首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Forests can decrease the risk of shallow landslides by mechanically reinforcing the soil and positively influencing its water balance. However, little is known about the effect of different forest structures on slope stability. In the study area in St Antönien, Switzerland, we applied statistical prediction models and a physically‐based model for spatial distribution of root reinforcement in order to quantify the influence of forest structure on slope stability. We designed a generalized linear regression model and a random forest model including variables describing forest structure along with terrain parameters for a set of landslide and control points facing similar slope angle and tree coverage. The root distribution measured at regular distances from seven trees in the same study area was used to calibrate a root distribution model. The root reinforcement was calculated as a function of tree dimension and distance from tree with the root bundle model (RBMw). Based on the modelled values of root reinforcement, we introduced a proxy‐variable for root reinforcement of the nearest tree using a gamma distribution. The results of the statistical analysis show that variables related to forest structure significantly influence landslide susceptibility along with terrain parameters. Significant effects were found for gap length, the distance to the nearest trees and the proxy‐variable for root reinforcement of the nearest tree. Gaps longer than 20 m critically increased the susceptibility to landslides. Root reinforcement decreased with increasing distance from trees and is smaller in landslide plots compared to control plots. Furthermore, the influence of forest structure strongly depends on geomorphological and hydrological conditions. Our results enhance the quantitative knowledge about the influence of forest structure on root reinforcement and landslide susceptibility and support existing management recommendations for protection against gravitational natural hazards. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Forests play a significant role in protecting people, settlements in mountainous terrains from hydrogeomorphic hazards, including shallow landslides. Although several studies have investigated the interactions between forests and slope instabilities, a full understanding of them has not yet been obtained. Additionally, models that incorporate forest stand properties into slope failure probability analyses have not been developed. In principle, physical‐based models, which are powerful tools for landslide hazard analyses, represent an appropriate approach to linking stand properties and slope stability. However, the reliability of these models depends on numerous parameters that describe highly complex geotechnical and hydrological processes (e.g. potential failure depth, saturation ratio, root reinforcement, etc.) that are difficult to measure and model. In particular, the spatial heterogeneity of root reinforcement remains a problem, and the use of physically based models from a forest management perspective has been limited. This paper presents a procedure for assessing slope stability in terms of the Factor of Safety that accounts for forest stand characteristics such as tree density, average diameter at breast height and minimum distance between trees. The procedure combines a three‐dimensional (3D) slope stability model with an evaluation of the variability of root reinforcement in terms of a probability distribution, according to forest characteristics. Monte Carlo simulation is used to account for the residual uncertainties in both stand characteristics and 3D stability model parameters. The proposed method was applied in a subalpine catchment in the Italian Alps, mainly covered by coniferous forest and characterized by steep slopes and high landslide risk. The results suggest that the procedure is highly reliable, according to landslide inventory maps [area under the ROC curve (AUC) is 0.82 and modified success rate (MSR) is 0.70]. Thus, it represents a promising tool for studying the role of root reinforcement in landslide hazard mapping and guiding forest management from a slope stability perspective. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
Knowledge of the mechanisms of rain‐induced shallow landslides can improve the prediction of their occurrence and mitigate subsequent sediment disasters. Here, we examine an artificial slope's subsurface hydrology and propose a new slope stability analysis that includes seepage force and the down‐slope transfer of excess shear forces. We measured pore water pressure and volumetric water content immediately prior to a shallow landslide on an artificial sandy slope of 32°: The direction of the subsurface flow shifted from downward to parallel to the slope in the deepest part of the landslide mass, and this shift coincided with the start of soil displacement. A slope stability analysis that was restricted to individual segments of the landslide mass could not explain the initiation of the landslide; however, inclusion of the transfer of excess shear forces from up‐slope to down‐slope segments improved drastically the predictability. The improved stability analysis revealed that an unstable zone expanded down‐slope with an increase in soil water content, showing that the down‐slope soil initially supported the unstable up‐slope soil; destabilization of this down‐slope soil was the eventual trigger of total slope collapse. Initially, the effect of apparent soil cohesion was the most important factor promoting slope stability, but seepage force became the most important factor promoting slope instability closer to the landslide occurrence. These findings indicate that seepage forces, controlled by changes in direction and magnitude of saturated and unsaturated subsurface flows, may be the main cause of shallow landslides in sandy slopes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
