首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study is focused on the analysis of the relationship between sap‐flow‐derived transpiration measured in a Scots pine stand in the Vallcebre research catchments (NE Iberian Peninsula) and meteorological and rainfall data. The first part of the study is focused on the analysis of temperature and rainfall anomalies. Then, the Scots pine transpiration response to inter‐annual rainfall variability, soil water stress and water table depth variations during the period 1997–2000 is analysed. This period includes the extremely dry year of 1998, which allows us to infer the response of Scots pine transpiration to severe droughts. Scots pine transpiration during the summer presented a high inter‐annual variability, largely related to rainfall amounts. Daily transpiration during dry summers was 40% of the transpiration of a summer day with average rainfall. Moreover, during dry summers, transpiration rates were not fully recovered even after significant rainfall events. The analysis of the dependence of Scots pine transpiration on available water indicated the strong limitation on transpiration induced by water content in the whole soil profile as well as by water table position. Under these drought conditions, a reduction of runoff and deep water stores was observed at the catchment scale, suggesting that the predicted increase in the frequency of severe summer droughts may threaten the current role of Mediterranean mountain catchments as suppliers of water resources for lowland areas. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The impacts of climate change on storm runoff and erosion in Mediterranean watersheds are difficult to assess due to the expected increase in storm frequency coupled with a decrease in total rainfall and soil moisture, added to positive or negative changes to different types of vegetation cover. This report, the second part of a two‐part article, addresses this issue by analysing the sensitivity of runoff and erosion to incremental degrees of change (from ? 20 to + 20%) to storm rainfall, pre‐storm soil moisture, and vegetation cover, in two Mediterranean watersheds, using the MEFIDIS model. The main results point to the high sensitivity of storm runoff and peak runoff rates to changes in storm rainfall (2·2% per 1% change) and, to a lesser degree, to soil water content (?1·2% per 1% change). Catchment sediment yield shows a greater sensitivity than within‐watershed erosion rates to both parameters: 7·8 versus 4·0% per 1% change for storm rainfall, and ? 4·9 versus ? 2·3% per 1% change for soil water content, indicating an increase in sensitivity with spatial scale due to changes to sediment connectivity within the catchment. Runoff and erosion showed a relatively low sensitivity to changes in vegetation cover. Finally, the shallow soils in one of the catchments led to a greater sensitivity to changes in storm rainfall and soil moisture. Overall, the results indicate that decreasing soil moisture levels caused by climate change could be sufficient to offset the impact of greater storm intensity in Mediterranean watersheds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Regolith surface characteristics and response were examined over a three‐year period in a badland area in a Mediterranean middle‐mountain zone near Vallcebre (Eastern Pyrenees). Preliminary work carried out in this area indicated clear seasonal patterns of regolith properties driven by frost heaving in winter and crusting and erosion in the rest of the year. Rainfall simulations were performed with a small portable nozzle simulator in order to study seasonal changes in runoff generation, erosion rates and raindrop effect on bulk density changes. The results showed large seasonal variations in runoff and erosion responses. In?ltration rates after runoff start were correlated with precipitation depth before runoff start; runoff generation was therefore related to regolith saturation only to a very limited extent. Erosion rates were more controlled by runoff rates than by the weakness of regolith against raindrop splash, and sediment grain size increased with concentration. The combined role of antecedent regolith moisture and bulk density explained most of the seasonal variability in in?ltration, bulk density changes during rainfall and erosion rates, but some seasonal differences in sediment detachability were not explained by these variables and may be attributed to changes in roughness. Overall, runoff and erosion responses were relatively stable during spring and autumn, whereas wide variations in in?ltration rates and sediment detachment occurred in winter and summer respectively. Experiments conducted in a single season would have produced poorly representative, if not erroneous, results. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Climate change is expected to increase temperatures and lower rainfall in Mediterranean regions; however, there is a great degree of uncertainty as to the amount of change. This limits the prediction capacity of models to quantify impacts on water resources, vegetation productivity and erosion. This work circumvents this problem by analysing the sensitivity of these variables to varying degrees of temperature change (increased by up to 6·4 °C), rainfall (reduced by up to 40%) and atmospheric CO2 concentrations (increased by up to 100%). The SWAT watershed model was applied to 18 large watersheds in two contrasting regions of Portugal, one humid and one semi‐arid; incremental changes to climate variables were simulated using a stochastic weather generator. The main results indicate that water runoff, particularly subsurface runoff, is highly sensitive to these climate change trends (down by 80%). The biomass growth of most species showed a declining trend (wheat down by 40%), due to the negative impacts of increasing temperatures, dampened by higher CO2 concentrations. Mediterranean species, however, showed a positive response to milder degrees of climate change. Changes to erosion depended on the interactions between the decline in surface runoff (driving erosion rates downward) and biomass growth (driving erosion rates upward). For the milder rainfall changes, soil erosion showed a significant increasing trend in wheat fields (up to 150% in the humid watersheds), well above the recovery capacity of the soil. Overall, the results indicate a shift of the humid watersheds to acquire semi‐arid characteristics, such as more irregular river flows and increasingly marginal conditions for agricultural production. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Abstract

The scale invariance of rainfall series in the Tunis area, Tunisia (semi-arid Mediterranean climate) is studied in a mono-fractal framework by applying the box counting method to four series of observations, each about 2.5 years in length, based on a time resolution of 5 min. In addition, a single series of daily rainfall records for the period 1873–2009 was analysed. Three self-similar structures were identified: micro-scale (5 min to 2 d) with fractal dimension 0.44, meso-scale (2 d to one week) and synoptic-scale (one week to eight months) with fractal dimension 0.9. Interpretation of these findings suggests that only the micro-scale and transition to saturation are consistent, while the high fractal dimension relating to the synoptic scale might be affected by the tendency to saturation. A sensitivity analysis of the estimated fractal dimension was performed using daily rainfall data by varying the series length, as well as the intensity threshold for the detection of rain.

Editor Z.W. Kundzewicz; Associate editor S. Grimaldi

Citation Ghanmi, H., Bargaoui, Z., and Mallet, C., 2013. Investigation of the fractal dimension of rainfall occurrence in a semi-arid Mediterranean climate. Hydrological Sciences Journal, 58 (3), 483–497.  相似文献   

6.
In sparsely cropped farming systems in semi-arid tropics, rainfall partitioning can be complex due to various interactions between vertical and horizontal water flows, both in the atmosphere and in the soil. Despite this, quantifying the seasonal rainfall partitioning is essential, in order to identify options for increased yields. Results are presented on water flow components, based on field measurements and water balance modelling, for three years (1994–96) in a farmer's field cultivated with pearl millet [Pennisetum glaucum (L.) Br.] in the Sahel (Niger). Water balance modelling was carried out for three common infiltration categories: runoff producing surfaces, surfaces receiving inflow of runon water from upstream zones, and a reference surface with zero runoff and runon. Runoff was calculated to 25%–30% of annual rainfall (which ranged from 488 to 596 mm), from crust observations, rainfall, soil wetness data, and infiltration estimates. Inflow of runon was estimated from field observations to 8%–18% of annual rainfall. The parameters in the functions for soil surface and canopy resistances were calibrated with field measurements of soil evaporation, stomatal conductance and leaf area. The model estimates of soil water contents, which were validated against neutron probe measurements, showed a reasonable agreement with observed data, with a root mean square error (RMSE) of approximately 0.02 m3 m−3 for 0–160 cm soil depth. Estimated productive water flow as plant transpiration was low, amounting to 4%–9% of the available water for the non-fertilised crop and 7%–24% for the fertilised crop. Soil evaporation accounted for 31%–50% of the available water, and showed a low variation for the observed range of leaf area (LAI <1 m2 m−2). Deep percolation was high, amounting to 200–330 mm for the non-crusted surfaces, which exceeded soil evaporation losses, for 1994–95 with relatively high annual rainfall (517–596 mm). Even a year with lower rainfall (488 mm) and a distinct dry spell during flowering (1996), resulted in an estimated deep percolation of 160 mm for the non-fertilised crop. The crop did not benefit from the additional inflow of runon water, which was partitioned between soil water storage and deep percolation. The only exception to this was the fertilised crop in 1996, where runon somewhat compensated for the limited rainfall and the higher water demand as a result of a larger leaf area than the non-fertilised crop. The effects of rainfall erraticness, resulting in episodic droughts, explain why a crop that uses such a small proportion of the available water, in an environment with substantial deep percolation, still suffers from water scarcity. Application of small levels of phosphorus and nitrogen roughly doubled yields, from 380 to 620 kg ha−1, and plant transpiration, from 33 to 78 mm. Evapotranspirational water use efficiency (WUEET) was low, 6500–8300 m3 ton−1 grain for non-fertilised crop, which is an effect of the low on-farm yields and high non-productive water losses. The estimated seasonal rainfall partitioning indicates the possibility of quantifying vertical water flows in on-farm environments in the Sahel, despite the presence of surface overland flow.  相似文献   

7.
