首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
We describe and analyze the results of the third global energy and water cycle experiment atmospheric boundary layer Study intercomparison and evaluation study for single-column models. Each of the nineteen participating models was operated with its own physics package, including land-surface, radiation and turbulent mixing schemes, for a full diurnal cycle selected from the Cabauw observatory archive. By carefully prescribing the temporal evolution of the forcings on the vertical column, the models could be evaluated against observations. We focus on the gross features of the stable boundary layer (SBL), such as the onset of evening momentum decoupling, the 2-m minimum temperature, the evolution of the inertial oscillation and the morning transition. New process diagrams are introduced to interpret the variety of model results and the relative importance of processes in the SBL; the diagrams include the results of a number of sensitivity runs performed with one of the models. The models are characterized in terms of thermal coupling to the soil, longwave radiation and turbulent mixing. It is shown that differences in longwave radiation schemes among the models have only a small effect on the simulations; however, there are significant variations in downward radiation due to different boundary-layer profiles of temperature and humidity. The differences in modelled thermal coupling to the land surface are large and explain most of the variations in 2-m air temperature and longwave incoming radiation among models. Models with strong turbulent mixing overestimate the boundary-layer height, underestimate the wind speed at 200 m, and give a relatively large downward sensible heat flux. The result is that 2-m air temperature is relatively insensitive to turbulent mixing intensity. Evening transition times spread 1.5 h around the observed time of transition, with later transitions for models with coarse resolution. Time of onset in the morning transition spreads 2 h around the observed transition time. With this case, the morning transition appeared to be difficult to study, no relation could be found between the studied processes, and the variation in the time of the morning transition among the models.  相似文献   

2.
It is well known that the sum of the turbulent sensible and latent heat fluxes as measured by the eddy-covariance method is systematically lower than the available energy (i.e., the net radiation minus the ground heat flux). We examine the separate and joint effects of diurnal and spatial variations of surface temperature on this flux imbalance in a dry convective boundary layer using the Weather Research and Forecasting model. Results show that, over homogeneous surfaces, the flux due to turbulent-organized structures is responsible for the imbalance, whereas over heterogeneous surfaces, the flux due to mesoscale or secondary circulations is the main contributor to the imbalance. Over homogeneous surfaces, the flux imbalance in free convective conditions exhibits a clear diurnal cycle, showing that the flux-imbalance magnitude slowly decreases during the morning period and rapidly increases during the afternoon period. However, in shear convective conditions, the flux-imbalance magnitude is much smaller, but slightly increases with time. The flux imbalance over heterogeneous surfaces exhibits a diurnal cycle under both free and shear convective conditions, which is similar to that over homogeneous surfaces in free convective conditions, and is also consistent with the general trend in the global observations. The rapid increase in the flux-imbalance magnitude during the afternoon period is mainly caused by the afternoon decay of the turbulent kinetic energy (TKE). Interestingly, over heterogeneous surfaces, the flux imbalance is linearly related to the TKE and the difference between the potential temperature and surface temperature, ΔT; the larger the TKE and ΔT values, the smaller the flux-imbalance magnitude.  相似文献   

3.
We investigate the impact of observed surface heterogeneities during the LITFASS-2003 experiment on the convective boundary layer (CBL). Large-eddy simulations (LES), driven by observed near-surface sensible and latent heat fluxes, were performed for the diurnal cycle and compare well with observations. As in former studies of idealized one- and two-dimensional heterogeneities, secondary circulations developed that are superimposed on the turbulent field and that partly take over the vertical transport of heat and moisture. The secondary circulation patterns vary between local and roll-like structures, depending on the background wind conditions. For higher background wind speeds, the flow feels an effective surface heat-flux pattern that derives from the original pattern by streamwise averaging. This effective pattern generates a roll-like secondary circulation with roll axes along the mean boundary-layer wind direction. Mainly the upstream surface conditions control the secondary circulation pattern, where the fetch increases with increasing background wind speed. Unlike the entrainment flux that appears to be slightly decreased compared to the homogeneously-heated CBL, the vertical flux of sensible heat appears not to be modified in the mixed layer, while the vertical flux of latent heat shows different responses to secondary circulations. The study illustrates that sufficient time averaging and ensemble averaging is required to separate the heterogeneity-induced signals from the raw LES turbulence data. This might be an important reason why experiments over heterogeneous terrain in the past did not give any clear evidence of heterogeneity-induced effects.  相似文献   

