共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of biological soil crusts on soil detachment process by overland flow in the Loess Plateau of China 总被引:8,自引:0,他引:8 下载免费PDF全文
Biological soil crusts (BSCs) cover up to 60 to 70% of the soil surface in grasslands after the ‘Grain for Green’ project was implemented in 1999 to rehabilitate the Loess Plateau. However, few studies exist that quantify the effects of BSCs on the soil detachment process by overland flow in the Loess Plateau. This study investigated the potential effects of BSCs on the soil detachment capacity (Dc), and soil resistance to flowing water erosion reflected by rill erodibility and critical shear stress. Two dominant BSC types that developed in the Loess Plateau (the later successional moss and the early successional cyanobacteria mixed with moss) were tested against natural soil samples collected from two abandoned farmland areas. The samples were subjected to flow scouring under six different shear stresses ranging from 7.15 to 24.08 Pa. The results showed that Dc decreased significantly with crust coverage under both moss and mixed crusts. The mean Dc of bare soil (0.823 kg m?2 s?1) was 2.9 to 48.4 times greater than those of moss covered soil (0.017–0.284 kg m?2 s?1), while it (3.142 kg m?2 s?1) was 4.9 to 149.6 times greater than those of mixed covered soil (0.021–0.641 kg m?2 s?1). The relative detachment rate of BSCs compared with bare soils decreased exponentially with increasing BSC coverage for both types of BSCs. The Dc value can be simulated by flow shear stress, cohesion, and BSC coverage using a power function (NSE ≥ 0.59). Rill erodibility also decreased with coverage of both crust types. Rill erodibility of bare soil was 3 to 74 times greater than those of moss covered soil and was 2 to 165 times greater than those of mixed covered soil. Rill erodibility could also be estimated by BSC coverage in the Loess Plateau (NSE ≥ 0.91). The effect of crust coverage on critical shear stress was not significant. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
2.
Recent research has indicated the large spatial and temporal variation in soil erosion resistance against concentrated flow (SER). This study analyzes this variability in relation to rill and gully initiation locations on slopes and the downslope eroded volumes. The soil erodibility (Kc) and critical flow shear stress (τcr), were estimated from topsoil properties and correlated to eroded rill and gully volumes and their initiation points on slopes in the Belgian loess belt. Therefore, concentrated flow paths and topsoil properties were measured in their vicinity. The results show that rill and gully initiation points, and hence the lengths of concentrated flow paths, depend on τcr, which is controlled by soil surface conditions and can be predicted from saturated soil shear strength. Soil erosion control measures that increase soil shear strength (e.g. thalweg compaction), can therefore decrease rill and gully lengths. Once a rill or an ephemeral gully is initiated, its cross‐section was found to depend on Kc, which can be estimated from the soil water content, dry bulk density, and the dry density of roots and crop residues incorporated in the topsoil. 74% of the variation in the channel cross‐sectional area measured in the study area could be predicted from the combined effect of flow intensity and these three soil properties, whereas flow intensity alone could only account for 31% of the variation. Soil conservation measures affecting one of the soil properties that control Kc (e.g. double drilling of the thalweg, conservation tillage) can therefore decrease the cross‐sections of the concentrated flow paths. These findings also indicate that rill and gully initiation points are not only topographically controlled but also depend on the SER, which in turn determines the dimensions of these concentrated flow paths. Hence, knowledge of the variability in SER is indispensable. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
3.
