首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purification of Wastewaters Containing Azo Dyes This study describes the degradability of the azo dye C.I. Reactive Violet 5 by a continuous flow biological treatment system consisting of three rotating disc reactors. The azo dye was first decolorized in an anaerobic reactor. Decolorization was improved by adding an auxiliary substrate (yeast extract and acetic acid). Although severe operating conditions were experienced due to failures in the temperature and pH-controllers, the reactor recovered quickly and continued to decolorize reliably. The removal of the auxiliary substrate in the anaerobic reactor was not satisfactory, probably due to the copper in the azo dye. Batch experiments showed that copper was removed from the dye molecule and precipitated during the decolorization. In the continuous flow reactor, the copper precipitate on the disc can redissolve due to a pH-gradient in the fixed biomass becoming toxic again for the bacteria. In the following two aerobic reactors, the auxiliary substrate was degraded, but mineralization of the dye metabolites was insufficient. The aromatic amines produced by the anaerobic decolorization are more toxic in the bacterial luminescence test than the azo dye. Therefore, decolorization alone cannot be used to treat colored wastewater. Since the amines can also be produced in anaerobic parts of rivers, the dyes have to be removed in a more efficient way. That is the reason why in further experiments ozonation is being tested to increase the biological degradability of the azo dye for a following aerobic stage. Either ozonation can be used after the two stage treatment of the dye in anaerobic/aerobic reactors or the dye can be oxidized directly, making the addition of auxiliary substrate unnecessary. These configurations are being tested with the goal to degrade the dye with the least ozone consumption.  相似文献   

2.
This study reports the performance of a combined anaerobic–aerobic packed‐bed reactor that can be used to treat domestic sewage. Initially, a bench‐scale reactor was operated in three experimental phases. In the first phase, the anaerobic reactor was operated with an average organic matter removal efficiency of 77% for a hydraulic retention time (HRT) of 10 h. In the second phase, the reactor was operated with an anaerobic stage followed by an aerobic zone, resulting in a mean value of 91% efficiency. In the third and final phase, the anaerobic–aerobic reactor was operated with recirculation of the effluent of the reactor through the anaerobic zone. The system yielded mean total nitrogen removal percentages of 65 and 75% for recycle ratios (r) of 0.5 and 1.5, respectively, and the chemical oxygen demand (COD) removal efficiencies were higher than 90%. When the pilot‐scale reactor was operated with an HRT of 12 h and r values of 1.5 and 3.0, its performance was similar to that observed in the bench‐scale unit (92% COD removal for r = 3.0). However, the nitrogen removal was lower (55% N removal for r = 3.0) due to problems with the hydrodynamics in the aerobic zone. The anaerobic–aerobic fixed‐bed reactor with recirculation of the liquid phase allows for concomitant carbon and nitrogen removal without adding an exogenous source of electron donors and without requiring any additional alkalinity supplementation.  相似文献   

3.
The decolorization of some of azo‐metal complex dyes used in textile industry was investigated in this study. The halophilic prokaryotes isolated from a solar sea‐saltern (Çamalt?) in Turkey were screened for resistance to five commercial azo and mixture of azo‐metal complex dyes. Only one bacterium was found to be resistant against two of dyes, namely Lanaset Navy R and Lanaset Brown B. The bacterium was identified as Halobacillus sp. C‐22 according to 16S rRNA gene sequence analyses. Decolorization experiments were carried out at 120 mg/L concentration of both dyes, at room temperature, and with an acidic pH of 4.5. Lanaset Brown B was decolorized at a high adsorbance ratio (96.12%) at the 78th hour. However, Lanaset Navy R was rapidly decolorized in 10 min (46.67%) and showed the highest adsorbance ratio (60.66%) at the third hour. Freundlich and Langmuir equilibrium isotherm models were used to evaluate the adsorption of dyes and Freundlich isoterm was more suitable for biosorpsiyon of both azo dyes. The functional groups on Halobacillus sp. C‐22 for decolorization were characterized by FT‐IR. This is the first study to reveal potential of Halobacillus sp. for decolorization of textile azo‐metal complex dyes.  相似文献   

