首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The local scouring downstream of bed sills forming a sequence for bed stabilization in steep channels has been investigated in a laboratory flume. The initial bed slopes ranged from 0·078 to 0·148. The bed alluvium was characterised by a non‐uniform grain size distribution. The results show that when the ratio between the critical water depth hc and the sill spacing L rises above a characteristic value the scouring dynamics become heavily affected by the presence of the downstream sill, associated with the onset of a form of “interference” which renders the scouring process less effective. The difference with an “undisturbed” case is demonstrated. Self‐affinity of scour holes is confirmed and the scour length appears to be the reference parameter from which the scour depth might be evaluated. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
The assumption of the equilibrium state of gravel surfaces in flume experiments under feeding or recirculating conditions is generally justified by three equilibrium criteria based on sediment transport, slopes, and bed features. When these parameters become stable, an experiment is expected to reach equilibrium. This equilibrium state, however, is based on a one‐dimensional model, the Exner equation, which may not truly reflect the equilibrium state of the system considering the complex flow and sediment processes. In this paper, the evolutionary process of a gravel surface is investigated based on a large‐scale recirculating flume experiment. The performances of the three equilibrium criteria are evaluated first, and then the evolution of the bed morphology is studied. The key findings include the following: (1) the sediment transport rate, slopes of water and bed surfaces, and one‐dimensional morphological features reach equilibrium roughly simultaneously; (2) two‐dimensional morphology continually evolves after these characteristics reach equilibrium, which is confirmed by the characteristics of the sediment transport process; and (3) the results from a numerical simulation suggest that a much longer time is required to reach an equilibrium state. Our results suggest that sufficient experimental time is required to investigate the equilibrium morphological characteristics of gravel surfaces, which is much longer than the equilibrium time reflected by the one‐dimensional equilibrium criteria. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
A 2D depth‐averaged hydrodynamic, sediment transport and bed morphology model named STREMR HySeD is presented. The depth‐averaged sediment transport equations are derived from the 3D dilute, multiphase, flow equations and are incorporated into the hydrodynamic model STREMR. The hydrodynamic model includes a two‐equation turbulence model and a correction for the mean flow due to secondary flows. The suspended sediment load can be subdivided into different size classes using the continuum (two‐fluid) approach; however, only one bed sediment size is used herein. The validation of the model is presented by comparing the suspended sediment transport module against experimental measurements and analytical solutions for the case of equilibrium sediment‐laden in a transition from a rigid bed to a porous bed where re‐suspension of sediment is prevented. On the other hand, the bed‐load sediment transport and bed evolution numerical results are compared against bed equilibrium experimental results for the case of a meander bend. A sensitivity analysis based on the correction for secondary flow on the mean flow including the effect of secondary flow on bed shear stresses direction as well as the downward acceleration effect due to gravity on transverse bed slopes is performed and discussed. In general, acceptable agreement is found when comparing the numerical results obtained with STREMR HySeD against experimental measurements and analytical solutions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper a modelling approach is presented to predict local scour under time varying flow conditions. The approach is validated using experimental data of unsteady scour at bed sills. The model is based on a number of hypotheses concerning the characteristics of the flow hydrograph, the temporal evolution of the scour and the geometry of the scour hole. A key assumption is that, at any time, the scour depth evolves at the same rate as in an equivalent steady flow. The assumption is supported by existing evidence of geometrical affinity and similarity of scour holes formed under different steady hydraulic conditions. Experimental data are presented that show the scour hole development downstream of bed sills due to flood hydrographs follow a predictable pattern. Numerical simulations are performed with the same input parameters used in the experimental tests but with no post‐simulation calibration. Comparison between the experimental and model results indicates good correspondence, especially in the rising limb of the flow hydrograph. This suggests that the underlying assumptions used in the modelling approach are appropriate. In principle, the approach is general and can be applied to a wide range of environments (e.g. bed sills, step‐pool systems) in which scouring at rapid bed elevation changes caused by time varying flows occurs, provided appropriate scaling information is available, and the scour response to steady flow conditions can be