4.
As part of the EUropean Cloud REsolving Modelling (EUCREM) model intercomparison project we compared the properties and development of stratocumulus as revealed by actual observations and as derived from two types of models, namely three-dimensional Large Eddy Simulations (LES) and one-dimensional Single Column Models (SCMs). The turbulence, microphysical and radiation properties were obtained from observations made in solid stratocumulus during the third flight of the first 'Lagrangian' experiment of the Atlantic Stratocumulus Transition Experiment (ASTEX). The goal of the intercomparison was to study the turbulence and microphysical properties of a stratocumulus layer with specified initial and boundary conditions.The LES models predict an entrainment velocity which is significantly larger than estimated from observations. Because the observed value contains a large experimental uncertainty no definitive conclusions can be drawn from this. The LES modelled buoyancy flux agrees rather well with the observed values, which indicates that the intensity of the convection is modelled correctly. From LES it was concluded that the inclusion of drizzle had a small influence (about 10%) on the buoyancy flux. All SCMs predict a solid stratocumulus layer with the correct liquid water profile. However, the buoyancy flux profile is poorly represented in these models. From the comparison with observations it is clear that there is considerable uncertainty in the parametrization of drizzle in both SCM and LES.  相似文献   

5.
At present a variety of boundary-layer schemes is in use in numerical models and often a large variation of model results is found. This is clear from model intercomparisons, such as organized within the GEWEX Atmospheric Boundary Layer Study (GABLS). In this paper we analyze how the specification of the land-surface temperature affects the results of a boundary-layer scheme, in particular for stable conditions. As such we use a well established column model of the boundary layer and we vary relevant parameters in the turbulence scheme for stable conditions. By doing so, we can reproduce the outcome for a variety of boundary-layer models. This is illustrated with the original set-up of the second GABLS intercomparison study using prescribed geostrophic winds and land-surface temperatures as inspired by (but not identical to) observations of CASES-99 for a period of more than two diurnal cycles. The model runs are repeated using a surface temperature that is calculated with a simple land-surface scheme. In the latter case, it is found that the range of model results in stable conditions is reduced for the sensible heat fluxes, and the profiles of potential temperature and wind speed. However, in the latter case the modelled surface temperatures are rather different than with the original set-up, which also impacts on near-surface air temperature and wind speed. As such it appears that the model results in stable conditions are strongly influenced by non-linear feedbacks in which the magnitude of the geostrophic wind speed and the related land-surface temperature play an important role.  相似文献   

6.
原韦华 《大气科学进展》2013,30(6):1679-1694
Atmospheric Intercomparison Project simulations of the summertime diurnal cycle of precipitation and low-level winds over subtropical China by Intergovernmental Panel on Climate Change Fifth Assessment Report models were evaluated. By analyzing the diurnal variation of convective and stratiform components, results confirmed that major biases in rainfall diurnal cycles over subtropical China are due to convection parameterization and further pointed to the diurnal variation of convective rainfall being closely related to the closure of the convective scheme. All models captured the early-morning peak of total rainfall over the East China Sea, but most models had problems in simulating diurnal rainfall variations over land areas of subtropical China. When total rainfall was divided into stratiform and convective rainfall, all models successfully simulated the diurnal variation of stratiform rainfall with a maximum in the early morning. The models, overestimating noon-time (nocturnal) total rainfall over land, generally simulated too much convective rainfall, which peaked close to noon (midnight), sharing some similarities in the closures of their deep convection schemes. The better performance of the Meteorological Research Institute atmospherer. ocean coupled global climate model version 3 (MRI-CGCM3) is attributed to the well captured ratio of the two kinds of rainfall, but not diurnal variations of the two components. Therefore, a proper ratio of convective and stratiform rainfall to total rainfall is also important to improve simulated diurnal rainfall variation.  相似文献   