Climate change is expected to alter temperatures and precipitation patterns, affecting river flows and hence riparian corridors. In this context we have explored the potential evolution of riparian corridors under a dryness gradient of flow regimes associated with climate change in a Mediterranean river. We have applied an advanced bio‐hydromorphodynamic model incorporating interactions between hydro‐morphodynamics and vegetation. Five scenarios, representing drier conditions and more extreme events, and an additional reference scenario without climate change, have been designed and extended until the year 2100. The vegetation model assesses colonization, growth and mortality of Salicaceae species. We analysed the lower course of the Curueño River, a free flowing gravel bed river (NW Spain), as a representative case study of the Mediterranean region. Modelling results reveal that climate change will affect both channel morphology and riparian vegetation in terms of cover, age distribution and mortality. Reciprocal interactions between flow conditions and riparian species as bio‐engineers are predicted to promote channel narrowing, which becomes more pronounced as dryness increases. Reductions in seedling cover and increases in sapling and mature forest cover are predicted for all climate change scenarios compared with the reference scenario, and the suitable area for vegetation development declines and shifts towards lower floodplain elevations. Climate change also leads to younger vegetation becoming more subject to uprooting and flooding. The predicted reduction in suitable establishment areas and the narrowing of vegetated belts threatens the persistence of the current riparian community. This study highlights the usefulness of advanced bio‐hydromorphodynamic modelling for assessing climate change effects on fluvial landscapes. It also illustrates the need to consider climate change in river management to identify appropriate adaptation measures for riparian ecosystems. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

8.
This study examines the effect of water repellency on controlling temporal variability of runoff generation mechanisms and soil detachment on metamorphic derived soils under dry‐Mediterranean climate. The research is carried out in an unburnt Mediterranean hillslope in souther Spain characterized by a patchy vegetation pattern and shallow soils. The Water Drop Penetration Time test (WDPT) is applied to measure water repellency at the end of summer (Sep‐2008), mid autumn (Nov‐2008) and mid winter (Feb‐2009). Rainfall simulations were used to obtain runoff generation and soil detachment in the same periods of time. The main shrub specie is Cistus monspeliensis which leaves a load of litter during the summer due to the lack of water. This great amount of organic material is accumulated under the shrubs triggering an extreme water repellence (WDPT > 6,000 s) that limits infiltration processes. This process is enforced due to the low soil water content at the end of dry season. Certain water repellency (WDPT > 1,500 s) is also observed on bare soil as consequence of their sandier texture and the accumulation of annual plants which die at the end of the wet season. Soil moisture increases during the autumn and water repellency disappears in both shrub and bare soil at the middle of the wet season (WDPT < 5 s). The main consequence is that the temporal trend of water repellency controls the mechanism and frequency of runoff generation and, hence, soil detachment. At the end of the summer, Hortonian mechanisms predominates when water repellency is extreme, even in soils under Cistus monspeliensis where runoff generation can reach higher peaks of overland flow and sediment concentration. Conversely, only the saturation of soil could generate runoff during the wet season being this quite less frequent in bare soil and absent in shrub. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
An understanding of the weather drivers of soil erosion necessitates an extended instrumental meteorological series and knowledge of the processes linking climate and hydrology. The nature of such linkages remains poorly understood for the Mediterranean region. This gap is addressed through a composite analysis of long‐term climatic controls on rain erosivity in the Calore River Basin (southern Italy) for the period 1869–2006. Based on a parsimonious interpretation of rainstorm processes, a model (comparable with the Revised Universal Soil Loss Equation) was adapted to generate erosivity values on different time‐aggregation scales (yearly and seasonal). The evolution of the generated series of cumulated and extreme erosivity events was assessed by two return period (T) quantiles via a 22‐year moving window analysis (low