Soil erosion in sloping cropland is a key water and soil conservation issue in the Loess Plateau region, China. How surface roughness influences soil detachment remains unclear due to the inconsistent results obtained from existing studies. The objectives of the present study were to evaluate the effects of tillage practices on soil detachment rate in sloping cropland and establish an accurate empirical model for the prediction of soil detachment rates. A series of movable bed experiments were conducted on sloping surfaces under three different tillage practices (manual dibbling, manual hoeing, and contour drilling), with a smooth surface (non-tillage) as a control. The research indicated that soil detachment rate significantly increased with roughness (p < 0.05) since the average soil detachment rate was the highest under the contour drilling treatment (6.762 g m−2 s−1), followed by manual hoeing (4.180 g m−2 s−1), and manual dibbling (3.334 g m−2 s−1); the lowest detachment rate was observed under the non-tillage treatment (3.214 g m−2 s−1). Slope gradient and unit discharge rate were positively correlated with soil detachment rate and proved to be more influential than soil surface roughness. Four composite hydraulic parameters were introduced to estimate soil detachment rate on tilled surfaces. Regression analyses revealed that stream power was the most effective predictor of soil detachment rate compared with unit length shear force, shear stress, and unit stream power. By integrating surface roughness as a variable, the detachment rate could be accurately described as a nonlinear function of stream power and surface roughness. The results of the present study indicate that tillage practice could influence soil loss on sloping cropland, considering the higher soil detachment rates under all tillage practices tested compared with non-tillage. The results are attributed mainly to concentrated flow caused by the high water storage levels on tilled surfaces, which could damage surface microtopography and, subsequently, the development of headcuts. 相似文献
4.
Yoshinori Shinohara Sohei Otani Tetsuya Kubota Kyoichi Otsuki Kazuki Nanko 《水文科学杂志》2013,58(13):2435-2442
ABSTRACTThis study examined the effects of herbaceous plant roots on interrill erosion using two herbaceous species: clover (Trifolium repens) and oats (Avena sativa). We developed a simple rainfall simulator with relatively high normalized kinetic energy (KE; 23.2 J m?2 mm?1). Under simulated rainfall, we measured eroded soil for 42 boxes with various amounts of aboveground and belowground biomass. Aboveground vegetation had a significant effect on the soil erosion rate (SER). We found a clear negative relationship between the percent vegetation cover (c) and the SER. In contrast, plant roots showed no effects on the SER. The SER was not significantly different between the boxes with and without plant roots under similar c conditions. Thus, plant roots could have less of an effect on the SER under higher KE conditions.
Editor M.C. Acreman Associate editor N. Verhoest 相似文献
5.
Vegetation stems and litter cover have different effects on sediment transport capacity under the same experimental conditions, which in essence, may be due to differences in their hydraulic properties, but the availability of comparative studies is limited. This study aimed to compare the hydraulic properties affected by litter and stem cover, compare differences in the drag forces exerted by litter and stems on overland flow, and develop new Manning's n and flow velocity equations for litter cover. Two series of flume experiments were conducted with the same slope gradients (8.8%, 17.6%, 26.8%) and flow discharge rates (0.5, 1.0 × 10−3 m3 s−1). Artificial Gramineae stems with a 0%–30% cover level and Pinus tabulaeformis litter with a 0%–70% cover level were used in series 1 and series 2, respectively. The flow velocity and depth were measured. The results showed that the Froude number and flow velocity affected by stem cover were much lower than those affected by litter cover, while the opposite trend was observed in the relative magnitude of the Reynolds number, flow depth and shear stress. The form resistance caused by stems was 22–57 times greater than that caused by litter for the same cover level, which suggests that stem cover contributes more than litter cover to increasing the flow resistance and reducing the flow's ability for sediment detachment and transport. Two new equations for calculating Manning's n and flow velocity under the influence of litter cover were developed, with R2 and NSE values of 0.96. The results of this study contribute to revealing the mechanisms of the differences of the effects of stem and litter cover on soil erosion. 相似文献
6.