The growing availability of digital topographic data and the increased reliability of precipitation forecasts invite modelling efforts to predict the timing and location of shallow landslides in hilly and mountainous areas in order to reduce risk to an ever‐expanding human population. Here, we exploit a rare data set to develop and test such a model. In a 1·7 km2 catchment a near‐annual aerial photographic coverage records just three single storm events over a 45 year period that produced multiple landslides. Such data enable us to test model performance by running the entire rainfall time series and determine whether just those three storms are correctly detected. To do this, we link a dynamic and spatially distributed shallow subsurface runoff model (similar to TOPMODEL) to an in?nite slope model to predict the spatial distribution of shallow landsliding. The spatial distribution of soil depth, a strong control on local landsliding, is predicted from a process‐based model. Because of its common availability, daily rainfall data were used to drive the model. Topographic data were derived from digitized 1 : 24 000 US Geological Survey contour maps. Analysis of the landslides shows that 97 occurred in 1955, 37 in 1982 and ?ve in 1998, although the heaviest rainfall was in 1982. Furthermore, intensity–duration analysis of available daily and hourly rainfall from the closest raingauges does not discriminate those three storms from others that did not generate failures. We explore the question of whether a mechanistic modelling approach is better able to identify landslide‐producing storms. Landslide and soil production parameters were ?xed from studies elsewhere. Four hydrologic parameters characterizing the saturated hydraulic conductivity of the soil and underlying bedrock and its decline with depth were ?rst calibrated on the 1955 landslide record. Success was characterized as the most number of actual landslides predicted with the least amount of total area predicted to be unstable. Because landslide area was consistently overpredicted, a threshold catchment area of predicted slope instability was used to de?ne whether a rainstorm was a signi?cant landslide producer. Many combinations of the four hydrological parameters performed equally well for the 1955 event, but only one combination successfully identi?ed the 1982 storm as the only landslide‐producing storm during the period 1980–86. Application of this parameter combination to the entire 45 year record successfully identi?ed the three events, but also predicted that two other landslide‐producing events should have occurred. This performance is signi?cantly better than the empirical intensity–duration threshold approach, but requires considerable calibration effort. Overprediction of instability, both for storms that produced landslides and for non‐producing storms, appears to arise from at least four causes: (1) coarse rainfall data time scale and inability to document short rainfall bursts and predict pressure wave response; (2) absence of local rainfall data; (3) legacy effect of previous landslides; and (4) inaccurate topographic and soil property data. Greater resolution of spatial and rainfall data, as well as topographic data, coupled with systematic documentation of landslides to create time series to test models, should lead to signi?cant improvements in shallow landslides forecasting. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
6.
A comprehensive understanding of seasonal hydrological dynamics is required to describe the influence of pore‐water pressure on the stability of landslides in snowy regions. This study reports on the results of continuous meteorological and hydrological observations over 2 years on a landslide body comprising Neogene sedimentary rocks in northern Japan, where a thick (3–5 m) seasonal snowpack covers the land surface. Monitoring of the volumetric water content in shallow unsaturated zones (<0.8 m depth) and pore‐water pressure in saturated bedrock at depths of 2.0 and 5.2 m revealed clear seasonality in hydrological responses to rainfall and meltwater supply. During snow‐free periods, both the shallow soil moisture and deep pore‐water pressure responded rapidly to intense rainwater infiltration. In contrast, during snowmelt, the deep pore pressure fluctuated in accordance with the daily cycle of meltwater input, without notable changes in shallow moisture conditions. During occasional foehn events that cause intense snow melting in midwinter, meltwater flows preferentially through the layered snowpack, converging to produce a localized water supply at the ground surface. This episodically triggers a significant rise in pore‐water pressure. The seasonal differences in hydrological responses were characterized by a set of newly proposed indices for the magnitude and quickness of increases in the pressure head near the sliding surface. Under snow‐covered conditions, the magnitude of the pressure increase tends to be suppressed, probably owing to a reduction in infiltration caused by a seasonal decrease in the permeability of surface soils, and effective pore‐water drainage through the highly conductive colluvial layer. Deep groundwater flow within bedrock remained in a steady upwelling state, enhanced by increasing moisture in shallow soils under snow cover, reflecting the convergence of subsurface water from surrounding hillslopes.  相似文献   

7.