7.
The mixing-layer height is estimated using measurements from a high resolution surface-layer sodar run at the French-Italian station of Concordia at Dome C, Antarctica during the summer 2011–2012. The temporal and spatial resolution of the sodar allows the monitoring of the mixing-layer evolution during the whole diurnal cycle, i.e. a very shallow nocturnal boundary layer followed by a typical daytime growth. The behaviour of the summer mixing-layer height, variable between about 10- and 300 m, is analyzed as a function of the mean and turbulent structure of the boundary layer. Focusing on convective cases only, the retrieved values are compared with those calculated using a one-dimensional prognostic equation. The role of subsidence is examined and discussed. We show that the agreement between modelled and experimental values significantly increases if the subsidence is not kept fixed during the day. A simple diagnostic equation, which depends on the time-averaged integral of the near-surface turbulent heat flux, the background static stability and the buoyancy parameter, is proposed and evaluated. The diagnostic relation performance is comparable to that of the more sophisticated prognostic model.  相似文献   

8.
In large-eddy simulations (LES) of the atmospheric boundary layer (ABL), near-surface models are often used to supplement subgrid-scale (SGS) turbulent stresses when a major fraction of the energetic scales within the surface layer cannot be resolved with the temporal and spatial resolution at hand. In this study, we investigate the performance of both dynamic and non-dynamic eddy viscosity models coupled with near-surface models in simulations of a neutrally stratified ABL. Two near-surface models that are commonly used in LES of the atmospheric boundary layer are considered. Additionally, a hybrid Reynolds- averaged/LES eddy viscosity model is presented, which uses Prandtl’s mixing length model in the vicinity of the surface, and blends in with the dynamic Smagorinsky model away from the surface. Present simulations show that significant portions of the modelled turbulent stresses are generated by the near-surface models, and they play a dominant role in capturing the expected logarithmic wind profile. Visualizations of the instantaneous vorticity field reveal that flow structures in the vicinity of the surface depend on the choice of the near-surface model. Among the three near-surface models studied, the hybrid eddy viscosity model gives the closest agreement with the logarithmic wind profile in the surface layer. It is also observed that high levels of resolved turbulence stresses can be maintained with the so-called canopy stress model while producing good agreement with the logarithmic wind profile.  相似文献   

9.
Six years of observations from a surface instrument site have been analysed to determine timings and factors influencing developmental changes in the near-surface wind and turbulent heat fluxes during the morning heating of the atmospheric boundary layer. A simple relationship has been found between near-surface wind speed and screen temperature, together with a predictive equation for the morning transition air temperature. Profile measurements from a probe mounted on a tethered balloon have beenused to supplement the surface data and study the processes underlying these surface relationships. The results have confirmed earlier work and have shown that both before and immediately after morning transition, almost all heating in the surface layer is due to turbulent diffusion from above. In order to explain the mechanisms involved in the relationships, a simple finite difference model has been run and validated against the profile data. The model predictions are compared with observations during both the morning and evening and the differences related to the different temperature profiles. Numerical forecasting rules for the surface wind speed and transition temperature are derived from the results.  相似文献   