Effects of rock fragments incorporated in the soil matrix on concentrated flow hydraulics and erosion 总被引:6,自引:0,他引:6
Rock fragments can act as a controlling factor for erosional rates and patterns in the landscape. Thus, the objective of this study is to better understand the role that rock fragments incorporated into the soil matrix play in concentrated flow hydraulics and erosion. Laboratory flume experiments were conducted with soil material that was mixed with rock fragments. Rock fragment content ranged from 0 to 40 per cent by volume. Other treatments were slope (7 and 14%) and flow discharge (5·7 and 11·4 l min?1). An increase in rock fragment content resulted in lower sediment yield, and broader width of flow. Rock fragment cover at the soil surface, i.e. surface armour, increased with time in experiments with rock fragments. Flow energy was largely dissipated by rock fragment cover. For more turbulent flow conditions, when roughness elements were submerged in the flow, hydraulic roughness was similar for different rock fragment contents. In experiments with few or no rock fragments a narrow rill incised. Flow energy was dissipated by headcuts. Total sediment yield was much larger than for experiments with rock fragments in the soil. Adding just a small number of rock fragments in the soil matrix resulted in a significant reduction of sediment yield. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
7.
Soil erosion on hillslopes occurs by processes of soil splash from raindrop impacts and sediment entrainment by surface water flows. This study investigates the process of soil erosion by surface water flow on a stony soil in a semiarid environment. A field experimental method was developed whereby erosion by concentrated flow could be measured in predefined flow areas without disturbing the soil surface. The method allowed for measurements in this study of flow erosion at a much wider range of slopes (2·6 to 30·1 per cent) and unit discharge rates (0·0007 to 0·007 m2 s−1) than have been previously feasible. Flow velocities were correlated to discharge and hydraulic radius, but not to slope. The lack of correlation between velocity and slope might have been due to the greater rock cover on the steeper slopes which caused the surface to be hydraulically rougher and thus counteract the expected effect of slope on flow velocity. The detachment data illustrated limitations in applying a linear hydraulic shear stress model over the entire range of the data collected. Flow detachment rates were better correlated to a power function of either shear stress (r2 = 0·51) or stream power (r2 = 0·59). Published in 1999 by John Wiley & Sons, Ltd. 相似文献
8.
Soil surface roughness contains two elementary forms, depressions and mounds, which affect water flow on the surface differently. While depressions serve as temporary water storage, mounds divert water away from their local summits. Although roughness impacts on runoff and sediment production have been studied, almost no studies have been designed explicitly to quantify the evolution of depressions and mounds and how this impacts runoff generation and sediment delivery. The objectives of this study were to analyze how different surface forms affect runoff and sediment delivery and to measure the changes in surface depressions and mounds during rainfall events. A smooth surface was used as the control. Both mounds and depressions delayed the runoff initiating time, but to differing degrees; and slightly reduced surface runoff when compared to the runoff process from the smooth surface. Surface mounds significantly increased sediment delivery, whilst depressions provided surface storage and hence reduced sediment delivery. However, as rainfall continued and rainfall intensity increased, the depression effect on runoff and erosion gradually decreased and produced even higher sediment delivery than the smooth surface. Depressions and mounds also impacted the particle size distribution of the discharged sediments. Many more sand‐sized particles were transported from the surface with mounds than with depressions. The morphology of mounds and depressions changed significantly due to rainfall, but to different extents. The difference in change had a spatial scale effect, i.e. erosion from each mound contributed to its own morphological change while sediments deposited in a depression came from a runoff contributing area above the depression, hence a much greater source area than a single mound. The results provide a mechanistic understanding of how soil roughness affects runoff and sediment production. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
9.
