coastal areas. We illustrate the calculation of various allowance types for a set of long-duration tide gauges along U.S. coastlines.  相似文献   

14.
We investigate the effects of Hurricane Wilma??s storm surge (23?C24 October 2005) on the dominant tree Pinus elliottii var densa (South Florida slash pine) and rare plant species in subtropical pine rocklands of the Lower Florida Keys. We examine the role of elevation on species abundance in 1995 (Hurricane Betsy in 1965), 2005 (Hurricane Georges in 1998), and 2008 (Hurricane Wilma in 2005) to investigate if hurricanes influence abundance by eliminating plants at lower elevation on Big Pine Key, the largest island in the Lower Florida Keys. We compare densities before and after Hurricane Wilma over the 2005?C2008 sampling period and examine the role of elevation on changes in pine and rare species densities three years after Hurricane Wilma. We use elevation to assess the impact of hurricanes because elevation determined whether a location was influenced by storm surge (maximum surge of 2 m) in the Lower Florida Keys, where pine rocklands occur at a maximum elevation of 3 m. In 1995 (30 years after a major storm), elevation did not explain the abundance of South Florida slash pine or Chamaecrista lineata, but explained significant variation in abundance of Chamaesyce deltoidea. The latter two species are rare herbaceous plants restricted to pine rocklands. In 2008, 3 years after Hurricane Wilma, the positive relationship between elevation and abundance was strongest for South Florida slash pine, C. deltoidea, and C. lineata. Effects of Hurricane Wilma were not significant for rare species with wider distribution, occurring in plant communities adjacent to pine rocklands and in disturbed rocklands. Our results suggest that hurricanes drive population dynamics of South Florida slash pine and rare species that occur exclusively in pine rocklands at higher elevations. Rare species restricted to pine rocklands showed dramatic declines after Hurricane Wilma and were eliminated at elevations <0.5 m. Widely distributed rare species did not show significant changes in density after Hurricane Wilma. Abundance increased with elevation for South Florida slash pine and C. lineata after the hurricane. In an environment influenced by sea level rise, concrete plans to conserve pine ecosystems are warranted. Results from this study will help define conservation strategies by strengthening predictive understanding of plant responses to disturbance in the backdrop of sea level rise.  相似文献   

15.
Shanghai is a low-lying city (3–4?m elevation) surrounded on three sides by the East China Sea, the Yangtze River Estuary, and Hangzhou Bay. With a history of rapid changes in sea level and land subsidence, Shanghai is often plagued by extreme typhoon storm surges. The interaction of sea level rise, land subsidence, and storm surges may lead to more complex, variable, and abrupt disasters. In this paper, we used MIKE 21 models to simulate the combined effect of this disaster chain in Shanghai. Projections indicate that the sea level will rise 86.6?mm, 185.6?mm, and 433.1?mm by 2030, 2050, and 2100, respectively. Anthropogenic subsidence is a serious problem. The maximum annual subsidence rate is 24.12?mm/year. By 2100, half of Shanghai is projected to be flooded, and 46?% of the seawalls and levees are projected to be overtopped. The risk of flooding is closely related to the impact of land subsidence on the height of existing seawalls and levees. Land subsidence increases the need for flood control measures in Shanghai.  相似文献   

16.
Projected 21st-century changes to Arctic marine access   总被引:1,自引:0,他引:1  
Climate models project continued Arctic sea ice reductions with nearly ice-free summer conditions by the mid-21st century. However, how such reductions will realistically enable marine access is not well understood, especially considering a range of climatic scenarios and ship types. We present 21st century projections of technical shipping accessibility for circumpolar and national scales, the international high seas, and three potential navigation routes. Projections of marine access are based on monthly and daily CCSM4 sea ice concentration and thickness simulations for 2011–2030, 2046–2065, and 2080–2099 under 4.5, 6.0, and 8.5 W/m2 radiative forcing scenarios. Results suggest substantial areas of the Arctic will become newly accessible to Polar Class 3, Polar Class 6, and open-water vessels, rising from ~54 %, 36 %, and 23 %, respectively of the circumpolar International Maritime Organization Guidelines Boundary area in the late 20th century to ~95 %, 78 %, and 49 %, respectively by the late 21st century. Of the five Arctic Ocean coastal states, Russia experiences the greatest percentage access increases to its exclusive economic zone, followed by Greenland/Denmark, Norway, Canada and the U.S. Along the Northern Sea Route, July-October navigation season length averages ~120, 113, and 103 days for PC3, PC6, and OW vessels, respectively by late-century, with shorter seasons but substantial increases along the Northwest Passage and Trans-Polar Route. While Arctic navigation depends on other factors besides sea ice including economics, infrastructure, bathymetry, and weather, these projections are useful for strategic planning by governments, regulatory agencies, and the global maritime industry to assess spatial and temporal ranges of potential Arctic marine operations in the coming decades.  相似文献   

