首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flow diversions are widespread and numerous throughout the semi‐arid mountains of the western United States. Diversions vary greatly in their structure and ability to divert water, but can alter the magnitude and duration of base and peak flows, depending upon their size and management. Channel geometry and riparian plant communities have adapted to unique hydrologic and geomorphic conditions existing in the areas subject to fluvial processes. We use geomorphic and vegetation data from low‐gradient (≤3%) streams in the Rocky Mountains of north‐central Colorado to assess potential effects of diversion. Data were collected at 37 reaches, including 16 paired upstream and downstream reaches and five unpaired reaches. Channel geometry data were derived from surveys of bankfull channel dimensions and substrate. Vegetation was sampled using a line‐point intercept method along transects oriented perpendicular to the channel, with a total of 100 sampling points per reach. Elevation above and distance from the channel were measured at each vegetation sampling point to analyze differences in lateral and vertical zonation of plant communities between upstream and downstream reaches. Geomorphic data were analyzed using mixed effects models. Bankfull width, depth, and cross‐sectional area decreased downstream from diversions. Vegetation data were analyzed using biological diversity metrics, richness, evenness and diversity, as well as multivariate community analysis. Evenness increased downstream from diversions, through reduced frequency of wetland indicator species and increased frequency of upland indicator species. Probability of occurrence for upland species downstream of a diversion increases at a greater rate beginning around 0·5 m above active channel. The results suggest that channel morphology and riparian plant communities along low‐gradient reaches in montane environments in the Colorado Rocky Mountains are impacted by diversion‐induced flow alteration, with the net effect of simplifying and narrowing the channel and homogenizing and terrestrializing riparian plant communities. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
The effects of check dams on the bed stability of torrential channels have been analysed in several tributary basins of the Segura and Guadalentín rivers (South‐East Spain). In order to illustrate the large variability in channel bed‐forms and bed sediment sizes along the stream, 52 reaches of 150 m in length were surveyed. This variability is due to the behaviour of check dams, which depends on bedrock control, bed slope, channel roughness, lateral sediment input and a highly variable sediment transport capacity. Though the purpose of check dams is to diminish the boundary shear stress, reducing the longitudinal slope, and to stabilize the channel bed, downstream they reduce the volume of channel‐stored material, favouring local scour processes, and upstream they can destabilize the sidewalls. The results enable us to evaluate the impact of every check dam on the bed morphology, distinguishing the structures installed in limy marl areas (e.g. catchment of the Cárcavo rambla, Cieza) and in schist and slate terrains (e.g. catchment of the Torrecilla rambla, close to Lorca). In the first type, bedrock and moderately thick granular beds predominate downstream from the check dams, so that the length of bedrock reaches and increase of roughness due to scour processes are the best indicators to verify its geomorphological effectiveness. On the other hand, the metamorphic areas drained by ramblas and gullies produce great quantities of gravel that are retained by check dams, creating more uniform and permeable beds, where the balance between sedimentation and scouring, and the ratio τc84/τ0 (RBS), appear to be the parameters most frequently adopted to estimate the bed stability. Analysis of slope adjustments and the application of other indices to estimate the bed substrate stability (LRBS, SRI) and the structural influence of the dams (SIBS) corroborate the differences in bed stability found in the corrected reaches in each catchment. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
1 INTRODUCTION The construction of more than 75,000 dams and reservoirs on rivers in the United States (Graf, 1999) has resulted in alteration of the hydrology, geometry, and sediment flow in many of the river channels downstream of dams. Additionally, hydrologic and geomorphic impacts lead to changes in the physical habitat affecting both the flora and fauna of the riparian and aquatic environments. Legislation for protection of endangered species as well as heightened interest in ma…  相似文献   

4.