Study on effect of surface roughness on overland flow from different geometric surfaces through numerical simulation 下载免费PDF全文
Effect of variability in surface roughness on overland flow from different geometric surfaces is investigated using numerical solution of diffusion wave equation. Three geometric surfaces rectangular plane, converging and diverging plane at slopes 1 to 3% are used. Overland flow is generated by applying rainfall at constant intensity of 10 mm/h for period 30 min and 100 min. Three scenarios of spatial roughness conditions viz. roughness increasing in downstream direction, roughness decreasing in downstream direction and roughness distributed at random are considered. Effect of variability of roughness on overland flow in terms of depth, velocity of flow and discharge along the distance from upstream to downstream for different geometric surfaces are discussed in detail. Results from the study indicate that roughness distribution has significant effect on peak, time to peak and overall shape of the overland flow hydrograph. The peak occurs earlier for the scenario when roughness increases in downstream direction as compared to scenario when roughness is decreasing in downstream for all three geometric surfaces due to very low friction factor and more velocity at the top of the domain. The converging plane attains equilibrium state early as compared to rectangular and diverging plane. Different set of random values result in different time to peak and shape of hydrograph for rectangular and diverging plane. However, in case of converging plane, the shape of computed hydrographs remains almost similar for different sets of random roughness values indicating stronger influence of converging geometry than effect due to variation of roughness sequence on computed runoff hydrograph. Hierarchically, the influence of geometry on overland flow is stronger than the influence of slope and the influence of slope is stronger than the influence of roughness. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
10.
A set of laboratory experiments on bare, rough soil surfaces was carried out to study the relationship between soil surface roughness and its hydraulic resistance. Existing models relating roughness coefficients to a measure of surface roughness did not predict the hydraulic resistance well for these surfaces. Therefore, a new model is developed to predict the hydraulic resistance of the surface, based on detailed surface roughness data. Roughness profiles perpendicular to the flow are used to calculate the wet cross‐sectional area and hydraulic radius given a certain water level. The algorithm of Savat is then applied to calculate the hydraulic resistance. The value for the equivalent roughness, which is used in the algorithm of Savat, could be predicted from the roughness profiles. Here, the tortuosity of the submerged part of the surface was used, which means that the calculated roughness depends on flow depth. The roughness increased with discharge, due to the fact that rougher parts of the surface became submerged at higher discharges. Therefore, a single measure of surface roughness (e.g. random roughness) is not sufficient to predict the hydraulic resistance. The proposed model allows the extension of the flow over the surface with increasing discharge to be taken into account, as well as the roughness within the submerged part of the surface. Therefore, the model is able to predict flow velocities reasonably well from discharge and roughness data only. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
11.
The presence of non‐erodible roughness elements on erodible surfaces has the effect of absorbing part of the wind shear stress and thus protecting the erodible surface from wind erosion. This paper examines the shear stress distribution over roughness arrays of varying density, representing the progress of erosion on a bed of erodible and non‐erodible particles. Three‐dimensional numerical simulations, simulating wind flow over a bed of particles covered by roughness elements, were conducted in order to investigate the effect of roughness elements on the shear stress near the surface. The results of these simulations confirm that the erosion of soil by wind is strongly attenuated by the presence of roughness elements on the surface and depends on the geometric properties of the roughness elements. Based on the new numerical results obtained, a refinement of existing theoretical approaches is developed to describe the dependence of the friction velocity upon roughness frontal area and real exposed cover rate. The new formulation proposed will allow a more accurate evaluation of shear stress partitioning as a function of topographic changes. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
12.
A Gumbel distribution for maxima is proposed as a model for the depths of interrill overland flow. The model is tested against three sets of field measurements of interrill overland flow depths obtained on shrubland and grassland hillslopes at Walnut Gulch Experimental Watershed, southern Arizona. The model is found to be a satisfactory fit to 81 of the 90 measured distributions. The shape δ and location λ parameters of all fitted distributions are strongly correlated with discharge. However, whereas a common relationship exists between discharge and δ for all depth distributions, the relationships with λ vary systematically downslope. Using the Gumbel distribution as a model for the distribution of overland flow depths, a probabilistic model for the initiation of rills is developed, drawing upon the previous work of Nearing. As an illustration of this approach, we apply this model to the shrubland and grassland hillslopes at Walnut Gulch. It is concluded that the presence of rills on the shrubland, but not on the grassland, is due to the greater runoff coefficient for the shrubland and/or the greater propensity of the shrubland for soil disturbance compared with the grassland. Finally, a generalized conceptual model for rill initiation is proposed. This model takes account of the depth distribution of overland flow, the probability of flow shear stress in excess of local soil shear strength, the spatial variability in soil shear strength and the diffusive effect of soil detachment by raindrops. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
13.