estimated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Alluvial mountain streams exhibit a range of channel forms: pool–riffle, plane bed, step–pool and cascades. Previous work suggested that these forms exist within discrete, and progressively steeper slope classes. Measurements conducted at over 100 sites in west‐central and central Idaho confirm that slope steepens progressively as one moves from pool–riffle, to plane bed, to step–pool, and finally to cascades. Median slope for pool–riffle topography is 0·0060, for plane beds 0·013, for step–pools 0·044, and for cascades 0·068. There is substantial overlap in the slopes associated with these channel forms. Pool–riffle topography was found at slopes between 0·0010 and 0·015, plane beds between 0·0010 and 0·035, step–pools between 0·015 and 0·134, and cascades between 0·050 and 0·12. Step–pools are particularly striking features in headwater streams. They are characterized by alternating steep and gentle channel segments. The steep segments (step risers) are transverse accumulations of boulder and cobbles, while the gentle segments (pools) contain finer material. Step wavelength is best correlated to step height which is in turn best correlated to the median particle size found on step risers. This result differs from past studies that have reported channel slope to be the dominant control on step wavelength. The presumed geometry and Froude number associated with the features under formative conditions are consistent with the existence field for antidunes and by extension with the hypothesis that step–pools are formed by antidunes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
This paper focuses on surface–subsurface water exchange in a steep coarse‐bedded stream with a step‐pool morphology. We use both flume experiments and numerical modelling to investigate the influence of stream discharge, channel slope and sediment hydraulic conductivity on hyporheic exchange. The model step‐pool reach, whose topography is scaled from a natural river, consists of three step‐pool units with 0.1‐m step heights, discharges ranging between base and over‐bankfull flows (scaled values of 0.3–4.5 l/s) and slopes of 4% and 8%. Results indicate that the deepest hyporheic flow occurs with the steeper slope and at moderate discharges and that downwelling fluxes at the base of steps are highest at the largest stream discharges. In contrast to findings in a pool‐riffle morphology, those in this study show that steep slopes cause deeper surface–subsurface exchanges than gentle slopes. Numerical simulation results show that the portion of the hyporheic zone influenced by surface water temperature increases with sediment hydraulic conductivity. These experiments and numerical simulations emphasize the importance of topography, sediment permeability and roughness elements along the channel surface in governing the locations and magnitude of downwelling fluxes and hyporheic exchange. Our results show that hyporheic zones in these steep streams are thicker than previously expected by extending the results from streams with pool‐riffle bed forms. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Single‐thread, gravel‐bed streams of moderate slope in the northern Negev are characterized by three channel units: bars exhibit steeper than average slopes and poorly sorted mixtures of small–medium cobbles and coarse–very coarse pebbles; flats are associated with more gentle slopes and well‐sorted medium–fine pebbles and granules; and transitional units have intermediate slopes and grain size. In general, all three units are planar, span the full channel width and have well‐defined boundaries. Bars and flats are more common than the transitional units and alternate downstream for distances of several hundred metres, forming sequences that are reminiscent of the riffle–pool structure commonly observed in humid‐temperate gravel‐bed rivers. A notable contrast is the absence of significant bed relief: bars lack crests and flats lack depressions. The relative lack of bed relief in bar–flat sequences is attributed to the high rate of sediment supply from the sparsely vegetated hillslopes which promotes the infilling of depressions and to the erosion of crests under conditions of intense transport. This reduction of bed relief lowers channel roughness, which in turn increases flow velocity and, therefore, the ability of the channel to transmit the large sediment loads it receives. Although our analyses pertain to a semi‐arid river system, the results have wider implications for understanding the adjustment of channel bedform to high sediment loads in other fluvial environments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Sequences of arti?cial steps are sometimes used to reproduce the natural step–pool morphology of high‐gradient streams. The depth, length and shape of the scour holes in gravel‐bed rivers can be predicted reasonably using recently developed formulae. However, the properties of the scour holes can sometimes be affected by the distance between structures. This effect is called ‘geometrical interference’ and leads to a reduction of the scour hole compared to its potential size. Geometrical interference may occur in sequences of arti?cial steps in high‐gradient torrents, where structures are sometimes built at distances of a few tens of metres apart, but may also apply to natural step–pool systems. In this paper, a series of tests have been conducted to determine the effect of bed sill spacing and sediment grading on the potential erosion by jets forming over the sills. A new formula is derived, applicable to high‐gradient streams (slope > 0·04), which can be applied to the special case of scour holes developed by interfering sills. Sediment size gradation, not accounted for in previous formulae, is found to have a signi?cant effect on the scour dimensions and is included in the new predictive formula. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