Rapid changes in the composition of hillslope vegetation due to a combination of changing climate and land use make estimating slope stability a significant challenge. The dynamics of root growth on any individual hillslope result in a wide range of root distributions and strengths that are reflected as up to an order of magnitude variability in root cohesion. Hence the challenge of predicting the magnitude of root reinforcement for hillslopes requires both an understanding of the magnitude and variability of root distributions and material properties (e.g. tensile strength, elasticity). Here I develop a model for estimating the reinforcement provided by plant roots based on the distribution of biomass measured at the biome level and a compilation of root tensile strength measurements measured across a range of vegetation types. The model modifies the Wu/Waldron method of calculating root cohesion to calculate the average lateral root cohesion and its variability with depth using the Monte Carlo method. The model was validated in two ways, the first against the predicted depth‐reinforcement characteristics of Appalachian soils and the second using a global dataset of landslides. Model results suggest that the order of magnitude difference in root cohesions measured on individual hillslopes can be captured by the Monte Carlo approach and provide a simple tool to estimate root reinforcement for data‐poor areas. The model also suggests that future hotspots of slope instability will occur in areas where land use and climate convert forest to grassland, rather than changes between different forest structures or forest and shrubland. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

8.
9.
Landslides and debris flows associated with forest harvesting can cause much destruction and the influence of the timing of harvesting on these mass wasting processes therefore needs to be assessed in order to protect aquatic ecosystems and develop improved strategies for disaster prevention. We examined the effects of forest harvesting on the frequency of landslides and debris flows in the Sanko catchment (central Japan) using nine aerial photo periods covering 1964 to 2003. These photographs showed a mosaic of different forest ages attributable to the rotational management in this area since 1912. Geology and slope gradient are rather uniformly distributed in the Sanko catchment, facilitating assessment of forest harvesting effects on mass wasting without complication of other factors. Trends of new landslides and debris flows correspond to changes in slope stability explained by root strength decay and recovery; the direct impact of clearcutting on landslide occurrence was greatest in forest stands that were clearcut 1 to 10 yr earlier with progressively lesser impacts continuing up to 25 yr after harvesting. Sediment supply rate from landslides in forests clearcut 1 to 10 yr earlier was about 10‐fold higher than in control sites. Total landslide volume in forest stands clearcut 0 to 25 yr earlier was 5·8 × 103 m3 km?2 compared with 1·3 × 103 m3 km?2 in clearcuts >25 yr, indicating a fourfold increase compared with control sites during the period when harvesting affected slope stability. Because landslide scars continue to produce sediment after initial failure, sediment supply from landslides continues for 45 yr in the Sanko catchment. To estimate the effect of forest harvesting and subsequent regeneration on the occurrence of mass wasting in other regions, changes in root strength caused by decay and recovery of roots should be investigated for various species and environmental conditions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
The first application of the SHETRAN basin‐scale, landslide erosion and sediment yield model is carried out for a major landsliding event in the upper 505 km2 of the Llobregat basin, in the eastern Spanish Pyrenees, in November 1982. The model simulates the spatial distribution of shallow landslides and their sediment yield. Acknowledging uncertainty in the model parameter evaluation, the aim of the application was not to reproduce the observed occurrence of landslides as accurately as possible with one simulation, but to bracket the observed pattern with several simulations representing uncertainty in the key input conditions. Bounds on the landslide simulations were thus determined as a function of uncertainty in the vegetation root cohesion (used in the model factor of safety calculations). The resulting upper bound considerably overestimates the observed pattern (17 000 landslides compared with an observation of around 700), but it reproduces several of the principal clusters in the observed pattern. The lower bound contains around 500 landslides. The sediment yield estimates (2670–14 630 t km?2) are comparable to measurements elsewhere in the Pyrenees for extreme events. The results demonstrate an ability to simulate the basin‐scale landslide response to a rainfall event and the resulting sediment yield. They also highlight the need for further research in setting the uncertainty bounds and in avoiding large overestimates of landslide occurrence arising in part from a current inability to model small‐scale controls for a basin of the given size. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