Andrés Peñuela Frédéric Darboux Mathieu Javaux Charles L. Bielders 《地球表面变化过程与地形》2016,41(11):1595-1613
Soil surface roughness not only delays overland flow generation but also strongly affects the spatial distribution and concentration of overland flow. Previous studies generally aimed at predicting the delay in overland flow generation by means of a single parameter characterizing soil roughness. However, little work has been done to find a link between soil roughness and overland flow dynamics. This is made difficult because soil roughness and hence overland flow characteristics evolve differently depending on whether diffuse or concentrated erosion dominates. The present study examined whether the concept of connectivity can be used to link roughness characteristics to overland flow dynamics. For this purpose, soil roughness of three 30‐m2 tilled plots exposed to natural rainfall was monitored for two years. Soil micro‐topography was characterized by means of photogrammetry on a monthly basis. Soil roughness was characterized by the variogram, the surface stream network was characterized by network‐based indices and overland flow connectivity was characterized by Relative Surface Connection function (RSCf) functional connectivity indicator. Overland flow hydrographs were generated by means of a physically‐based overland flow model based on 1‐cm resolution digital elevation models. The development of eroded flow paths at the soil surface not only reduced the delay in overland flow generation but also resulted in a higher continuity of high flow velocity paths, an increase in erosive energy and a higher rate of increase of the overland flow hydrograph. Overland flow dynamics were found to be highly correlated to the RSCf characteristic points. By providing information regarding overland flow dynamics, the RSCf may thus serve as a quantitative link between soil roughness and overland flow generation in order to improve the overland flow hydrograph prediction. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
14.
This study investigates the interaction of the vertical velocity v and the streamwise velocity u in a gradually accelerating flow. The analytical result shows that the momentum of uv driven by the mean velocities in a non-uniform flow is not negligible. This additional momentum directly results in the concave profiles of Reynolds shear stress in gradually accelerating flows, a departure from the expected linear profile. Consequently, this momentum causes the maximum velocity to be located below the free surface, i.e., the dip-phenomenon. This paper investigated the interactions of the Reynolds shear stress, non-zero vertical velocity and dip-phenomenon, it is found that the non-zero vertical velocity causes the dip-phenomenon. The approach is tested using the experimental data of Song and others, and good agreements between the predicted and measured velocity profiles have been achieved. 相似文献
15.
Predicting physical equations of soil detachment by simulated concentrated flow in Ultisols (subtropical China) 总被引:3,自引:0,他引:3
Jun‐guang Wang Zhao‐xia Li Chong‐fa Cai Wei Yang Ren‐ming Ma Guo‐biao Zhang 《地球表面变化过程与地形》2012,37(6):633-641
Soil detachment in concentrated flow is due to the dislodging of soil particles from the soil matrix by surface runoff. Both aggregate stability and shear strength of the topsoil reflect the erosion resistance of soil to concentrated runoff, and are important input parameters in predicting soil detachment models. This study was conducted to develop a formula to predict soil detachment rate in concentrated flow by using the aggregate stability index (As), root density (Rd) and saturated soil strength (σs) in the subtropical Ultisols region of China. The detachment rates of undisturbed topsoil samples collected from eight cultivated soil plots were measured in a 3.8 m long, 0.2 m wide hydraulic flume under five different flow shear stresses (τ = 4.54, 9.38, 15.01, 17.49 and 22.54 Pa). The results indicated that the stability index (As) was well related with soil detachment rate, particularly for results obtained with high flow shear stress (22.54 Pa), and the stability index (As) has a good linear relationship with concentrated flow erodibility factors (Kc). There was a positive linear relationship between saturated soil strength (σs) and critical flow shear stress (τc) for different soils. A significant negative exponential relationship between erodibility factors (Kc) and root density (Rd) was detected. This study yielded two prediction equations that allowed comparison of their efficiency in assessing soil detachment rate in concentrated flow. The equation including the root density (Rd) may have a better correlation coefficient (R2 = 0.95). It was concluded that the formula based on the stability index (As), saturated soil strength (σs) and root density (Rd) has the potential to improve methodology for assessing soil detachment rate in concentrated flow for the subtropical Chinese Ultisols. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
16.