4.
This research demonstrates that groundwater contaminated by a relatively dilute but persistent concentration of 1,4‐dioxane (1,4‐D), approximately 60 μg/L, and chlorinated aliphatic co‐contaminants (1.4 to 10 μg/L) can be efficiently and reliably treated by in situ aerobic cometabolic biodegradation (ACB). A field trial lasting 265 days was conducted at Operable Unit D at the former McClellan Air Force Base and involved establishing an in situ ACB reactor through amending recirculated groundwater with propane and oxygen. The stimulated indigenous microbial population was able to consistently degrade 1,4‐D to below 3 μg/L while the co‐contaminants trichloroethene (TCE) and 1,2‐dichloroethane (1,2‐DCA) were decreased to below 1 μg/L and 0.18 μg/L, respectively. A stable treatment efficiency of more than 95% removal for 1,4‐D and 1,2‐DCA and of more than 90% removal for TCE was achieved. High treatment efficiencies for 1,4‐D and all co‐contaminants were sustained even without propane and oxygen addition for a 2‐week period.  相似文献   

5.
This paper presents a field investigation of aromatic volatile organic compounds (AVOCs) emissions from a sequence batch reactor (SBR) with powdered activated carbon (PAC) to treat the wastewater in a large petroleum refinery plant. AVOC with high Henry's constant preferred to transfer from liquid‐phase into air‐phase so that might cause the emission and odor problem. During SBR operation, AVOC concentrations and distributions in wastewater, sludge and off‐gas were analyzed. The total AVOC removal from wastewater was >99% under the kinetic parameters of SBR operated. Batch experiments were carried out in the laboratory to obtain the adsorptive characteristic of AVOC onto PAC, but the results showed that bio‐degradation was the main removal mechanism (85%). Nevertheless, off‐gas emission (<1%) and AVOC in the sludge (<0.1%) remained a stable level. Oxidation/reduction potential (ORP) was correlated to the logarithm of the dissolved oxygen (DO) concentration in a linear relationship so that ORP profile could indirectly reflect the DO and biomass concentrations. Since the influent AVOC concentration was varied and difficultly to measure, ORP could be used as real‐time parameter for optimizing SBR operation. The results provided useful information for future evaluation of AVOC emissions from wastewater treatment plants.  相似文献   

6.
In situ air sparging is used to remediate petroleum fuels and chlorinated solvents present as submerged contaminant source /ones and dissolved contaminant plumes, or to provide barriers to dissolved contaminant plume migration. Contaminant removal occurs through a combination of volatilization and aerobic biodegradation: thus, the performance at any given site depends on the contaminant and oxygen mass transfer rates induced by the air injection. It has been hypothesized that these rates are sensitive to changes in process flow conditions and site lithology, but no data is available to identify trends or the magnitude of the changes. In this work, oxygenation rates were measured for a range of air injection rates, ground water flow rates, and pulsing frequencies using a laboratory-scale two-dimensional physical model constructed to simulate a homogeneous hydrogeologic setting. Experiments were conducted with water having low chemical and biochemical oxygen demand. Results suggest the following: that there is an optimum air injection rate: advective How of ground water can be a significant factor when ground water velocities are > 0.3 m/d: and pulsing the air injection had little effect on the oxygenation rate relative lo the continuous air injection case.  相似文献   

7.
Degradations of reactive brilliant red X‐3B solution by both conventional UV irradiation and microwave electrodeless UV irradiation were investigated. Degradation processes were studied by UV–VIS spectrophotometry, total organic carbon (TOC), high performance capillary electrophoresis (HPCE), conductivity, pH value, and ion chromatography. The results of color removal (%) and TOC removal (%) showed that the degradation by microwave electrodeless UV irradiation was more effective than by conventional UV irradiation. The results of UV–VIS absorption spectra and HPCE analyses indicated that the degradation of reactive brilliant red X‐3B was occurred at the conjugation system first, the benzene ring and the naphthalene ring later. The reactive brilliant red X‐3B was cleaved into some new small compounds and eventually most of the organic substances were mineralized to CO2 and H2O. The results of the conductivity analysis suggested that the degradation has mainly occurred in the first 40 min of reaction. The pH value of reactive brilliant red X‐3B solution was decreased first and then was increased. The results of inorganic anions analysis hinted that many of the N, Cl, and S elements from reactive brilliant red X‐3B were still attached in organic molecules.  相似文献   