It is critical to understand and quantify the temporal and spatial variability in hillslope hydrological data in order to advance hillslope hydrological studies, evaluate distributed parameter hydrological models, analyse variability in hydrological response of slopes and design efficient field data sampling networks. The spatial and temporal variability of field‐measured pore‐water pressures in three residual soil slopes in Singapore was investigated using geostatistical methods. Parameters of the semivariograms, namely the range, sill and nugget effect, revealed interesting insights into the spatial structure of the temporal situation of pore‐water pressures in the slopes. While informative, mean estimates have been shown to be inadequate for modelling purposes, indicator semivariograms together with mean prediction by kriging provide a better form of model input. Results also indicate that significant temporal and spatial variability in pore‐water pressures exists in the slope profile and thereby induces variability in hydrological response of the slope. Spatial and temporal variability in pore‐water pressure decreases with increasing soil depth. The variability decreases during wet conditions as the slope approaches near saturation and the variability increases with high matric suction development following rainfall periods. Variability in pore‐water pressures is greatest at shallow depths and near the slope crest and is strongly influenced by the combined action of microclimate, vegetation and soil properties. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
In this work, a transient rainfall infiltration and grid‐based regional slope‐stability model (TRIGRS) was implemented in a case study of Yan'an City, Northwest China. In this area, widespread shallow landslides were triggered by the 12 July 2013 exceptional rainstorm event. A high‐resolution DEM, soil parameters from in‐situ and laboratory measurements, water table depths, the maximum depth of precipitation infiltration and rain‐gauge‐corrected precipitation of the event, were used as inputs in the TRIGRS model. Shallow landslides triggered on the same day were used to evaluate the modeling results. The summarized results are as follows: (i) The characteristics and distribution of thirty‐five shallow landslides triggered by the 12 July 2013 rainfall event were identified in the study area and all were classified as shallow landslides with the maximum depth, area and volume less than 3 m, 200 m2 and 1000 m3, respectively, (ii) Four intermediate factor of safety (FS) maps were generated using the TRIGRS model to represent the scenarios 6, 12, 18 and 24 hours after the storm event. The area with FS < 1 increased with the rainfall duration. The percentage of the area with FS < 1 was 0.2%, 3.3%, 3.8% and 5.1% for the four stages, respectively. Twenty‐four hours after the rainstorm, TRIGRS predicted that 1255 grid cells failed, which is consistent with the field data. (iii) TRIGRS generated more satisfactory results at a given precipitation threshold than SINMAP, which is ideal for landslide hazard zoning for land‐use planning at the regional scale. Comparison results showed that TRIGRS is more useful for landslide prediction for a certain precipitation threshold, also in the regional scale. (iv) Analysis of the responses of loess slope prone to slope failure after different precipitation scenarios revealed that loess slopes are particularly sensitive to extended periods of heavy precipitation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
The duration of the soil‐depth recovery needed for reoccurrence of shallow colluvial landslides at a given site in humid regions is much longer than the return period of rainfall needed to generate sufficient pore water pressure to initiate a landslide. Knowledge of the rate of change in soil depth in landslide scars is therefore necessary to evaluate return intervals of landslides. Spatial variation in sediment transport at the Kumanodaira landslide scar in central Japan was investigated by field observations. Spatial distribution of the rate of change in soil depth was estimated using sediment transport data and geographic information system (GIS) analysis. Observations revealed that the timing of sediment transport differed for shallow and deep soil layers. Near‐surface sediment transport (mostly dry ravel and some shallow soil creep at depths ≤0·05 m) measured in sediment traps was active in winter and early spring and was affected by freezing–thawing; soil creep of subsoil (i.e. >0·05 m), monitored by strain probes, was active in summer and autumn when precipitation was abundant. Near‐surface sediment flux was estimated by a power law function of slope gradient. Deeper soil creep was more affected by relative location to the landslide scar, which influences soil depth, than by slope gradient. Our study indicated that the rate of soil‐depth recovery is high just below the head scarp of the landslide. Abrupt changes in the longitudinal slope topography immediately above, within and just below the head scarp became smoother with time due to degradation proximate to the landslide head scarp and flanks, as well as aggradation just below the head scarp. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