10.
塔克拉玛干沙漠腹地大气边界层参数化方案的模拟评估   总被引:1,自引:0,他引:1  
沙尘起沙、沉降、传输均受到沙漠地区大气边界层条件的制约。沙漠地区观测资料匮乏,限制大气边界层模拟效果的检验和评估。利用WRFV3.7.1中尺度数值模式中5种边界层参数化方案(ACM2、BL、MYJ、MYNN2.5、YSU),模拟2014年4月塔克拉玛干沙漠大气边界层特征,并与塔中80 m塔及风廓线雷达晴朗天气下的观测资料对比分析。结果表明:5种方案均能模拟出近地面气温及地表温度,边界层高度,感热、潜热、地表热通量的变化趋势,但未能模拟出边界层风速的日变化趋势,温风湿廓线能较好的反映晴日沙漠地区边界层结构的变化特征,但未模拟出风速随高度变化趋势。沙漠地区下垫面干燥,热容量低,晴天极易形成对流不稳定边界层,非局地湍流参数化方案,ACM2方案是沙漠地区大气边界层模拟较为合理的选择。  相似文献   

11.
We evaluated the performance of the three-dimensional Weather Research and Forecasting (WRF) mesoscale model, specifically the performance of the planetary boundary-layer (PBL) parametrizations. For this purpose, Cabauw tower observations were used, with the study extending beyond the third GEWEX Atmospheric Boundary-Layer Study (GABLS3) one-dimensional model intercomparison. The WRF model (version 3.4.1) contains 12 different PBL parametrizations, most of which have been only partially evaluated. The GABLS3 case offers a clear opportunity to evaluate model performance, focusing on time series of near-surface weather variables, radiation and surface flux budgets, vertical structure and the nighttime inertial oscillation. The model results revealed substantial differences between the PBL schemes. Generally, non-local schemes tend to produce higher temperatures and higher wind speeds than local schemes, in particular, for nighttime. The WRF model underestimates the 2-m temperature during daytime (about \(2\) K) and substantially underestimates it at night (about \(4\) K), in contrast to the previous studies where modelled 2-m temperature was overestimated. Considering the 10-m wind speed, during the night turbulent kinetic energy based schemes tend to produce lower wind speeds than other schemes. In all simulations the sensible and latent heat fluxes were well reproduced. For the net radiation and the soil heat flux we found good agreement with daytime observations but underestimations at night. Concerning the vertical profiles, the selected non-local PBL schemes underestimate the PBL depth and the low-level jet altitude at night by about 50 m, although with the correct wind speed. The latter contradicts most previous studies and can be attributed to the revised stability function in the Yonsei University PBL scheme. The local, turbulent kinetic energy based PBL schemes estimated the low-level jet altitude and strength more accurately. Compared to the observations, all model simulations show a similar structure for the potential temperature, with a consistent cold bias ( \(\approx \) 2 K) in the upper PBL. In addition to the sensitivity to the PBL schemes, we studied the sensitivity to technical features such as horizontal resolution and domain size. We found a substantial difference in the model performance for a range of 12, 18 and 24 h spin-up times, longer spin-up time decreased the modelled wind speed bias, but it strengthened the negative temperature bias. The sensitivity of the model to the vertical resolution of the input and boundary conditions on the model performance is confirmed, and its influence appeared most significant for the non-local PBL parametrizations.  相似文献   

12.
Microphysical and radiative effects of ice clouds on diurnal variations of tropical convective and stratiform rainfall are examined with the equilibrium simulation data from three experiments conducted with a two-dimensional cloud resolving model with imposed temporally and zonally invariant winds and sea surface temperature and zero mean vertical velocity. The experiment without ice radiative effects is compared with the control experiment with ice microphysics (both the ice radiative and microphysical effects) to study effects of ice radiative effects on diurnal rainfall variations whereas it is compared with the experiment without ice microphysics to examine ice microphysical effects on the diurnal rainfall variations. The ice radiative processes mainly affect diurnal cycle of convective rainfall whereas the ice microphysical processes have important impacts on the diurnal cycles of both convective and stratiform rainfall. Turning off the ice radiative effects generally enhances convective rainfall during the morning and evening and suppresses convective rainfall in the afternoon whereas turning off the ice microphysical effects generally suppresses convective and stratiform rainfall during the morning and enhances convective and stratiform rainfall in the afternoon and evening. The ice radiative and microphysical effects on the diurnal cycle of surface rainfall are mainly associated with that of vapor condensation and deposition, which is controlled by air temperature through saturation specific humidity. The ice effects on the diurnal cycle of local temperature tendency are largely explained by that of latent heating since the diurnal cycle of radiation is insensitive to the ice effects.  相似文献   