The transfer of sediment through a highly regulated large fluvial system (lower Ebro River) was analysed during two consecutive floods by means of sediment sampling. Suspended sediment and bedload transport were measured upstream and downstream of large reservoirs. The dams substantially altered flood timing, particularly the peaks, which were advanced downstream from the dams for flood control purposes. The suspended sediment yield upstream from the dams was 1 700 000 tonnes, which represented nearly 99 per cent of the total solid yield. The mean concentrations were close to 0·5 g l?1. The sediment yield downstream from the dams was an order of magnitude lower (173 000 tonnes), showing a mean concentration of 0·05 g l?1. The dams captured up to 95 per cent of the fine sediment carried in suspension in the river channel, preventing it from reaching the lowermost reaches of the river and the delta plain. Total bedload transport upstream from the dams was estimated to be about 25 000 tonnes, only 1·5 per cent of the total load. The median bedload rate was 100 gms?1. Below the dams, the river carried 178 000 tonnes, around 51 per cent of the total load, at a mean rate of 250 g ms?1. The results of sediment transport upstream and downstream from the large dams illustrate the magnitude of the sediment deficit in the lower Ebro River. The river mobilized a total of 350 000 tonnes in the downstream reaches, which were not replaced by sediment from upstream. Therefore, sediment was necessarily entrained from the riverbed and channel banks, causing a mean incision of 33 mm over the 27 km long study reach, altogether a significant step towards the long‐term degradation of the lower Ebro River. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
In Mediterranean semi‐arid conditions, the availability of studies monitoring channel adjustments as a response to reforestation and check dams over representative observation periods, could help develop new management strategies. This investigation is an integrated approach assessing the adjustments of channel morphology in a typical torrent of southern Italy after land‐use changes and check dam construction across a period of about 60 years. A statistical analysis of historical rainfall records, an analysis of land‐use changes in the catchment area and a geomorphological mapping of channel adjustments were carried out and combined with field surveys of bed surface grain‐size over a 5‐km reach including 14 check dams. The analysis of the historical rainfall records showed a slight decrease in the amount and erosivity of precipitation. Mapping of land‐use changes highlighted a general increase of vegetal coverage on the slopes adjacent to the monitored reaches. Together with the check dam network installation, this increase could have induced a reduction in water and sediment supply. The different erosional and depositional forms and adjustments showed a general narrowing between consecutive check dams together with local modifications detected upstream (bed aggradation and cross‐section expansion together with low‐flow realignments) and downstream (local incision) of the installed check dams. Changes in the torrent bends were also detected as a response to erosional and depositional processes with different intensities. The study highlighted: the efficiency of check dams against the disrupting power of intense floods by stabilizing the active channel and the influence of reforestation in increasing hillslope protection from erosion and disconnectivity of water and sediment flows towards the active channel. Only slight management interventions (for instance, the conversion of the existing check dams into open structures) are suggested, in order to mobilize the residual sediment avoiding further generalized incision of the active channel and coast line erosion. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
This study focuses on the spatial variations in vegetative roughness associated with morphological channel adjustments due to the presence of check dams in Mediterranean torrential streams. Manning’s n values were estimated using methods established by previous studies of submerged and non-submerged vegetation in laboratory flume experiments and field work. The results showed a linear decrease in shrub density and rate of variation of the roughness coefficient versus degree of submergence with increasing distance upstream from the check dam, while downstream, the filling of the check dam and the bed incision had the most influence. A regression analysis was applied by fitting the data to different models: relationships between Manning’s n and the flow velocity were found to be of the power type for shrubs in all upstream sections, while relationships of flow velocity versus hydraulic radius in the sections closest to check dams showed a good fit to second-order polynomial equations.  相似文献   

7.