8.
Although lignin is known to be not readily biodegradable the concentration of dissolved lignin decreased during aerobic biological treatment of paper mill wastewater performed in sequencing batch reactors (SBR). Systematic lab scale batch tests were conducted to clarify whether the observed removal of lignin was the result of biodegradation or adsorption onto the activated sludge. For the batch tests, sludge samples were taken from sequencing batch reactors operated at solid retention times (SRT) of 10, 15, 20, 30, and 40 days, respectively. The amount of lignin present in the bulk liquid and in the sludge samples was quantified by an analytical procedure comprising pyrolysis, gas chromatography and mass spectrometry (py‐GC/MS analysis). It was found that lignin adsorbs onto the activated sludge by up to 30%[TH]w/w. This demonstrates the sludge excellent adsorption properties. The ultimate removal of lignin is achieved by sludge wasting. The highest overall removal rate was found when sludge was used from the SBR run at SRT of 20 days.  相似文献   

9.
Diisopropanolamine Biodegradation Potential at Sour Gas Plants   总被引:1,自引:0,他引:1  
The potential for aerobic and anaerobic biodegradation of a sour gas treatment chemical, diisopropanolamine (DIPA), was studied using contaminated aquifer materials from three sour gas treatment sites in western Canada. DIPA was found to be readily consumed under aerobic conditions at 8°C and 28°C in shake flask cultures incubated with aquifer material from each of the sites, and this removal was characterized by first-order kinetics. In addition, DIPA biodegradation was found to occur under nitrate-, Min(IV)., and Fe(III)-reducing conditions at 28°C, and in some cases at 8°C, in laboratory microcosms, DIPA loss corresponded to consumption of nitrate, and production of Mn(II) and Fe(II) in viable microcosms compared to corresponding sterile controls. A threshold DIPA concentration near 40 mg/L was observed in the anaerobic microcosms. This report provides the first evidence that DIPA is biodegraded under anaerobic conditions, and our data suggest that biodegradation may contribute to DIPA attenuation under aerobic and anaerobic conditions in aquifers contaminated with this sour gas treatment chemical.  相似文献   

10.
Laboratory biodegradation batch studies were performed to investigate the degradation behavior of six selected UV filters, namely benzophenone‐3 (BP‐3), 3‐(4‐methylbenzylidene) camphor (4‐MBC), Octyl 4‐methoxycinnamate (OMC), Octocrylene (OC), 2‐(3‐t‐butyl‐2‐hydroxy‐5‐methylphenyl)‐5‐chloro benzotriazole (UV‐326), and 2‐(2’‐hydroxy‐5’‐octylphenyl)‐benzotriazole (UV‐329) in an aquifer microcosm (groundwater and aquifer sediment mixture) under aerobic and anaerobic (nitrate, sulfate, and Fe(III) reducing) conditions within 77 d. The results from the biodegradation experiments showed that the six UV filters were degraded well in the aquifer materials under different redox conditions. Rapid biodegradation was observed for BP‐3 and OMC in the aquifer materials, with their half‐lives of 1.5‐8.8 d and 1.3‐5.2 d, respectively. In most cases, aerobic conditions were more favorable for the degradation of the UV filters in aquifer materials. Relatively slow degradation of 4‐MBC, UV‐326, and UV‐329 under anaerobic conditions was noted with their half‐lives ranging between 47 d and 126 d, indicating potential persistence in anaerobic aquifers. The results showed that redox conditions could have significant effects on biodegradation of the UV filters in aquifers.  相似文献   

11.
The recovery of phosphorus will become almost as important as its removal for preventing eutrophication. In this connection, the biological techniques for the elimination of P are of a special importance. The fundamentals and the process technologies of the “phostrip” technique and the anaerobic/aerobic technique are described. The biological P-removal is more susceptible to interference than the normal activated sludge process is. The most important sources of troubles are discussed. For a stable process it is necessary at the anaerobic stage that neither molecular oxygen nor nitrate oxygen are present and that the organic substances contained in the waste water are partly hydrolyzed in order to use up the intracellular energy reserves in the form of polyphosphates to a considerable degree. Moreover, at the aerobic stage there have to be guaranteed high rates of growth of the P-storing bacteria and the formation of polyphosphates as well as only a low degree of nitrification. From this results an increased expenditure for the process control especially for the oxygen and nitrate concentrations at the aerobic stage. The results from two model plants are represented.  相似文献   