This paper describes an extension to the Combined Hydrology And Stability Model (CHASM) to fully include the effects of vegetation and slope plan topography on slope stability. The resultant physically based numerical model is designed to be applied to site‐specific slopes in which a detailed assessment of unsaturated and saturated hydrology is required in relation to vegetation, topography and slope stability. Applications are made to the Hawke's Bay region in New Zealand where shallow‐seated instability is strongly associated with spatial and temporal trends in vegetation cover types, and the Mid‐Levels region in Hong Kong, an area subject to a variety of landslide mechanisms, some of which may be subject to strong topographic control. An improved understanding of process mechanism, afforded by the model, is critical for reliable and appropriate design of slope stabilization and remedial measures. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
Long‐term effects of different forest management practices on landslide initiation and volume were analysed using a physically based slope stability model. The watershed‐based model calculates the effects of multiple harvesting entries on slope stability by accounting for the cumulative impacts of a prior vegetation removal on a more recent removal related to vegetation root strength and tree surcharge. Four sequential clearcuts and partial cuts with variable rotation lengths were simulated with or without leave areas and with or without understorey vegetation in a subwatershed of Carnation Creek, Vancouver Island, British Columbia. The combined in?nite slope and distributed hydrologic models used to calculate safety factor revealed that most of the simulated landslides were clustered within a 5 to 17 year period after initial harvesting in cases where suf?cient time (c. 50 years) lapsed prior to the next harvesting cycle. Partial cutting produced fewer landslides and reduced landslide volume by 1·4‐ to 1·6‐fold compared to clearcutting. Approximately the same total landslide volume was produced when 100 per cent of the site was initially clearcut compared to harvesting 20 per cent of the area in successive 10 year intervals; a similar ?nding was obtained for partial cutting. Vegetation leave areas were effective in reducing landsliding by 2‐ to 3‐fold. Retaining vigorous understorey vegetation also reduced landslide volume by 3·8‐ to 4·8‐fold. The combined management strategies of partial cutting, increasing rotation length, provision of leave areas, and retention of viable understorey vegetation offer the best alternative for minimizing landslide occurrence in managed forests. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
The response of a landslide near Barcelonnette (southeast France) to climatic factors was simulated with three slope stability models: a fully empirical gross precipitation threshold, a semi‐empirical threshold model for net precipitation, and a fully conceptual slope stability model. The three models performed with similar levels in reproducing the present‐day temporal pattern of landslide reactivation, using dendrogeomorphological information as test data. The semi‐empirical and conceptual models were found to be overparameterized, because more than one parameter setting matching the test data was identified. In the case of the conceptual model, this resulted in strongly divergent scenarios of future landslide activity, using downscaled climate scenarios as inputs to the model. The uncertainty of the landslide scenarios obtained with the semi‐empirical model was much lower. In addition, the simulation of strongly different scenarios by the fully empirical threshold was attributed to its incomplete representation of the site‐specific landslide reactivation mechanism. It is concluded that the semi‐empirical model constitutes the best compromise between conceptual representation and model robustness. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
Landslides in forested landscapes have far-reaching implications, beyond that of just destroying the forest itself, sometimes initiating large-scale sediment disasters. Although vegetation increases slope stability through its root network, it is hard to evaluate its contribution to slope stability over a wide area. In this study, the relationship between tree height and landslide characteristics in the Ikawa catchment, central Japan, was investigated to develop a method for evaluating the effects of forest cover on slope stability over a regional extent. Catchment-wide tree height was obtained using airborne LiDAR point cloud data and used in conjunction with the root depth profile, measured for trees of various height by digging trenches. Root tensile strength per unit area of soil was calculated from individual root diameters and empirical power law equations on the relationship between root diameter and root tensile force in order to better understand the effect that tree height has on slope stability. Landslide density in the Ikawa catchment shows that landslides occur more frequently in forests with shorter trees, with occurrence decreasing as tree height increases. This is likely due to the stabilizing features of larger trees having a greater network of roots, which is supported by the general increase in total root area and the deeper penetration of root biomass into the soil as the height of trees surveyed increases. Landslide density was not solely affected by tree height, but also by slope gradient and plane curvature. Decreasing landslide occurrence and landslide area as tree height increases suggests that slope stability increases with tree height, while the random distribution of results when comparing landslide depth to tree height suggests that while tree height has an impact on relative slope stability, the landslide failure depth is independent of tree height, and thus controlled by other factors. © 2020 John Wiley & Sons, Ltd.  相似文献   

18.