Channel instability has occurred in the Bell River in the form of meander cutoffs, a number of which have occurred since 1952. Increased sediment loading from widespread gully erosion in the catchment has been proposed as the trigger for this instability. Willow species of the Salix family, in particular S. caprea, have been planted along the banks in an effort to prevent further channel shifting. This study reports the results of an investigation into the effect of vegetation on channel form and stability over a 17 km stretch of channel. Results indicate that riparian vegetation has significant effects on channel form which have implications for channel stability. Riparian vegetation increases bank stability and reduces channel cross-sectional area, thereby inducing stability at flows less than bankfull. Evidence indicates that narrow stable stretches are associated with relatively high levels of riparian vegetation. Wider, unstable channels are associated with relatively less riparian vegetation. The effectiveness of riparian vegetation relative to bank sediments was investigated. A dense growth of willows was found to have an equivalent effect to banks with a silt-clay ratio of about 70 per cent. The channel narrowing induced by vegetation may contribute to channel shifting at high flows. The reduced channel capacity is thought to result in more frequent overbank flooding which may ultimately lead to channel avulsion. Thus where increased sediment loading is pushing the channel towards instability, vegetation may be effective in imparting local stability, but it is unable to prevent long-term channel shifts, and may rather help to push the system towards more frequent avulsions. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
A decline in the ecosystem health of Australia's Moreton Bay, a Ramsar wetland of international significance, has been attributed to sediments and nutrients derived from catchment sources. To address this decline the regional management plan has set the target of reducing the loads by 50%. Reforestation of the channel network has been proposed as the means to achieve this reduction, but the extent of revegetation required is uncertain. Here we test the hypothesis that sediment and nutrient loads from catchments decrease proportionally with the increasing proportion of the stream length draining remnant vegetation. As part of a routine regional water quality monitoring program sediment and nutrient loads were measured in 186 flow events across 22 sub‐catchments with different proportions of remnant woodland. Using multiple linear regression analysis we develop a predictive model for pollutant loads. Of the attributes examined a combination of runoff and the proportion of the stream length draining remnant vegetation was the best predictor. The sediment yield per unit area from a catchment containing no remnant vegetation is predicted to be between 50 and 200 times that of a fully vegetated channel network; total phosphorus between 25 and 60 times; total nitrogen between 1.6 and 4.1 times. There are ~48 000 km of streams in the region of which 32% drain areas of remnant vegetation. Of these 17 095 km are above the region's water storage dams. We estimate that decreasing the sediment and phosphorus loads to Moreton Bay by 50% would involve rehabilitating ~6350 km of the channel network below the dams; halving the total nitrogen load would require almost complete restoration of the channel network. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
《国际泥沙研究》2020,35(4):408-416
The magnitude of soil erosion and sediment load reduction efficiency of check dams under extreme rainstorms is a long-standing concern. The current paper aims to use check dams to deduce the amount of soil erosion under extreme rainstorms in a watershed and to identify the difference in sediment interception efficiency of different types of check dams. Based on the sediment deposition at 12 check dams with 100% sediment interception efficiency and sub-catchment clustering by taking 12 dam-controlled catchments as clustering criteria, the amount of soil erosion resulting from an extreme rainstorm event on July 26, 2017 (named “7·26” extreme rainstorm) was estimated in the Chabagou watershed in the hill and gully region of the Loess Plateau. The differences in the sediment interception efficiency among the check dams in the watershed were analyzed according to field observations at 17 check dams. The results show that the average erosion intensity under the “7–26” extreme rainstorm was approximately 2.03 × 104 t/km2, which was 5 times that in the second largest erosive rainfall in 2017 (4.15 × 103 t/km2) and 11–384 times that for storms in 2018 (0.53 × 102 t/km2 - 1.81 × 103 t/km2). Under the “7–26” extreme rainstorm, the amount of soil erosion in the Chabagou watershed above the Caoping hydrological station was 4.20 × 106 t. The sediment interception efficiency of the check dams with drainage canals (including the destroyed check dams) and with drainage culverts was 6.48 and 39.49%, respectively. The total actual sediment amount trapped by the check dams was 1.11 × 106 t, accounting for 26.36% of the total amount of soil erosion. In contrast, 3.09 × 106 t of sediment were input to the downstream channel, and the sediment deposition in the channel was 2.23 × 106 t, accounting for 53.15% of the total amount of soil erosion. The amount of sediment transport at the hydrological station was 8.60 × 105 t. The Sediment Delivery Ratio (SDR) under the “7·26” extreme rainstorm was 0.21. The results indicated that the amount of soil erosion was huge, and the sediment interception efficiency of the check dams was greatly reduced under extreme rainstorms. It is necessary to strengthen the management and construction technology standards of check dams to improve the sediment interception efficiency and flood safety in the watershed.  相似文献   

10.