17.
While current rates of sea level rise and associated coastal flooding in the New York City region appear to be manageable by stakeholders responsible for communications, energy, transportation, and water infrastructure, projections for sea level rise and associated flooding in the future, especially those associated with rapid icemelt of the Greenland and West Antarctic Icesheets, may be outside the range of current capacity because extreme events might cause flooding beyond today??s planning and preparedness regimes. This paper describes the comprehensive process, approach, and tools for adaptation developed by the New York City Panel on Climate Change (NPCC) in conjunction with the region??s stakeholders who manage its critical infrastructure, much of which lies near the coast. It presents the adaptation framework and the sea-level rise and storm projections related to coastal risks developed through the stakeholder process. Climate change adaptation planning in New York City is characterized by a multi-jurisdictional stakeholder?Cscientist process, state-of-the-art scientific projections and mapping, and development of adaptation strategies based on a risk-management approach.  相似文献   

18.
This study illustrates a methodology to assess the economic impacts of climate change at a city scale and benefits of adaptation, taking the case of sea level rise and storm surge risk in the city of Copenhagen, capital of Denmark. The approach is a simplified catastrophe risk assessment, to calculate the direct costs of storm surges under scenarios of sea level rise, coupled to an economic input–output (IO) model. The output is a risk assessment of the direct and indirect economic impacts of storm surge under climate change, including, for example, production and job losses and reconstruction duration, and the benefits of investment in upgraded sea defences. The simplified catastrophe risk assessment entails a statistical analysis of storm surge characteristics, geographical-information analysis of population and asset exposure combined with aggregated vulnerability information. For the city of Copenhagen, it is found that in absence of adaptation, sea level rise would significantly increase flood risks. Results call for the introduction of adaptation in long-term urban planning, as one part of a comprehensive strategy to manage the implications of climate change in the city. Mitigation policies can also aid adaptation by limiting the pace of future sea level rise.  相似文献   

19.
This paper presents a preliminary assessment of the relative effects of rate of climate change (four Representative Concentration Pathways - RCPs), assumed future population (five Shared Socio-economic Pathways - SSPs), and pattern of climate change (19 CMIP5 climate models) on regional and global exposure to water resources stress and river flooding. Uncertainty in projected future impacts of climate change on exposure to water stress and river flooding is dominated by uncertainty in the projected spatial and seasonal pattern of change in climate. There is little clear difference in impact between RCP2.6, RCP4.5 and RCP6.0 in 2050, and between RCP4.5 and RCP6.0 in 2080. Impacts under RCP8.5 are greater than under the other RCPs in 2050 and 2080. For a given RCP, there is a difference in the absolute numbers of people exposed to increased water resources stress or increased river flood frequency between the five SSPs. With the ‘middle-of-the-road’ SSP2, climate change by 2050 would increase exposure to water resources stress for between approximately 920 and 3,400 million people under the highest RCP, and increase exposure to river flood risk for between 100 and 580 million people. Under RCP2.6, exposure to increased water scarcity would be reduced in 2050 by 22-24 %, compared to impacts under the RCP8.5, and exposure to increased flood frequency would be reduced by around 16 %. The implications of climate change for actual future losses and adaptation depend not only on the numbers of people exposed to changes in risk, but also on the qualitative characteristics of future worlds as described in the different SSPs. The difference in ‘actual’ impact between SSPs will therefore be greater than the differences in numbers of people exposed to impact.  相似文献   

20.
Risk policy and public attitudes appear disconnected from research predicting warmer climate partially due to human activity. To step out of this stalled situation, a worst case scenario of a 5- to 6-m sea level rise (SLR) induced by the collapse of the WAIS and occurring during the period 2030–2130 is constructed and applied to the Rhone delta. Physical and socio-economic scenarios developed with data from the Rhone delta context are developed and submitted to stakeholders for a day-long workshop. Group process analysis shows a high level of trust and cooperation mobilized to face the 5–6 m SLR issue, despite potentially diverging interests. Two sets of recommendations stem from the scenario workshop. A conservative “wait and see” option is decided when the risk of the WAIS collapse is announced in 2030. After WAIS collapse generates an effective 1 m SLR rise by 2050, decisions are taken for total retreat and rendering of the Rhone delta to its hydrological function. The transposition of these results into present-day policy decisions could be considered. The methodology developed here could be applied to other risk objects and situations, and serve for policy exercises and crisis prevention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号