12.
In the present study both the synthetic media composition as well as some process parameters in the anaerobic decolorization of Reactive Black 5 (RB5) by activated sludge were studied and optimized using statistical design of experiments (DOEs). Statistical analysis of the results of Plackett–Burman DOE showed that the addition of Mn or Fe, or increase in concentration of Mg, had a positive effect on the anaerobic decolorization efficiency whereas the effect of increase in concentration of glucose, ammonium chloride, and calcium chloride was negative. The effect of change in the concentration of glucose, mixed liquor suspended solid (MLSS), and RB5 on the anaerobic decolorization efficiency and rate and chemical oxygen demand (COD) removal was studied using central composite design methodology. Statistical analysis of the data showed that all the factors had significant effect on both the dye decolorization efficiency and rate. The interaction of glucose with MLSS and with dye and the interaction of MLSS with glucose and with dye were significant when the response was decolorization efficiency and rate, respectively. When COD removal was the response, the effect of change in glucose and MLSS concentration and the interaction between these two factors had statistically significant effect on the response.  相似文献   

13.
Due to its oxidation-reduction potential, oxygen occurs in the TTC test for the determination of the dehydrogenase activity as a competitive hydrogen acceptor. At different oxygen concentrations in the solution to be tested and also at varying rates of oxygen depletion, e.g. in activated sludge samples, thus the formazan formation from TTC shows differences. Under similar anaerobic conditions, the test results of the dehydrogenase activity are higher in most cases and show a smaller range of variation than under aerobic conditions. The importance of the oxygen concentration is demonstrated in investigations with activated sludge, anaerobic conditions being set by addition of Na2SO3.  相似文献   

14.
Chlorinated ethenes such as tetrachloroethene and trichloroethene have been widely used as dry-cleaning and degreasing solvents. Under anaerobic conditions, microorganisms reduce these parent compounds to less-chlorinated daughter products such as cis-1,2-dichloroethene (cDCE), and often further to ethene. This process can be stalled at cDCE, due to insufficient supply of reductants and/or inadequate microbial-community composition. Recently, a novel bacterium, Polaromonas sp. JS666, was isolated that is able to aerobically oxidize cDCE as sole carbon and energy source. As such, it is a promising candidate for use as a subsurface, bioaugmentation agent at sites where anaerobic bioremediation is inappropriate or has stalled and cDCE has migrated to, and accumulated within, aerobic zones, or where it is practical to impose aerobic conditions. Subsurface sediments or groundwater from six such cDCE-contaminated sites were used to construct microcosms. In every sediment or groundwater inoculated with JS666, the organism was able to degrade cDCE, provided that the pH remained circum-neutral. Even when JS666 was challenged with an alternate carbon source, or in the presence of competitive/predatory microorganisms, there was a measure of success. Collectively, these microcosm studies suggest that JS666 is a viable candidate for the bioaugmentation of aerobic, cDCE-contaminated sites. A minimum inoculation level in excess of 105 cells per mL is recommended for field applications. At this level of inoculation, 100 L of inoculum culture grown to an OD600 of 1.0 should be able to treat a 10-m × 30-m × 80-m (24,000-m3) plot.  相似文献   