This paper presents the history of badland generated in the Saldaña region, Spain; as well as the main responses eight decades after the start of restoration – in terms of vegetation, soil and erosive processes. The restoration consisted of intense reforestation and construction of more than 100 check dams and numerous wattle fences. Presently, the dense vegetation (87% cover) contrasts markedly with the degraded landscape from the early 20th century (5% cover). The thickness of litter and the natural presence of some species (Quercus pyrenaica, Paeonia broteroi and Lactarius deliciosus) clearly indicate the recovery of the site. The development of the forest cover shows that the intervention has the potential to recover almost 90% of the area. There is also evidence of soil regeneration, although some properties (erodibility, resistance to penetration and shear‐strength resistance) are not that different between the forested and degraded areas. In the restored zones, runoff is negligible, since a thick layer of moss covers the spillways of all the check dams. Erosion has almost been stopped by the effects of vegetation cover, litter and higher infiltration rates (infiltration rate in forested slopes is 43.4 times greater than in bare slopes). Sediment detachment, such as landslides, mudflows and piping, still occur, but are restricted to the degraded zones. Furthermore, even when sediments are mobilized from the upper degraded hillslopes during the larger storms events (2000–2010), check dams and the lower elevation restored forest‐buffers effectively work to reduce the sediment yield into the Carrión River by almost three orders of magnitude (<102 mg L‐1), compared with data from the 1930s and 1940s (>105 mg L‐1). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Gully erosion is a major environmental problem, posing significant threats to sustainable development. However, insights on techniques to prevent and control gullying are scattered and incomplete, especially regarding failure rates and effectiveness. This review aims to address these issues and contribute to more successful gully prevention and control strategies by synthesizing the data from earlier studies. Preventing gully formation can be done through land use change, applying soil and water conservation techniques or by targeted measures in concentrated flow zones. The latter include measures that increase topsoil resistance and vegetation barriers. Vegetation barriers made of plant residues have the advantage of being immediately effective in protecting against erosion, but have a short life expectancy as compared to barriers made of living vegetation. Once deeply incised, the development of gullies may be controlled by diverting runoff away from the channel, but this comes at the risk of relocating the problem. Additional measures such as headcut filling, channel reshaping and headcut armouring can also be applied. To control gully channels, multiple studies report on the use of check dams and/or vegetation. Reasons for failures of these techniques depend on runoff and sediment characteristics and cross-sectional stability and micro-environment of the gully. In turn, these are controlled by external forcing factors that can be grouped into (i) geomorphology and topography, (ii) climate and (iii) the bio-physical environment. The impact of gully prevention and control techniques is addressed, especially regarding their effect on headcut retreat and network development, the trapping of sediment by check dams and reduction of catchment sediment yield. Overall, vegetation establishment in gully channels and catchments plays a key role in gully prevention and control. Once stabilized, gullies may turn into rehabilitated sites of lush vegetation or cropland, making the return on investment to prevent and control gullies high. © 2020 John Wiley & Sons, Ltd.  相似文献   

12.