13.
A major factor that influences the diurnal variation of turbulent kinetic energy (TKE) is the sensible heat flux at the surface. Here, the TKE variations are analysed during the morning transition phase because subsequent to the neutral or stable stratification during the night, peaks of concentration of scalars develop. The characteristics of the TKE during the growth phase of convection are analysed with the help of two analytical models. For this purpose, a three-dimensional spectral model of the growth of convection, starting from a neutral layer, and other formulations of micrometeorological parameters such as the convective and neutral spectra, velocity variance and dissipation rates are utilised. The peak values in the TKE spectra in the lower, middle and upper levels of the convective boundary layer showed a migration to higher wavelengths as the convection increased with time. The TKE evolutions generated by the analytical models agree fairly well with the results of large-eddy simulation for three vertical levels.  相似文献   

14.
The wake characteristics of a wind turbine for different regimes occurring throughout the diurnal cycle are investigated systematically by means of large-eddy simulation. Idealized diurnal cycle simulations of the atmospheric boundary layer are performed with the geophysical flow solver EULAG over both homogeneous and heterogeneous terrain. Under homogeneous conditions, the diurnal cycle significantly affects the low-level wind shear and atmospheric turbulence. A strong vertical wind shear and veering with height occur in the nocturnal stable boundary layer and in the morning boundary layer, whereas atmospheric turbulence is much larger in the convective boundary layer and in the evening boundary layer. The increased shear under heterogeneous conditions changes these wind characteristics, counteracting the formation of the night-time Ekman spiral. The convective, stable, evening, and morning regimes of the atmospheric boundary layer over a homogeneous surface as well as the convective and stable regimes over a heterogeneous surface are used to study the flow in a wind-turbine wake. Synchronized turbulent inflow data from the idealized atmospheric boundary-layer simulations with periodic horizontal boundary conditions are applied to the wind-turbine simulations with open streamwise boundary conditions. The resulting wake is strongly influenced by the stability of the atmosphere. In both cases, the flow in the wake recovers more rapidly under convective conditions during the day than under stable conditions at night. The simulated wakes produced for the night-time situation completely differ between heterogeneous and homogeneous surface conditions. The wake characteristics of the transitional periods are influenced by the flow regime prior to the transition. Furthermore, there are different wake deflections over the height of the rotor, which reflect the incoming wind direction.  相似文献   

15.
Observational data and simulations of the regional climate system Baltic integrated model system (BALTIMOS) were used to study precipitation in the Baltic Sea and its drainage basin with a special focus on the diurnal cycle. The study includes a general evaluation of BALTIMOS precipitation, showing that BALTIMOS has too many light rain events causing an overestimation of the total annual precipitation amount. The diurnal cycle as well as its spatial distribution was analysed. BALTIMOS captures the broad characteristics: a significant diurnal variability with an afternoon peak above land and weak variability with a nocturnal peak above sea. An algorithm to distinguish between frontal and convective precipitation was applied to examine the diurnal cycle more thoroughly. The local solar time of maximum rain in summer is about 1 to 2 h earlier in BALTIMOS than in radar observations of precipitation.  相似文献   