Rill erosion is a dominant sediment source on sloping lands. However, the amount of soil loss from rills on steep slopes is vastly more than that on gentle slopes because of differences in rill shape and hydraulic patterns. The aims of this paper are to determine the hydrodynamic characteristics of rills and the friction coefficients in steep slope conditions and to propose modifications of some hydraulic parameters used in soil loss prediction models. A series of inflow experiments was conducted on loess slopes. The results show that the geometric and hydraulic properties of rill on the steep loess slopes, which are characterized by the mean width of cross sections, mean velocity and mean depth of flow, are related to discharge and slope gradient in power functions. However, the related exponents to discharge are 0.26, 0.48 and 0.26, respectively, which are different from the exponents derived in previous studies, which were conducted on gentle slopes. The Manning roughness coefficient ranged from 0.035 to 0.071, with an average of 0.0536, and the Darcy–Weisbach friction coefficients varied from 0.4 to 1.9. The roughness coefficients are closely related to the Reynolds numbers and flow volumes; however, the correlations vary with slope gradient. The roughness coefficients are directly proportional to the Reynolds number and the flow volume on steep slopes, in contrast with the roughness coefficients found on gentle slopes, which decrease as the Reynolds number and flow volume increase. This difference is caused by the interactions among the hydraulics of the flow, the shape of the rills and the sediment concentrations on steep slopes. The results indicate that parameters used in models to predict rill erosion have to be modified according to slope gradient. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
17.
Sediment grains in a bedrock‐alluvial river will be deposited within or adjacent to a sediment patch, or as isolated grains on the bedrock surface. Previous analysis of grain geometry has demonstrated that these arrangements produce significant differences in grain entrainment shear stress. However, this analysis neglected potential interactions between the sediment patches, local hydraulics and grain entrainment. We present a series of flume experiments that measure the influence of sediment patches on grain entrainment. The flume had a planar bed with roughness that was much smaller than the diameters of the mobile grains. In each experiment sediment was added either as individual grains or as a single sediment pulse. Flow was then increased until the sediment was entrained. Analysis of the experiments demonstrates that: (1) for individual grains, coarse grains are entrained at a higher discharge than fine grains; (2) once sediment patches are present, the different in entrainment discharge between coarse and fine grains is greatly reduced; (3) the sheltering effect of patches also increases the entrainment discharge of isolated grains; (4) entire sediment patches break‐up and are eroded quickly, rather than through progressive grain‐by‐grain erosion; (5) as discharge increases there is some tendency for patches to become more elongate and flow‐aligned, and more randomly distributed across the bed. One implication of this research is that the critical shear stress in bedrock‐alluvial channels will be a function of the extent of the sediment cover. Another is that the influence of sediment patches equalizes critical shear stresses between different grain sizes and grain locations, meaning that these factors may not need to be accounted for. Further research is needed to quantify interactions between sediment patches, grain entrainment and local hydraulics on rougher bedrock surfaces, and under different types of sediment supply. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
18.