Overdeepenings, i.e. closed topographic depressions with adverse slopes in the direction of flow, are characteristic for glacier beds and glacially sculpted landscapes. Quantitative information about their morphological characteristics, however, has so far hardly been available. The present study provides such information by combining the analysis of (a) numerous bed overdeepenings below still existing glaciers of the Swiss Alps and the Himalaya‐Karakoram region modelled with a robust shear stress approximation and (b) detailed bathymetries from recently exposed lakes in the Peruvian Andes. The investigated overdeepenings exist where glacier surface slopes are low (< 5°–10°), occur in bedrock or morainic material and are most commonly a fraction of a kilometre squared in surface area, hundreds of metres long, about half the length in width and tens of metres deep. They form under conditions of low to high basal shear stresses, at cirque, confluence, trunk valley and terminus positions. The most striking phenomenon, however, is the high variability of their geometries: Depths, surface areas, lengths and widths of the overdeepenings vary over orders of magnitude and are only weakly – if at all – interrelated. Inclinations of adverse slopes do not differ significantly from those of forward slopes and are in many cases higher than so far assumed theoretical limits for supercooling of ascending water and corresponding closure of sub‐glacial channels. Such steep adverse slopes are a robust observation and in support of recently developed new concepts concerning the question about where supercooling of sub‐glacial water and closure of ice channels can or must occur. However, the question of when and under what climatic, topographic and ice conditions the overdeepenings had formed remains unanswered. This open question constitutes a key problem concerning the interpretation of observed overdeepenings, the understanding of the involved glacio‐hydraulic processes and the possibility of realistic predictive modelling of overdeepening formation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Ice‐ and snow‐melted water flow over partially thawed frozen soil of cultivated slopes causes serious soil erosion, which results in soil degradation and affects productivity in Northeast China. Water flow velocity over frozen and nonfrozen soil shows importance in understanding meltwater erosion. In this work, a series of laboratory experiments were conducted to measure water flow velocity over frozen and nonfrozen soil slopes. Experiments were performed using the electrolyte trace method under the pulse boundary model, under conditions of 4 slope gradients (5°, 10°, 15°, and 20°), 3 flow rates (1, 2, and 4 L/min), and 7 sensors positioned at 0.1, 1.0, 2.0, 3.0, 4.0, 5.0, and 6.0 m away from the electrolyte injection point. Results showed that velocities over frozen soil slopes increased with flow rate and slope gradient. Flow velocities over nonfrozen soil slopes increased with flow rate and slope gradients from 5° to 15° and stabilized at 15°. Flow velocities over frozen soil slopes were 30%, 54%, 71%, and 91% higher than those over nonfrozen ones at slope gradients of 5°, 10°, 15°, and 20°. Flow velocities over frozen soil slopes under different flow rates of 1, 2, and 4 L/min were approximately 52%, 59%, and 79% higher than those over nonfrozen soil, respectively. This study can help in assessing the erosion of partially thawed frozen soil by meltwater flow.  相似文献   

11.
Rivers are worldwide highly fragmented due to human impacts. This fragmentation has a negative effect on fish movement and dispersal. Many artificial barriers such as river bed sills and small weirs are nowadays replaced by block ramps in order to reestablish longitudinal connectivity for fish in rivers and streams. We studied the upstream passage of several fish species on different types of block ramps with slopes between 3.6 and 13.4 %. We conducted translocation experiments in the field based on mark-recapture and on the use of PIT-tags. Temporal movement patterns were observed by an instream antenna. Hydraulic and morphological characteristics of block ramps were measured and compared with fish passage efficiency. Our results clearly showed that upstream passage efficiency differs between fish species, size classes and block ramps. We observed that brown trout (Salmo trutta fario) performed better than bullhead (Cottus gobio) and several cyprinid species on the same block ramps. Passage efficiency of brown trout and chub (Leuciscus cephalus) was size-selective, with small-sized individuals being less successful. For brown trout, size-selectivity became more relevant with increasing slope of ramp. We conclude that block ramps with slopes of >5 % are ineffective for the small-sized cyprinid species and that vertical drops within step-pool ramps can hinder successful upstream passage of bullhead.  相似文献   

12.