15.
Methods for predicting aquifer sensitivity to contamination typically ignore geochemical factors that affect the occurrence of contaminants such as nitrate. Use of geochemical information offers a simple and accurate method for estimating aquifer sensitivity to nitrate contamination. We developed a classification method in which nitrate-sensitive aquifers have dissolved oxygen concentrations > 1.0 mg/L, Eh values >250 mV, and either reduced iron concentrations < 0.1 mg/L or total iron concentrations < 0.7 mg/L. We tested the method in four Minnesota aquifer systems having different geochemical and hydrologic conditions. A surficial sand aquifer in central Minnesota exhibited geochemical zonation, with a rapid shift from aerobic to anaerobic conditions 5 m below the water table. A fractured bedrock aquifer in east-central Minnesota remained aerobic to depths of 50 m, except in areas where anaerobic ground water discharged upward from an underlying aquifer. A bedrock aquifer in southeast Minnesota exhibited aerobic conditions when overlain by surficial deposits lacking shale, whereas anaerobic conditions occurred under deposits that contained shale. Surficial sand aquifers in northwest Minnesota contained high concentrations of sulfate and were anaerobic throughout their extent. Nitrate-nitrogen was detected at concentrations exceeding 1 mg/L in 135 of 149 samples classified as sensitive. Nitrate was not detected in any of the 109 samples classified as not sensitive. We observed differences between our estimates of sensitivity and existing sensitivity maps, which are based on methods that do not consider aquifer geochemistry. Because dissolved oxygen, reduced iron, and Eh are readily measured in the field, use of geochemistry provides a quick and accurate way of assessing aquifer sensitivity to nitrate contamination.  相似文献   

16.
Investigations of geology, hydrogeology, and ground water chemistry in the aquifer downgradient from Sjoelund Landfill, Denmark, formed the basis for an evaluation of natural attenuation as a remediation technology for phenoxy acid herbicides at the site. Concentrations of phenoxy acids were up to 65 μg/L in the ground water, primarily 4-chlor-2-methylphenoxypropionic acid (MCPP) and 2,4-dichlorophenoxypropionic acid (dichlorprop). Mass removal of the phenoxy acids was shown within 50 to 100 m of the landfill by calculation of contaminant fluxes passing transects at three distances. There was accordance between increasing oxygen concentrations and decreasing phenoxy acid concentrations with distance from the landfill, indicating that aerobic degradation was a major mass removal process. Presence of high concentrations of putative anaerobic phenoxy acid metabolites suggested that anaerobic degradation was also occurring. Laboratory degradation experiments using sediment and ground water from the aquifer supported aerobic and anaerobic degradability of MCPP at the site. It was concluded that natural attenuation may be applicable as a remedy for the phenoxy acids at the Sjoelund Landfill site, although uncertainties related to calculations of chloride and phenoxy acid fluxes at a complex site and identification of specific in situ indicators were encountered. Thus, there is a pronounced need for development and broader experience with evaluation tools for natural attenuation of phenoxy acids, such as specific metabolites, changes in enantiomeric fractions, compound-specific stable carbon isotope ratios, or microbial fingerprints.  相似文献   

17.
Contamination of groundwater with chlorinated ethenes is common and represents a threat to drinking water sources. Standard anaerobic bioremediation methods for the highly chlorinated ethenes PCE and TCE are not always effective in promoting complete degradation. In these cases, the target contaminants are degraded to the daughter products DCE and/or vinyl chloride. This creates an additional health risk, as vinyl chloride is even more toxic and carcinogenic than its precursors. New treatment modalities are needed to deal with this widespread environmental problem. We describe successful bioremediation of a large, migrating, dilute vinyl chloride plume in Massachusetts with an aerobic biostimulation treatment approach utilizing both oxygen and ethene. Initial microcosm studies showed that adding ethene under aerobic conditions stimulated the rapid degradation of VC in site groundwater. Deployment of a full‐scale treatment system resulted in plume migration cutoff and nearly complete elimination of above‐standard VC concentrations.  相似文献   