Rainfall thresholds for shallow landslide initiation were determined for hillslopes with two types of bedrock, permeable sandstone and impermeable mudstone, in the Boso Peninsula, Japan. The pressure‐head response to rainfall was monitored above a slip scarp due to earlier landslides. Multiple regression analysis estimated the rainfall thresholds for landsliding from the relation between the magnitude of the rainfall event and slope instability caused by the increased pressure heads. The thresholds were expressed as critical combinations of rainfall intensity and duration, incorporating the geotechnical properties of the hillslope materials and also the slope hydrological processes. The permeable sandstone hillslope has a greater critical rainfall and hence a longer recurrence interval than the impermeable mudstone hillslope. This implies a lower potential for landsliding in sandstone hillslopes, corresponding to lower landslide activity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
The extrapolation of results from field trials to larger areas of land for purposes of regional impact assessment is an important issue in geomorphology, particularly for landform properties that show high stochastic variability in space and time, such as shallow landslide erosion. It is shown in this study, that by identifying the main driver for spatial variability in shallow landslide erosion at field scales, namely slope angle, it is possible to develop a set of generic functions for assessing the impact of landslides on selected soil properties at larger spatial scales and over longer time periods. Research was conducted within an area of pastoral soft‐rock Tertiary hill country in the North Island of New Zealand that is subject to infrequent high intensity rainfall events, producing numerous landslides, most of which are smaller than several hundred square metres in size and remove soil to shallow depths. All landslides were mapped within a 0·6 km2 area and registered to a high resolution (2 m) slope map to show that few landslides occur on slopes < 20° and 95% were on slopes > 24°. The areal density of landslides from all historical events showed an approximately linear increase with slope above 24°. Integrating landslide densities with soil recovery data demonstrates that the average value of a soil property fluctuates in a ‘saw‐tooth’ fashion through time with the overall shape of the curve controlled by the frequency of landslide inducing storm events and recovery rate of the soil property between events. Despite such fluctuations, there are gradual declines of 7·5% in average total carbon content of topsoil and 9·5% in average soil depth to bedrock, since the time of forest clearance. Results have application to large‐scale sediment budget and water quality models and to the New Zealand Soil Carbon Monitoring System (CMS). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The glacially formed northeastern German lowlands are characterized by extensive floodplains, often interrupted by relatively steep moraine hills. The hydrological cycle of this area is governed by the tight interaction of surface water dynamics and the corresponding directly connected shallow groundwater aquifer. Runoff generation processes, as well as the extent and spatial distribution of the interaction between surface water and groundwater, are controlled by floodplain topography and by surface water dynamics. A modelling approach based on extensive experimental analyses is presented that describes the specific water balance of lowland areas, including the interactions of groundwater and surface water, as well as reflecting the important role of time‐variable shallow groundwater stages for runoff generation in floodplains. In the first part, experimental investigations of floodplain hydrological characteristics lead to a qualitative understanding of the water balance processes and to the development of a conceptual model of the water balance and groundwater dynamics of the study area. Thereby model requirements which allow for an adequate simulation of the floodplain hydrology, considering also interactions between groundwater and surface water have been characterized. Based on these analyses, the Integrated Modelling of Water Balance and Nutrient Dynamics (IWAN) approach has been developed. This consists of coupling the surface runoff generation and soil water routines of the deterministic, spatially distributed hydrological model WASIM‐ETH‐I with the three‐dimensional finite‐difference‐based numerical groundwater model MODFLOW and Processing MODFLOW. The model was applied successfully to a mesoscale subcatchment of the Havel River in northeast Germany. It was calibrated for two small catchments (1·4 and 25 km2), where the importance of the interaction processes between groundwater and surface waters and the sensitivity of several controlling parameters could be quantified. Validation results are satisfying for different years for the entire 198 km2 catchment. The model approach was further successfully tested for specific events. The experimental area is a typical example of a floodplain‐dominated landscape. It was demonstrated that the lateral flow processes and the interactions between groundwater and surface water have a major importance for the water balance and periodically superimposed on the vertical runoff generation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号