Tian Zhou  Ted Endreny 《水文研究》2012,26(22):3378-3392
River restoration projects have installed j‐hook deflectors along the outer bank of meander bends to reduce hydraulic erosion, and in this study we use a computational fluid dynamics (CFD) model to document how these deflectors initiate changes in meander hydrodynamics. We validated the CFD with streamwise and cross‐channel bankfull velocities from a 193° meander bend flume (inlet at 0°) with a fixed point bar and pool equilibrium bed but no j‐hooks, and then used the CFD to simulate changes to flow initiated by bank‐attached boulder j‐hooks (1st attached at 70°, then a 2nd at 160°). At bankfull and half bankfull flow the j‐hooks flattened transverse water surface slopes, formed backwater pools upstream of the boulders, and steepened longitudinal water slopes across the boulders and in the conveyance region off the mid‐channel boulder tip. Streamwise velocity and mass transport jets upstream of the j‐hooks were stilled, mid‐channel jets were initiated in the conveyance region, eddies with a cross‐channel axis formed below boulders, and eddies with a vertical axis were shed into wake zones downstream of the point bar and outer bank boulders. At half bankfull depth conveyance region flow cut toward the outer bank downstream of the j‐hook boulders and the secondary circulation cells were reshaped. At bankfull depth the j‐hook at 160° was needed to redirect bank‐impinging flow sent by the upstream j‐hook. The hooked boulder tip of both j‐hooks funneled surface flow into mid‐channel plunging jets, which reversed the secondary circulation cells and initiated 1 to 3 counter rotating cells through the entire meander. The main outer bank collision zone centered at 50° without the j‐hook was moved by the j‐hook to within and just beyond the 70° j‐hook boulder region, which displaced other mass transport zones downstream. J‐hooks re‐organized water surface slopes, streamwise and cross‐channel velocities, and mass transport patterns, to move shear stress from the outer bank and into the conveyance and mid‐channel zones at bankfull flow. At half bankfull flows a patch of high shear re‐attached to the outer bank below the downstream j‐hook. J‐hook geometry and placement within natural meanders can be analyzed with CFD models to help restoration teams reach design goals and understand hydraulic impacts. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Mega‐scale glacial lineations (MSGLs) are a characteristic landform on ice stream beds. Solving the puzzle of their formation is key to understanding how ice interacts with its bed and how this, in turn, influences the dynamics of ice streams. However, a comprehensive and detailed characterization of this landform's size, shape and spatial arrangement, which might serve to test and refine formational theories, is largely lacking. This paper presents a detailed morphometric analysis and comparison of 4043 MSGLs from eight palaeo‐ice stream settings: three offshore (Norway and Antarctica), four onshore (Canada), and one from under a modern ice stream in West Antarctica. The length of MSGLs is lower than previously suggested (mode 1000–2000 m; median 2892 m), and they initiate and terminate at various locations on an ice stream bed. Their spatial arrangement reveals a pattern that is characterized by an exceptional parallel conformity (80% of all mapped MSGLs have an azimuth within 5° from the mean values), and a fairly constant lateral spacing (mode 200–300 m; median 330 m), which we interpret as an indication that MSGLs are a spatially self‐organized phenomenon. Results show that size, shape and spatial arrangement of MSGLs are consistent both within and also generally between different ice stream beds. We suggest this results from a common mechanism of formation, which is largely insensitive to local factors. Although the elongation of MSGLs (mode 6–8; median 12.2) is typically higher than features described as drumlins, these values and those of their width (mode 100–200 m; median 268 m) overlap, which suggests the two landforms are part of a morphological continuum and may share a similar origin. We compare their morphometry with explicit predictions made by the groove‐ploughing and rilling instability theories of MSGL formation. Although the latter was most compatible, neither is fully supported by observations. © 2014 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.  相似文献   

14.
We evaluated controls on locations of channel incision, variation in channel evolution pathways and the time required to reconnect incised channels to their historical floodplains in the Walla Walla and Tucannon River basins, northwestern USA. Controls on incision locations are hierarchically nested. A first‐order geological control defines locations of channels prone to incision, and a second‐order control determines which of these channels are incised. Channels prone to incision are reaches with silt‐dominated valley fills, which have sediment source areas dominated by loess deposits and channel slopes less than 0·1(area)?0·45. Among channels prone to incision, channels below a second slope–area threshold (slope = 0·15(area)?0·8) did not incise. Once incised, channels follow two different evolution models. Small, deeply incised channels follow Model I, which is characterized by the absence of a significant widening phase following incision. Widening is limited by accumulation of bank failure deposits at the base of banks, which reduces lateral channel migration. Larger channels follow Model II, in which widening is followed by development of an inset floodplain and aggradation. In contrast to patterns observed elsewhere, we found the widest incised channels upstream of narrower reaches, which reflects a downstream decrease in bed load supply. Based on literature values of floodplain aggradation rates, we estimate recovery times for incised channels (the time required to reconnect to the historical floodplain) between 60 and 275 years. Restoration actions such as allowing modest beaver recolonization can decrease recovery time by 17–33 per cent. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

15.