18.
Adaptive site management and aggressive bioremediation in the source zone of a complex chlorinated dense nonaqueous phase liquid (DNAPL) site reduced total chlorinated hydrocarbon mass discharge by nearly 80%. Successful anaerobic bioremediation of chlorinated hydrocarbons can be impaired by inadequate concentrations of electron donors, competing electron acceptors, specific inhibitors such as chloroform, and potentially by high contaminant concentrations associated with residual DNAPL. At the study site, the fractured bedrock aquifer was impacted by a mixture of chlorinated solvents and associated daughter products. Concentrations of 1,1,2,2‐tetrachloroethane (1,1,2,2‐TeCA), 1,1,2‐trichloroethane (1,1,2‐TCA), and 1,2‐dichloroethane (1,2‐DCA) were on the order of 100 to 1000 mg/L. Chloroform was present as a co‐contaminant and background sulfate concentrations were approximately 400 mg/L. Following propylene glycol injections, concentrations of organohalide‐respiring bacteria including Dehalococcoides and Dehalogenimonas spp. increased by two to three orders of magnitude across most of the source area. Statistical analysis indicated that reaching volatile fatty acid concentrations greater than 1000 mg/L and depleting sulfate to concentrations less than 50 mg/L were required to achieve a Dehalococcoides concentration greater than the 104 cells/mL recommended for generally effective reductive dechlorination. In a limited area, chloroform concentrations greater than 5 mg/L inhibited growth of Dehalococcoides populations despite the availability of electron donor and otherwise appropriate geochemical conditions. After implementing a groundwater recirculation system targeting the inhibited area, chloroform concentrations decreased permitting significant increases in concentrations of Dehalococcoides and vinyl chloride reductase gene copies.  相似文献   

19.
A detailed seasonal study of soil vapor intrusion at a cold climate site with average yearly temperature of 1.9 °C was conducted at a house with a crawlspace that overlay a shallow dissolved‐phase petroleum hydrocarbon (gasoline) plume in North Battleford, Saskatchewan, Canada. This research was conducted primarily to assess if winter conditions, including snow/frost cover, and cold soil temperatures, influence aerobic biodegradation of petroleum vapors in soil and the potential for vapor intrusion. Continuous time‐series data for oxygen, pressure differentials, soil temperature, soil moisture, and weather conditions were collected from a high‐resolution monitoring network. Seasonal monitoring of groundwater, soil vapor, crawlspace air, and indoor air was also undertaken. Petroleum hydrocarbon vapor attenuation and biodegradation rates were not significantly reduced during low temperature winter months and there was no evidence for a significant capping effect of snow or frost cover that would limit oxygen ingress from the atmosphere. In the residual light nonaqueous phase liquid (LNAPL) source area adjacent to the house, evidence for biodegradation included rapid attenuation of hydrocarbon vapor concentrations over a vertical interval of approximately 0.9 m, and a corresponding decrease in oxygen to less than 1.5% v/v. In comparison, hydrocarbon vapor concentrations above the dissolved plume and below the house were much lower and decreased sharply within a few tens of centimeters above the groundwater source. Corresponding oxygen concentrations in soil gas were at least 10% v/v. A reactive transport model (MIN3P‐DUSTY) was initially calibrated to data from vertical profiles at the site to obtain biodegradation rates, and then used to simulate the observed soil vapor distribution. The calibrated model indicated that soil vapor transport was dominated by diffusion and aerobic biodegradation, and that crawlspace pressures and soil gas advection had little influence on soil vapor concentrations.  相似文献   

20.
We performed quasi‐two‐dimensional flow through laboratory experiments to study the effect of a coarse‐material inclusion, located in the proximity of the water table, on flow and oxygen transfer in the capillary fringe. The experiments investigate different phases of mass transfer from the unsaturated zone to anoxic groundwater under both steady‐state and transient flow conditions, the latter obtained by fluctuating the water table. Monitoring of flow and transport in the different experimental phases was performed by visual inspection of the complex flow field using a dye tracer solution, measurement of oxygen profiles across the capillary fringe, and determination of oxygen fluxes in the effluent of the flow‐through chamber. Our results show significant effects of the coarse‐material inclusion on oxygen transfer during the different phases of the experiments. At steady state, the oxygen flux across the unsaturated/saturated interface was considerably enhanced due to flow focusing in the fully water‐saturated coarse‐material inclusion. During drainage, a zone of higher water saturation formed in the fine material overlying the coarse lens. The entrapped oxygen‐rich aqueous phase contributed to the total amount of oxygen supplied to the system when the water table was raised back to its initial level. In case of imbibition, pronounced air entrapment occurred in the coarse lens, causing oxygen to partition between the aqueous and gaseous phases. The oxygen mass supplied to the anoxic groundwater following the imbibition event was found to be remarkably higher (approximately seven times) in the heterogeneous system compared with a similar experiment performed in a homogeneous porous medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号