return period, T = 2 years; high return period, = 50 years). Erosivity extremes are shown to be characterized by increasing yearly trends (at a 100‐year rate of ~150 MJ mm ha–1 h–1 for = 2 years and ~800 MJ mm ha–1 h–1 for = 50 years), especially during the spring and autumn seasons. Quantile patterns on the extremes are also shown to be decoupled from trends in the cumulated values. The Buishand test was applied to detect the presence of temporal change points, and a wavelet spectrum analysis used for time‐frequency localization of climate signals. A change‐point in the evolution of climate is revealed over the 1970s in the spring series, which correlates to a distinct rain erosivity increase. The results indicate that soil erosion risk tends to rise as a consequence of an escalation of the climate erosive hazard, predominantly between April and November (associated with cultivation and tillage practices). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Infiltration is the process of water penetrating into soil, generally referred to as the downward movement of water from the soil surface[1,2]. This process is af-fected by water supply and the soil infiltrability, de-termines the amounts of water entering into soil pro-file and the surface runoff. Infiltrability is defined as the infiltration flux of a unit area under atmospheric pressure and sufficient water supply. The actual infil-tration rate and/or the infiltrability is expressed in m/s …  相似文献   

11.
Rainfall is the key climate variable that governs the spatial and temporal availability of water. In this study we identified monthly rainfall trends and their relation to the southern oscillation index (SOI) at ten rainfall stations across Australia covering all state capital cities. The nonparametric Mann–Kendall (MK) test was used for identifying significant trends. The trend free pre‐whitening approach (TFPW) was used to remove the effects of serial correlation in the dataset. The trend beginning year was approximated using the cumulative summation (CUSUM) technique and the influence of the SOI was identified using graphical representations of the wavelet power spectrum (WPS). Decreasing trends of rainfall depth were observed at two stations, namely Perth airport for June and July rainfall starting in the 1970s and Sydney Observatory Hill for July rainfall starting in the 1930s. No significant trends were found in the Melbourne, Alice Springs and Townsville rainfall data. The remaining five stations showed increasing trends of monthly rainfall depth. The SOI was found to explain the increasing trends for the Adelaide (June) and Cairns (April) rainfall data and the decreasing trends for Sydney (July) rainfall. Other possible climatic factors affecting Australian rainfall are also discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Groundwater-dependent ecosystems represent globally rare edaphic islands of scattered distribution, often forming areas of regionally unique environmental conditions. A stable groundwater supply is a key parameter defining their ecological specificity, promoting also soil thermal buffering. Still, a limited number of studies dealt with the importance of water temperature in mire ecosystems and virtually no data exist on within-site variation in the temperature buffer effect. Three temperature dataloggers, placed in patches potentially differing in groundwater supply, were installed in each of 19 Western Carpathian spring mire sites from May 2019 to July 2020. Spring source plots statistically differed in water temperature parameters from the plots located towards the spring mire margin, which did not significantly differ from one another. At the majority of sites, the temperature values changed gradually from spring source to mire margins, fitting the pattern expected in the groundwater temperature buffering scenario. Dataloggers placed in the spring sources were the most distinctive from the others in thermal buffering parameters in conditional principal component analysis. The difference between the spring source and its margin was on average 3.25 °C for 95th percentile of the recorded water temperature data points (i.e. warm extremes) and 1.91 °C for 5th percentile (i.e. cold extremes). This suggests that if the temperature at spring source area is considered, thermal buffering within a site may mitigate mainly warm extremes. Thus, our data may provide an important baseline for predictions of possibly upcoming changes in spring mire hydrology caused by climate change. Both warming and precipitation decrease can give rise to the loss or substantial reduction of buffering effect if the contrasting parameters now recorded at the central part shift to those found towards the margins of groundwater-fed areas.  相似文献   

13.