The sediment delivery ratio was estimated for two periods (28 years and eight years) following reforestation of seven tributary catchments (0·33 to 0·49 km2) in the headwaters of the Waipaoa River basin, North Island, New Zealand. In these catchments, gully erosion, which largely resulted from clearance of the natural forest between 1880 and 1920, is the main source of sediment to streams. Reforestation commenced in the early 1960s in an attempt to stabilize hillslopes and reduce sediment supply. Efforts have been partially successful and channels are now degrading, though gully erosion continues to supply sediment at accelerated rates in parts of the catchment. Data from the area indicate that the sediment delivery ratio (SDR) can be estimated as a function of two variables, ψ (the product of catchment area and channel slope) and A g (the temporally averaged gully area for the period). Sediment input from gullies was determined from a well defined relationship between sediment yield and gully area. Sediment scoured from channels was estimated from dated terrace remnants and the current channel bed. Terrace remnants represent aggradation during major floods. This technique provides estimates of SDR averaged over periods between large magnitude terrace‐forming events and with the present channel bed. The technique averages out short‐term variability in sediment flux. Comparison of gully area and sediment transport between two periods (1960–1988 and 1988–1996) indicates that the annual rate of sediment yield from gullies for the later period has decreased by 77 per cent, sediment scouring in channels has increased by 124 per cent, and sediment delivered from catchments has decreased by 78 per cent. However, average SDR for the tributaries was found to be not significantly different between these periods. This may reflect the small number of catchments examined. It is also due to the fact that the volume of sediment scoured from channels was very small relative to that produced by gullies. According to the equation for SDR determined for the Waipaoa headwaters, SDR increases with increasing catchment area in the case where A g and channel slope are fixed. This is because the amount of sediment produced from a channel by scouring increases with increasing catchment area. However, this relationship does not hold for the main stem of the study catchments, because sediment delivered from its tributaries still continues to accumulate in the channel. Higher order channels are, in effect, at a different stage in the aggradation/degradation cycle and it will take some time until a main channel reflects the effects of reforestation and its bed adjusts to net degradation. Results demonstrate significant differences among even low order catchments, and such differences will need to be taken into consideration when using SDR to estimate sediment yields. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
Coarse sediment retention by check dams is analyzed for five typical catchments in the Hekou-Longmen section of the midstream of the Yellow River, which is an area of high .coarse sediment concentration. The catchments are the Huangfuchuan, Kuye, Wuding, Sanchuan and Qiushui River Basins. The amount of coarse sediment retained by check clams in these areas for different periods was measured. Sediment reduction due to check clams is compared with other soil conservation measures and the results show that check clams are the most effective to rapidly reduce the amount of coarse sediment entering the Yellow River. If the average percentage of the drainage area with check clams for the five typical catchments reaches 3.0%, the average sediment reduction ratio can reach 60%. Therefore, to rapidly and effectively reduce the amount of sediment, especially coarse sediment, entering the Yellow River, the area percentage of check clams in the Hekou-Longmen section should be kept around 3%. The Kuye and Huangfuchuan River Basins are the preferred main catchments in which such water conservation measures are implemented.  相似文献   

14.
Increased bank stability by riparian vegetation can have profound impacts on channel morphology and dynamics in low‐energy systems, but the effects are less clear in high‐energy environments. Here we investigate the role of vegetation in active, aggrading braided systems at Mount Pinatubo, Philippines, and compare results with numerical modeling results. Gradual reductions in post‐eruption sediment loads have reduced bed reworking rates, allowing vegetation to finally persist year‐round on the Pasig‐Potrero and Sacobia Rivers. From 2009–2011 we collected data detailing vegetation extent, type, density, and root strength. Incorporating these data into the RipRoot model and BSTEM (Bank Stability and Toe Erosion Model) shows cohesion due to roots increases from zero in unvegetated conditions to > 10·2 kPa in densely‐growing grasses. Field‐based parameters were incorporated into a cellular model comparing vegetation strength and sediment mobility effects on braided channel dynamics. The model shows both low sediment mobility and high vegetation strength lead to less active systems, reflecting trends observed in the field. The competing influence of vegetation strength versus channel dynamics is a concept encapsulated in a dimensionless ratio between timescales for vegetation growth and channel reworking known as T*. An estimated T* between 1·5 and 2·3 for the Pasig‐Potrero River suggests channels are still very mobile and likely to remain braided until aggradation rates decline further. Vegetation does have an important effect on channel dynamics, however, by focusing flow and thus aggradation into the unvegetated fraction of braidplain, leading to an aggradational imbalance and transition to a more avulsive state. The future trajectory of channel–vegetation interactions as sedimentation rates decline is complicated by strong seasonal variability in precipitation and sediment loads, driving incision and armoring in the dry season. By 2011, incision during the dry season was substantial enough to lower the water‐table, weaken existing vegetation, and allow for vegetation removal in future avulsions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