16.
In continental areas, the maximum rainfall simulated with the Brazilian developments on the Regional Atmospheric Modeling System (BRAMS) occurs around 4?h earlier than the one observed with rain gauges. This work presents the successful implementation of a new convective trigger function (CTF) in the convective parameterization scheme used in BRAMS that corrects this misfit between model and observations. The importance of the CTF formulation on the diurnal cycle of rainfall over the Amazon Basin is reflected by the following numbers: Over Rondonia (SW Amazonia), the original version of BRAMS simulates the maximum rainfall at 1400 UTC (1000 LST), with the new CTF maximum shifting to 1800?UTC (1400?LST), while the S-band radar rainfall maximum is at 1900?UTC (1500?LST). This is attributed to two factors: (1) the new CTF is now coupled to the sensible and latent heat fluxes at surface; (2) during the early morning, the convective available potential energy is reduced.  相似文献   

17.
边界层参数化方案在“灰色区域”尺度下的适用性评估   总被引:2,自引:0,他引:2  
随着数值预报模式分辨率的提高,当模式网格距与含能湍涡的长度尺度相当时,模式动力过程可解析一部分湍流运动,而剩余的湍流运动仍需参数化,此时便产生了湍流参数化的“灰色区域”问题。对传统的PBL(Planetary Boundary Layer)方案在“灰色区域”下的适用性评估,是改进PBL方案以使其能够适应分辨率变化的前提和基础。本研究基于干对流边界层的大涡模拟试验,比较了WRF(Weather Research and Forecast Model)模式中四种常用的边界层参数化方案[YSU(Yonsei University)、MYJ(Mellor-Yamada-Janjic)、MYNN2.5(Mellor-Yamada-Nakanishi-Niino Level 2.5)、MYNN3)]在“灰色区域”尺度下的表现。研究表明,混合层内总热通量对所使用的参数化方案和水平分辨率均不敏感。不同参数化方案中次网格与网格通量的比例表现出对水平网格距不同的依赖性。局地PBL方案(MYJ、MYNN2.5)在混合层内的平均位温随网格距减小而增大,次网格通量随网格距减小而减小,较参考湍流场对次网格通量有所低估。YSU方案的非局地项几乎不随水平格距改变而变化,对次网格通量的表征并未表现出较强的分辨率依赖性,且过强的非局地次网格输送使混合层内温度层结呈弱稳定,抑制了可分辨湍流输送,不易于激发次级环流。MYNN3方案的非局地次网格通量(负梯度输送项)随网格距减小而减小,使其对次网格通量的表征具有较好的分辨率依赖性。PBL方案在“灰色区域”尺度下的适用性与具体分辨率有关。以分辨率500 m为例,四种PBL方案中不存在一种最佳方案,能对边界层的热力结构和湍流统计特征均有准确的描述。  相似文献   

18.
A large-eddy simulation (LES) study is presented that investigates the spatial variability of temporal eddy covariance fluxes and the systematic underestimation of representative fluxes linked to them. It extends a prior numerical study by performing high resolution simulations that allow for virtual measurements down to 20 m in a convective boundary layer, so that conditions for small tower measurement sites can be analysed. It accounts for different convective regimes as the wind speed and the near-surface heat flux are varied. Moreover, it is the first LES imbalance study that extends to the stable boundary layer. It reveals shortcomings of single site measurements and the necessity of using horizontally-distributed observation networks. The imbalances in the convective case are attributed to a locally non-vanishing mean vertical advection due to turbulent organised structures (TOS). The strength of the TOS and thus the imbalance magnitude depends on height, the horizontal mean wind and the convection type. Contrary to the results of a prior study, TOS cannot generally be responsible for large energy imbalances: at low observation heights (corresponding to small towers and near-surface energy balance stations) the TOS related imbalances are generally about one order of magnitude smaller than those in field experiments. However, TOS may cause large imbalances at large towers not only in the case of cellular convection and low wind speeds, as found in the previous study, but also in the case of roll convection at large wind speeds. In the stably stratified boundary layer for all observation heights neither TOS nor significant imbalances are observed. Attempting to reduce imbalances in convective situations by applying the conventional linear detrending method increases the systematic flux underestimation. Thus, a new filter method is proposed.  相似文献   