Through combining the soil respiration with the main environmental factors under the planting shelterbelt (Populus woodland) and the natural desert vegetation (Tamarix ramosissima Phragmites communis community and Haloxylon ammodendron community) in the western Junngar Basin, the difference in soil respiration under different land use/land cover types and the responses of soil respiration to temperature and soil moisture were analyzed. Results showed that the rate of soil respiration increased with temperature. During the daytime, the maximum soil respiration rate occurred at 18:00 for the Populus woodland, 12:00 for T. ramosissima Ph. communis community, and 14:00 for H. ammodendron community, while the minimum rate all occurred at 8:00. The soil respiration, with the maximum rate in June and July and then declining from August, exhibited a similar trend to the near-surface temperature from May to October. During the growing season, the mean soil respiration rates and seasonal variation differed among the land use/land cover types, and followed the order of Populus woodland >T. ramosissima Ph. communis community > H. ammodendron community. The difference in the soil respiration rate among different land use/land cover types was significant. The soil respiration of Pouplus woodland was significantly correlated with the near-surface temperature and soil temperature at 10 cm depth (P < 0.01) in an exponential manner. The soil respiration of T. ramosissima Ph. communis and H. ammodendron communities were all linearly correlated with the near-surface temperature and soil surface temperature (P < 0.01). Based on the near-surface tempera-ture, the calculated Q10 of Populus woodland, T. ramosissima Ph. communis community and H. ammodendron community were 1.48, 1.59 and 1.63, respectively. The integrated soil respiration of the three land use/land cover types showed a significant correlation with the soil moisture at 0―5 cm, 5― 15 cm and 0―15 cm depths (P < 0.01). The quadratic model could best describe the relationship between soil respiration and soil moisture at 0―5 cm depth (P < 0.01).  相似文献   

14.
The root‐zone moisture replenishment mechanisms are key unknowns required to understand soil hydrological processes and water sources used by plants. Temporal patterns of root‐zone moisture replenishment reflect wetting events that contribute to plant growth and survival and to catchment water yield. In this study, stable oxygen and hydrogen isotopes of twigs and throughfall were continuously monitored to characterize the seasonal variations of the root‐zone moisture replenishment in a native vegetated catchment under Mediterranean climate in South Australia. The two studied hillslopes (the north‐facing slope [NFS] and the south‐facing slope [SFS]) had different environmental conditions with opposite aspects. The twig and throughfall samples were collected every ~20 days over 1 year on both hillslopes. The root‐zone moisture replenishment, defined as percentage of newly replenished root‐zone moisture as a complement to antecedent moisture for plant use, calculated by an isotope balance model, was about zero (±25% for the NFS and ± 15% for the SFS) at the end of the wet season (October), increased to almost 100% (±26% for the NFS and ± 29% for the SFS) after the dry season (April and May), then decreased close to zero (±24% for the NFS and ± 28% for the SFS) in the middle of the following wet season (August). This seasonal pattern of root‐zone moisture replenishment suggests that the very first rainfall events of the wet season were significant for soil moisture replenishment and supported the plants over wet and subsequent dry seasons, and that NFS completed replenishment over a longer time than SFS in the wet season and depleted the root zone moisture quicker in the dry season. The stable oxygen isotope composition of the intraevent samples and twigs further confirms that rain water in the late wet season contributed little to root‐zone moisture. This study highlights the significant role of the very first rain events in the early wet season for ecosystem and provides insights to understanding ecohydrological separation, catchment water yield, and vegetation response to climate changes.  相似文献   

15.