Debris flows can grow greatly in size by entrainment of bed material, enhancing their runout and hazardous impact. Here, we experimentally investigate the effects of debris‐flow composition on the amount and spatial patterns of bed scour and erosion downstream of a fixed to erodible bed transition. The experimental debris flows were observed to entrain bed particles both grain by grain and en masse, and the majority of entrainment was observed to occur during passage of the flow front. The spatial bed scour patterns are highly variable, but large‐scale patterns are largely similar over 22.5–35° channel slopes for debris flows of similar composition. Scour depth is generally largest slightly downstream of the fixed to erodible bed transition, except for clay‐rich debris flows, which cause a relatively uniform scour pattern. The spatial variability in the scour depth decreases with increasing water, gravel (= grain size) and clay fraction. Basal scour depth increases with channel slope, flow velocity, flow depth, discharge and shear stress in our experiments, whereas there is no correlation with grain collisional stress. The strongest correlation is between basal scour and shear stress and discharge. There are substantial differences in the scour caused by different types of debris flows. In general, mean and maximum scour depths become larger with increasing water fraction and grain size, and decrease with increasing clay content. However, the erodibility of coarse‐grained experimental debris flows (gravel fraction = 0.64) is similar on a wide range of channel slopes, flow depths, flow velocities, discharges and shear stresses. This probably relates to the relatively large influence of grain‐collisional stress to the total bed stress in these flows (30–50%). The relative effect of grain‐collisional stress is low in the other experimental debris flows (<5%), causing erosion to be largely controlled by basal shear stress. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Stream temperature was recorded between 2002 and 2005 at four sites in a coastal headwater catchment in British Columbia, Canada. Shallow groundwater temperatures, along with bed temperature profiles at depths of 1 to 30 cm, were recorded at 10‐min intervals in two hydrologically distinct reaches beginning in 2003 or 2004, depending on the site. The lower reach had smaller discharge contributions via lateral inflow from the hillslopes and fewer areas with upwelling (UW) and/or neutral flow across the stream bed compared to the middle reach. Bed temperatures were greater than those of shallow groundwater during summer, with higher temperatures in areas of downwelling (DW) flow compared to areas of neutral and UW flow. A paired‐catchment analysis revealed that partial‐retention forest harvesting in autumn 2004 resulted in higher daily maximum stream and bed temperatures but smaller changes in daily minima. Changes in daily maximum stream temperature, averaged over July and August of the post‐harvest year, ranged from 1.6 to 3 °C at different locations within the cut block. Post‐harvest changes in bed temperature in the lower reach were smaller than the changes in stream temperature, greater at sites with DW flow, and decreased with depth at both UW and DW sites, dropping to about 1 °C at a depth of 30 cm. In the middle reach, changes in daily maximum bed temperature, averaged over July and August, were generally about 1 °C and did not vary significantly with depth. The pre‐harvest regression models for shallow groundwater were not suitable for applying the paired‐catchment analysis to estimate the effects of harvesting. However, shallow groundwater was warmer at the lower reach following harvesting, despite generally cooler weather compared to the pre‐harvest year. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Surveys of wood along 30 forested headwater stream reaches in La Selva Biological Station in north‐eastern Costa Rica represent the first systematic data reported on wood loads in neotropical streams. For streams with drainage areas of 0·1–8·5 km2 and gradients of 0·2–8%, wood load ranged from 3 to 34·7 m3 wood/100 m channel and 41–612 m3 wood/ha channel. These values are within the range reported for temperate streams. The variables wood diameter/flow depth, stream power, the presence of backflooding, and channel width/depth are consistently selected as significant predictors by statistical models for wood load. These variables explain half to two‐thirds of the variability in wood load. These results, along with the spatial distribution of wood with respect to the thalweg, suggest that transport processes exert a greater influence on wood loads than recruitment processes. Wood appears to be more geomorphically effective in altering bed elevations in gravel‐bed reaches than in reaches with coarser or finer substrate. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Microbiological degradation of perchloroethylene (PCE) under anaerobic conditions follows a series of chain reactions, in which, sequentially, trichloroethylene (TCE), cis‐dichloroethylene (c‐DCE), vinylchloride (VC) and ethene are generated. First‐order degradation rate constants, partitioning coefficients and mass exchange rates for PCE, TCE, c‐DCE and VC were compiled from the literature. The parameters were used in a case study of pump‐and‐treat remediation of a PCE‐contaminated site near Tilburg, The Netherlands. Transport, non‐equilibrium sorption and biodegradation chain processes at the site were simulated using the CHAIN_2D code without further calibration. The modelled PCE compared reasonably well with observed PCE concentrations in the pumped water. We also performed a scenario analysis by applying several increased reductive dechlorination rates, reflecting different degradation conditions (e.g. addition of yeast extract and citrate). The scenario analysis predicted considerably higher concentrations of the degradation products as a result of enhanced reductive dechlorination of PCE. The predicted levels of the very toxic compound VC were now an order of magnitude above the maximum permissible concentration levels. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
The aim of this study is to examine the annual regime of channel scour and fill by monitoring bed‐elevation changes in a reach of Squamish River in southwestern British Columbia, Canada. Sonar surveys of 13 river cross‐sections in a sandy gravel‐bed single‐channel study reach were repeated biweekly over a full hydrologic year (1995/6). The survey results show that bedload movement occurs as waves or pulses forming bedwaves that appear to maintain an overall coherence with movement downstream. These bedwaves propagate downstream by a mode here termed pulse scour and pulse fill, a process distinguished from the conventional mode of scour and fill commonly associated with flood events (here termed local scour and local fill). Bedwave celerity was estimated to be about 15·5 m d−1 corresponding to a bedwave residence time in the study reach of almost one hydrologic year. The total amount of local bed‐elevation change ranged between 0·22 m and 2·41 m during the period of study. Analysis of the bed‐elevation and flow data reveals that, because of the bedwave phenomenon, there is no simple relation between the mean bed‐elevation and discharge nor any strong linear correlation among cross‐sectional behaviour. The bed‐elevation data also suggest that complex changes to the bed within a cross‐section are masked when the bed is viewed in one dimension, although no definitive trends in bed behaviour were found in the two‐dimensional analysis. Although a weak seasonal effect is evident in this study, the bed‐elevation regime is dominated by sediment supply‐driven fluctuations in bedload transport occurring at timescales shorter than the seasonal fluctuation in discharge. The study also indicates that bed‐elevation monitoring on Squamish River, and others like it, for purposes of detecting and measuring aggradation/degradation must take into account very considerable and normal channel‐bed variability operating at timescales from hours to months. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
南海北部陆坡稳定性定量分析   总被引:3,自引:0,他引:3  
随着海洋工程的发展,海底滑坡作为一种潜在的地质灾害逐渐成为人们关注的热点.本文采用二维极限平衡法计算并分析了海底斜坡稳定性问题.通过对斜坡模型在各种条件下安全系数的计算,定量分析了斜坡内在因素(如斜坡角度、主要土力学参数)和主要触发机制(地震、快速堆积等)对安全系数的影响.理论计算表明,静态条件下,均质斜坡角度小于20°时,均处于稳定状态;对于含软弱层的斜坡,快速堆积等引起的不排水状态下斜坡安全系数明显降低,斜坡角度大于14°时就会发生失稳.拟静态条件下,当地震动峰值加速度(PGA)小于0.15g时,对于角度小于20°的均质斜坡处于稳定状态,但PGA大于0.25g时,角度大于13°的斜坡即处于失稳状态;对于含软弱层斜坡,PGA为0.1g时,角度大于10°的斜坡即处于不稳定状态;当PGA大于0.3g时,3°以上的海底斜坡即处于失稳状态,发生海底滑坡.结合南海北部陆坡海底地形、地貌特征,在静态条件下,均处于稳定状态;但在地震加载的拟静态下,根据南海北部地震动峰值加速度分布,台湾浅滩段则处于不稳定状态.这解释了该区域大陆坡折带处海底滑坡广泛发育的原因,也表明了地震是引发南海北部滑坡最主要的触发机制之一.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号