After more than 300 years of river management, scientific knowledge of European river systems has evolved with limited empirical knowledge of truly natural systems. In particular, little is known of the mechanisms supporting the evolution and maintenance of islands and secondary channels. The dynamic, gravel‐bed Fiume Tagliamento, Italy, provides an opportunity to acquire baseline data from a river where the level of direct engineering intervention along the main stem is remarkably small. Against a background of a strong alpine to mediterranean climatic and hydrological gradient, this paper explores relationships between topography, sediment and vegetation at eight sites along the active zone of the Tagliamento. A conceptual model of island development is proposed which integrates the interactions between large woody debris and vegetation, geomorphic features, sediment calibre and hydrological regime. Islands may develop on bare gravel sites or be dissected from the floodplain by channel avulsion. Depositional and erosional processes result in different island types and developmental stages. Differences in the apparent trajectories of island development are identified for each of the eight study sites along the river. The management implications of the model and associated observations of the role of riparian vegetation in island development are considered. In particular, the potential impacts of woody debris removal, riparian tree management, regulation of river flow and sediment regimes, and changes in riparian tree species' distribution are discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
Urbanization can lead to accelerated stream channel erosion, especially in areas experiencing rapid population growth, unregulated urban development on erodible soils, and variable enforcement of environmental regulations. A combination of field surveys and Structure‐from‐Motion (SfM) photogrammetry techniques was used to document spatial patterns in stream channel geometry in a rapidly urbanizing watershed, Los Laureles Canyon (LLCW), in Tijuana, Mexico. Ground‐based SfM photogrammetry was used to map channel dimensions with 1 to 2 cm vertical mean error for four stream reaches (100–300 m long) that were highly variable and difficult to survey with a differential GPS. Regional channel geometry curves for LLCW had statistically larger slopes and intercepts compared with regional curves developed for comparable, undisturbed reference channels. Cross‐sectional areas of channels downstream of hardpoints, such as concrete reaches or culverts, were up to 64 times greater than reference channels, with enlargement persisting, in some cases, up to 230 m downstream. Percentage impervious cover was not a good predictor of channel enlargement. Proximity to upstream hardpoint, and lack of riparian and bank vegetation paired with highly erodible bed and bank materials may account for the instability of the highly enlarged and unstable cross‐sections. Channel erosion due to urbanization accounts for approximately 25–40% of the total sediment budget for the watershed, and channel erosion downstream of hardpoints accounts for one‐third of all channel erosion. Channels downstream of hardpoints should be stabilized to prevent increased inputs of sediment to the Tijuana Estuary and local hazards near the structures, especially in areas with urban settlements near the stream channel. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
Extensive land use changes have occurred in many areas of SE Spain as a result of reforestation and the abandonment of agricultural activities. Parallel to this the Spanish Administration spends large funds on hydrological control works to reduce erosion and sediment transport. However, it remains untested how these large land use changes affect the erosion processes at the catchment scale and if the hydrological control works efficiently reduce sediment export. A combination of field work, mapping and modelling was used to test the influence of land use scenarios with and without sediment control structures (check‐dams) on sediment yield at the catchment scale. The study catchment is located in SE Spain and suffered important land use changes, increasing the forest cover 3‐fold and decreasing the agricultural land 2·5‐fold from 1956 to 1997. In addition 58 check‐dams were constructed in the catchment in the 1970s accompanying reforestation works. The erosion model WATEM‐SEDEM was applied using six land use scenarios: land use in 1956, 1981 and 1997, each with and without check‐dams. Calibration of the model provided a model efficiency of 0·84 for absolute sediment yield. Model application showed that in a scenario without check dams, the land use changes between 1956 and 1997 caused a progressive decrease in sediment yield of 54%. In a scenario without land use changes but with check‐dams, about 77% of the sediment yield was retained behind the dams. Check‐dams can be efficient sediment control measures, but with a short‐lived effect. They have important side‐effects, such as inducing channel erosion downstream. While also having side‐effects, land use changes can have important long‐term effects on sediment yield. The application of either land use changes (i.e. reforestation) or check‐dams to control sediment yield depends on the objective of the management and the specific environmental conditions of each area. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Tree roots contribute to the resistance of riparian sediments to physical deformation and disintegration. Understanding reinforcement by roots requires information on root distributions within riparian soils and sediments. Continuous‐depth models or curves have been proposed to describe vertical root density variations, providing useful indicators of the types of function that may be appropriate to riparian trees, but have generally been estimated for terrestrial species or broad vegetation types rather than riparian species or environments. We investigated vertical distributions of roots >0.1 mm diameter of a single riparian tree species (Populus nigra L.) along the middle reaches of a single river (Tagliamento River, Italy), where Populus nigra dominates the riparian woodland. Root density (hundreds m?2) and root area ratio (RAR in cm2 m?2) were measured within 10 cm depth increments of 24 excavated bank profiles across nine sites. Sediment samples, extracted from distinct strata within the profiles, were analysed for moisture content, organic matter content and particle size. Statistical analyses identified two groups of wetter and drier profiles and five sediment types. Following loge‐transformation of root density and RAR, linear regression analysis explored their variation with depth and, using dummy variables, any additional influence of moisture and sediment type. Significant linear regression relationships were estimated between both root density and RAR and depth which explained only 15% and 8% of the variance in the data. Incorporating moisture and then sediment characteristics into the analysis increased the variance explained in root density to 29% and 36% and in RAR to 14% and 26%. We conclude that riparian tree root density and RAR are highly spatially variable and are poorly explained by depth alone. Complex riparian sedimentary structures and moisture conditions are important influences on root distributions and so need to be incorporated into assessments of the contribution of roots to river bank reinforcement. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Catchment sediment budget models are used to predict the location and rates of bank erosion in tropical catchments draining to the Great Barrier Reef lagoon, yet the reliability of these predictions has not been tested due to a lack of measured bank erosion data. This paper presents the results of a 3 year field study examining bank erosion and channel change on the Daintree River, Australia. Three different methods were employed: (1) erosion pins were used to assess the influence of riparian vegetation on bank erosion, (2) bench‐marked cross‐sections were used to evaluate annual changes in channel width and (3) historical aerial photos were used to place the short term data into a longer temporal perspective of channel change (1972–2000). The erosion pin data suggest that the mean erosion rate of banks with riparian vegetation is 6·5 times (or 85%) lower than that of banks without riparian vegetation. The changes measured from cross‐section surveys suggest that channel width has increased by an average of 0·74 (±0·47) m a?1 over the study period (or ~0·8% yr?1). The aerial photo results suggest that over the last 30 years the Daintree River has undergone channel contraction of the order of 0·25 m a?1. The cross‐section data were compared against modelled SedNet bank erosion rates, and it was found that the model underestimated bank erosion and was unable to represent the variable erosion and accretion processes that were observed in the field data. The reach averaged bank erosion rates were improved by the inclusion of locally derived bed slope and discharge estimates; however, the results suggest that it will be difficult for catchment scale sediment budget models to ever accurately predict the location and rate of bank erosion due to the variation in bank erosion rates in both space and time. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Historical records indicate that gray wolves (Canis lupus) were extirpated from the upper Gallatin River Basin in the early 1900s. Following the removal of these large carnivores, elk (Cervis elaphus) began to increasingly browse streamside vegetation in the winter range, causing widespread loss of formerly extensive willow (Salix spp.) communities. Historical aerial photographs and chronosequences of ground photographs were used to characterize general changes in vegetation and channel morphology over time. In August of 2004, riparian vegetation and channel cross‐sections were surveyed along three reaches of the upper Gallatin River. Reach A was located upstream of the elk winter range (control reach) whereas reaches B and C (treatment reaches) were located within the elk winter range. Willow cover on floodplains averaged 85 per cent for reach A, but only 26 per cent and 5 per cent for reaches B and C, respectively. The average return period of calculated bankfull discharges was 3·1 yrs for reach A but increased to 32·4 yrs and 10·6 yrs for reaches B and C, respectively. The long‐term loss of streamside vegetation allowed channels to generally increase in hydraulic capacity (via increases in width, incision or both) and decrease their hydrologic connectivity with adjacent floodplains. This study documents, perhaps for the first time, the resultant impacts to riparian vegetation functions and stream channel characteristics following the extirpation of a large mammalian carnivore. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号