The decay of roughness is an important factor governing surface processes such as infiltration and soil erosion. Thus the decay of surface roughness under different surface conditions was investigated and related to quantitative amounts of soil loss, runoff and sediment concentration in a laboratory experiment. Rainfall with an intensity of 128 mm/h was applied to a bare or mulched surfaces of a sandy loam soil with known surface roughness at specified time intervals. The decay of roughness as expressed by roughness ratio, in this experiment, was better predicted when related to an exponential function of the square root of cumulative kinetic energy of rainfall rather than with the cumulative rainfall. The roughness decay equations in literature did not predict breakdown under mulched surfaces accurately. Thus the exponent parameters of the roughness decay equations were adjusted to reflect the reduced decay occurring under mulched surfaces. In a bare soil, regression equations expressing the dependent variables as a function of initial roughness index were significant, but with low coefficients of determination, being 0·39 for soil loss, 0·12 for runoff and 0·36 for sediment concentration. In addition to initial roughness index, cumulative kinetic energy of rainfall was further included in the regressions. This led to an increase in coefficients of determination, which was 0·81 for soil loss, 0·74 for runoff and 0·49 for sediment concentration. The coefficients of determination (0·87 for soil loss, 0·85 for runoff and 0·51 for sediment concentration) were further increased when the final roughness index was included in addition to initial roughness index and cumulative kinetic energy in the regressions. This work shows that soil loss and runoff could be predicted from bare soil surface provided the initial roughness and the energy of rainfall is known. However, field verifications of these relationships are needed under different tillage tools and under natural rainfall. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
Temporal stability of soil water content (TS SWC) is an often‐observed phenomenon, which characterization finds multiple applications. Climate and variability in soil properties are usually mentioned as factors of TS SWC, but their effects are far from clear. The objective of this work was to use SWC modeling to evaluate the effects of climate and soil hydraulic properties on the TS of soil water at different measurement schedules. We selected four representative climates found in USA and simulated the multiyear SWC dynamics for sandy loam, loam, and silty clay loam soils, all having the lognormal spatial distribution of the saturated hydraulic conductivity. The CLIMGEN and the HYDRUS6 codes were used to generate weather patterns and to simulate SWC, respectively. Four different methods were applied to select the representative location (RL). The low probability of having the same variability of mean relative differences of soil water under different climates was found in most of the cases. The probability that the variance of mean relative differences depended on sampling frequency was generally higher than 91% for the three soils. The interannual difference in mean relative differences variation from short and intensive summer campaigns was highly probable for all climates and soils. The RLs changed as climate and measurement scheduling changed, and they were less pronounced for coarse‐textured soils. The RL selection methods based solely on bias provided more consistency as compared with other methods. The TS appears to be the result of the interplay between climate, soil properties, and survey protocols. One implication of this factor interaction effect on TS SWC is that a simulation study can be useful to decide on the feasibility of including a search for TS‐based RLs for a specific site. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Improved knowledge on overland flow (OF) generation and its dynamics (i.e. spatial and temporal variations) is essential to understand catchment hydrology, a prerequisite for better water resources and soil management. In this study, our main objective was to quantify the dynamics of OF during rainfall events and to assess its main factors of control. The research study was undertaken in an agricultural 23‐ha catchment of a communal pasture in KwaZulu‐Natal (South Africa) experiencing Mediterranean climate and with variations of soil, topography and vegetation conditions. The dynamics of OF was evaluated during three rainfall seasons (2007 to 2010) by using 1 × 1‐m² microplots (n = 15) located at five landscape positions. At each location, a microplot was equipped with an automatic tipping bucket linked to a logger to estimate the delay between the start of the rain and the start of OF [i.e. the time to runoff initiation (TRI)]. Multivariate analysis was applied to the total OF and TRI data and the information on selected environmental factors (rainfall characteristics; soil type; soil clay content, Clay; proportion of the soil surface covered by vegetation, Cov; proportion of the soil surface covered by crusting, Crust; mean slope gradient, S; soil bulk density, ρb; soil water tension at different depths, SWT). The average OF rate over the 3‐year study period varied 2.3‐fold across the catchment (from 15% footslope to 35% backslope), whereas the average TRI varied by a 10.6‐fold factor (between 0.6 min at bottomland and 6.4 min at footslope). TRI temporal variations correlated the most with event duration (r = 0.8) and cumulative amount of rainfall since the onset of the rainy season (r = ?0.47), whereas TRI spatial variations were controlled the most by Crust (?0.97 < r < ?0.77). Ultimately, TRI spatial variations were modelled and mapped in an attempt to model OF dynamics over the entire microcatchment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