19.
The South American low level jet (SALLJ) of the Eastern Andes is investigated with Regional Climate Model version 3 (RegCM3) simulations during the 2002–2003 austral summer using two convective parameterizations (Grell and Emanuel). The simulated SALLJ is compared with the special observations of SALLJEX (SALLJ Experiment). Both the Grell and Emanuel schemes adequately simulate the low level flow over South America. However, there are some intensity differences. Due to the larger (smaller) convective activity, the Emanuel (Grell) scheme simulates more intense (weaker) low level wind than analysis in the tropics and subtropics. The objectives criteria of Sugahara (SJ) and Bonner (BJ) were used for LLJ identification. When applied to the observations, both criteria suggest a larger frequency of the SALLJ in Santa Cruz, followed by Mariscal, Trinidad and Asunción. In Mariscal and Asunción, the diurnal cycle indicates that SJ occurs mainly at 12 UTCs (morning), while the BJ criterion presents the SALLJ as more homogenously distributed. The concentration into two of the four-times-a-day observations does not allow conclusions about the diurnal cycle in Santa Cruz and Trinidad. The simulated wind profiles result in a lower than observed frequency of SALLJ using both the SJ and BJ criteria, with fewer events obtained with the BJ. Due to the stronger simulated winds, the Emanuel scheme produces an equal or greater relative frequency of SALLJ than the Grell scheme. However, the Grell scheme using the SJ criterion simulates the SALLJ diurnal cycle closer to the observed one. Although some discrepancies between observed and simulated mean vertical profiles of the horizontal wind are noted, there is large agreement between the composites of the vertical structure of the SALLJ, especially when the SJ criterion is used with the Grell scheme. On an intraseasonal scale, a larger southward displacement of SALLJ in February and December when compared with January has been noted. The Grell and Emanuel schemes simulated this observed oscillation in the low-level flow. However, the spatial pattern and intensity of rainfall and circulation anomalies simulated by the Grell scheme are closer to the analyses than those obtained with the Emanuel scheme.  相似文献   

20.
To improve the simulation of the surface radiation budget and related thermal processes in arid regions, three sophisticated surface albedo schemes designed for such regions were incorporated into the Biosphere- Atmosphere Transfer Scheme (BATS). Two of these schemes are functions of the solar zenith angle (SZA), where the first one has one adjustable parameter defined as SZA1 scheme, and the second one has two empirical parameters defined as SZA2 scheme. The third albedo scheme is a function of solar angle and soil water that were developed based on arid-region observations from the Dunhuang field experiment (DHEX) (defined as DH scheme). We evaluated the performance of the original and newly-incorporated albedo schemes within BATS using the in-situ data from the Oasis System Energy and Water Cycle Field Experiment that was carried out in JinTa, Gansu arid area (JTEX). The results indicate that a control run by the original version of the BATS generates a constant albedo, while the SZA1 and SZA2 schemes basically can reproduce the observed diurnal cycle of surface albedo, although these two schemes still underestimate the albedo when SZA is high in the early morning and late afternoon, and overestimate it when SZA is low during noontime. The SZA2 scheme has a better overall performance than the SZA1 scheme. In addition, BATS with the DH scheme slightly improves the albedo simulation in magnitude as compared to that from the control run, but a diurnal cycle of albedo is not produced by this scheme. The SZA1 and SZA2 schemes significantly increase the surface absorbed solar radiation by nearly 70 W m^-2, which further raises the ground temperature by 6 K and the sensible heat flux by 35 W m^-2. The increased solar radiation, heat flux, and temperature are more consistent with the observations that those from the control run. However, a significant improvement in these three variables is not found in BATS with the DH scheme due to the neglect of the diurnal cycle of albedo. Further analysis indi  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号