Plant litter can be incorporated into topsoil by a natural process, affecting the soil erosion process. This is a widespread phenomenon in erosion-prone areas. This study was conducted to investigate the effect of litter incorporation on the process of soil detachment on the Loess Plateau, China. Four common plant litters (Bothriochloa ischaemum L. Keng., Artemisia sacrorum Ledeb., Setaria viridis L. Beauv., and Artemisia capillaris Thunb.) were collected, then incorporated into the silt loam soil at five rates (0.1, 0.4, 0.7, 1.0, and 1.3 kg m−2) on the basis of our field investigation. Twenty litter–soil treatments and one bare soil control were prepared. After 50 days of natural stabilization, 30 soil samples of each treatment were collected. We used a flume test to scour the soil samples under six flow shear stress conditions (5.66, 8.31, 12.21, 15.55, 19.15, and 22.11 Pa). The results showed that the different incorporated litter masses and morphological characteristics, such as litter tissue density (ranging from 0.52 to 0.68 g cm−3), length density (2.34 to 91.00 km m−3), surface area density (LSAD; 27.9 to 674.2 m2 m−3), and volume ratio (0.003 to 0.050 m3 m−3), caused varied soil detachment capacities (0.043 to 4.580 kg·m−2·s−1), rill erodibilities (0.051 to 0.237 s m−1), and critical shear stresses (2.02 to 6.83 Pa). The plant litter incorporated within the soil reduced the soil detachment capacities by 38%–59%, lowered the rill erodibilities by 32%–46%, and increased the critical shear stresses by 98%–193% compared with the bare soil control. The soil containing B. ischaemum (L.) Keng. litter was more resistant to erosion. By comparing different parameters, we found that the contact area between the litter and soil was the main factor affecting the soil detachment process. The soil erosion resistance increased with the increasing contact area between the soil and litter. Furthermore, the litter incorporation effect on rill erodibility can be comprehensively reflected by LSAD (R2 = .93; Nash–Sutcliffe efficiency = 0.79), which could be used to adjust the rill erodibility parameter in physical process-based soil erosion models. 相似文献
19.
Flume experiments simulating concentrated runoff were carried out on remolded silt loam soil samples (0·36 × 0·09 × 0·09 m3) to measure the effect of rainfall‐induced soil consolidation and soil surface sealing on soil erosion by concentrated flow for loess‐derived soils and to establish a relationship between soil erodibility and soil bulk density. Soil consolidation and sealing were simulated by successive simulated rainfall events (0–600 mm of cumulative rainfall) alternated by periods of drying. Soil detachment measurements were repeated for four different soil moisture contents (0·04, 0·14, 0·20 and 0·31 g g?1). Whereas no effect of soil consolidation and sealing is observed for critical flow shear stress (τcr), soil erodibility (Kc) decreases exponentially with increasing cumulative rainfall depth. The erosion‐reducing effect of soil consolidation and sealing decreases with a decreasing soil moisture content prior to erosion due to slaking effects occurring during rapid wetting of the dry topsoil. After about 100 mm of rainfall, Kc attains its minimum value for all moisture conditions, corresponding to a reduction of about 70% compared with the initial Kc value for the moist soil samples and only a 10% reduction for the driest soil samples. The relationship estimating relative Kc values from soil moisture content and cumulative rainfall depth predicts Kc values measured on a gradually consolidating cropland field in the Belgian Loess Belt reasonably well (MEF = 0·54). Kc is also shown to decrease linearly with increasing soil bulk density for all moisture treatments, suggesting that the compaction of thalwegs where concentrated flow erosion often occurs might be an alternative soil erosion control measure in addition to grassed waterways and double drilling. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
20.
This study examines how the sediment transport capacity of interrill overland flow varies with stone cover and stone size at two flow intensities. Six series of flume experiments were conducted on two slopes (2° and 10°) with stones of three sizes (28·0, 45·5 and 91·3 mm) serving as roughness elements. Bed sediment size, water discharge and simulated rainfall intensity were the same in all experiments. It was found (1) that transport capacity is positively related to stone size, with the relation becoming stronger as stone cover increases and flow intensity decreases; and (2) that transport capacity is negatively related to stone cover at the high flow intensity and curvilinearly related to stone cover at the low flow intensity. The curvilinear relations are concave‐upward with the lowest transport capacities occurring at stone covers between 0·40 and 0·60. The highest transport capacities are found at stone covers of 0 and 1, with the transport capacity being greater at the former stone cover than at the latter. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献