The main objective of this research was to analyse the effect of soil management on soil sealing and on soil water content under contrasting tillage practices and its influence on corn yield. The experimental research was carried out in a field cultivated with irrigated corn differentiated into three zones representing a gradient of soil texture (Z1, Z2, and Z3, i.e., increasingly coarser). Two plots under different soil management practices (conventional intensive tillage, CT, and no‐tillage, NT) were selected in each zone. The susceptibility to sealing of each soil and the steady infiltration rates were evaluated in the laboratory subjecting the soils to rainfall simulation applied at an intensity of 25 mm h?1. In addition, soil porosity under each treatment was quantified. Soil water content (0–90 cm depth) was determined gravimetrically at the beginning and the end of the growing cycle and at the surface (0–5 cm) during three growing seasons and continuously at two depths (5–15 and 50–60 cm) during the last growing cycle. Soil water content was simulated using the SIMPEL model, which was calibrated for the experimental conditions. Corn yield and above‐ground biomass were also analysed. Significant differences in soil sealing among zones, with decreasing soil sealing for coarser textures, and treatments were observed with infiltration rates that were near twice in NT than in CT, being the effect of soil cover significant in the reduction of soil detachment and soil losses. NT showed higher soil water content than CT, especially in the surface layers. Above‐ground biomass production was smaller in CT than in NT, and in the areas with higher sealing susceptibility was 30% to 45% smaller than in other zones, reaching the smallest values in Z1. A similar reduction in corn yield was observed between treatments being smaller in CT than in NT. No‐tillage has been confirmed as an effective technique that benefits soil physical properties as well as crop yields in relation to CT, being its impact greater in soils susceptible to sealing.  相似文献   

19.
Steep erosion‐prone and vegetation‐free slopes are widespread in alpine areas and are often discussed since they have a high socio‐economic damage potential. We present an eco‐engineering approach to test whether a mycorrhizal inoculum improves the establishment of hedge brush layers and in turn soil structural stability on a steep, coarse‐grained vegetation‐free slope in the eastern Swiss Alps. We established (i) mycorrhizal and (ii) non‐mycorrhizal treated eco‐engineered research plots on a field experimental scale, covering a total area of approximately 1000 m2 on an east‐northeast (ENE) exposed slope, where many environmental parameters can be regarded as homogeneous. After a full vegetation period, we quantified soil aggregate stability, the formation of water stable aggregates and the fine‐root development. Our results illustrate that the establishment of brush layers without mycorrhizal inoculum increased aggregate stability significantly. Against our expectation and glasshouse experiments, the addition of mycorrhizal inoculum did not have a statistically significant effect after one vegetation period although it tended to increase aggregate stability. Analogously, root length density (RLD) tended to be higher at the non‐mycorrhizal treated site. Aggregate stability was significantly correlated with RLD. Studies on a bigger field experimental scale are inevitable, complement glasshouse studies and lead to a better understanding for a successful application of sustainable eco‐engineering measures in alpine environments. Based on our results and considering the fact that the response time in natural ecosystems may be slower than in laboratory approaches, we conclude that long‐term field studies are necessary to validate results gained through laboratory experiments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Rainfall is considered as the dominant water replenishment in desert ecosystems, and the conversion of rainfall into soil water availability plays a central role in sustaining the ecosystem function. In this study, the role of biological soil crusts (BSCs), typically formed in the revegetated desert ecosystem in the Tengger Desert of China, in converting rainfall into soil water, especially for the underlying soil moisture dynamics, was clarified by taking into account the synthetic effects of BSCs, rainfall characteristics, and antecedent soil water content on natural rainfall conditions at point scale. Our results showed that BSCs retard the infiltration process due to its higher water holding capacity during the initial stage of infiltration, such negative effect could be offset by the initial wet condition of BSCs. The influence of BSCs on infiltration amount was dependent on rainfall regime and soil depth. BSCs promoted a higher infiltration through the way of prolonged water containing duration in the ground surface and exhibited a lower infiltration at deep soil layer, which were much more obvious under small and medium rainfall events for the BSCs area compared with the sand area. Generally, the higher infiltration at top soil layer only increased soil moisture at 0.03 m depth; in consequence, there was no water recharge for the deep soil, and thus, BSCs had a negative effect on soil water effectiveness, which may be a potential challenge for the sustainability of the local deep‐rooted vegetation under the site specific rainfall conditions in northwestern China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号