首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrocarbon recovery has led to compaction and subsidence from the North Sea, to Venezuela, and to the western coast of the US. Subsidence at the Wilmington and Ekofisk oil fields are two of the most widely recognized examples due both to the magnitude of subsidence as well as the cost of remediation. However, while lesser known, subsidence is a challenge for a number of reservoirs. In Venezuela, subsidence due to reservoir depletion has led to severe flooding along the coast of Lake Maracaibo. In the Netherlands, subsidence at the large Groningen gas field, though only on the order of tens of centimeters, poses significant challenges since large portions of the Netherlands are below sea level and protected by dikes.Reservoir compaction and surface, or seabed, subsidence has many impacts, challenges, solutions, and even benefits. Seabed subsidence at the Ekofisk field, for example, has had a well known effect by reducing platform airgap and resulting in the jacking of platforms in 1987, the barrier placement in 1989, and the Ekofisk II redevelopment in 1998. Likewise, subsidence has led to significant pipeline concerns due to excess compressional or tensional strain. Reservoir compaction, the cause of subsidence, has led to numerous casing deformations and poses a notable challenge for well completion. However, reservoir compaction also provides significant drive energy and greatly contributes to increased production and reserves.  相似文献   

2.
A geomechanical model can reveal the mechanical behavior of rocks and be used to manage the reservoir programs in a better mode. Fluid pressure will be reduced during hydrocarbon production from a reservoir. This reduction of pressure will increase the effective stress due to overburden sediments and will cause porous media compaction and surface subsidence. In some oil fields, the compacting reservoir can support oil and gas production. However, the phenomena can also cause the loss of wells and reduced production and also cause irreparable damage to the surface structures and affect the surrounding environment. For a detailed study of the geomechanical behavior of a hydrocarbon field, a 3D numerical model to describe the reservoir geomechanical characteristics is essential. During this study, using available data and information, a coupled fluid flow-geomechanic model of Fahlian reservoir formation in X-field in SW of Iran was constructed to estimate the amount of land subsidence. According to the prepared model, in this field, the maximum amount of the vertical stress is 110 MPa and the maximum amount of the horizontal stress is 94 MPa. At last, this model is used for the prediction of reservoir compaction and subsidence of the surface. The maximum value of estimated ground subsidence in the study equals to 29 mm. It is considered that according to the obtained values of horizontal and vertical movement in the wall of different wells, those movements are not problematic for casing and well production and also the surrounding environment.  相似文献   

3.
A major development programme comprising 15 gas fields of the northern Adriatic Sea has recently been submitted to the Ministry of the Environment, VIA Committee for the assessment of the environmental impact, by ENI-Agip, the Italian national oil company. One of the largest reservoirs is Chioggia Mare, located about 10 km offshore of the Venetian littoral, with a burial depth of 1000–1400 m. The planned gas production from this field is expected to impact the shoreline stability with a potential threat to the city of Venice, 25 km northwest of the center of Chioggia Mare. To evaluate the risk of anthropogenic land subsidence due to gas withdrawal, a numerical model was developed that predicts the compaction of both the gas-bearing formations and the lateral/bottom aquifer (water drive) during a 13-year producing and a 12-year post-production period, and the transference of the deep compaction to the ground surface. To address the uncertainty of a few important hydromechanical parameters, several scenarios are simulated and the most pessimistic predictions obtained. The modeling results show that at most 1 cm of land subsidence over 25 years may be expected at the city of Chioggia, whereas Venice is not subject to settlement. If aquifer drawdown is mediated by water injection, land subsidence is arrested 5 km offshore, with the Chioggia littoral zone experiencing a rebound of 0.6–0.7 cm. Electronic Publication  相似文献   

4.
油井开采过程中油层变形的流固耦合分析   总被引:9,自引:0,他引:9  
在油气开采过程中,随着油气的不断采出,必然造成孔隙流体压力的逐渐降低,由此导致储层岩石骨架的有效应力增大,使得油层产生变形或压实。当油层产生变莆或压实时,对油气生产将造成不利影响。比如:使得油藏的渗透率降低,继而使油井的产能降低,同时,油层的变形直接影响着油井和套管的变形与破坏等等。敢开采过程中油层的变形可以描述为三维变形与三维流体流动场的耦合问题,利用可变形多孔介质中流体渗流的流固耦合有限元数值  相似文献   

5.
Reservoir depletion results in rock failure, wellbore instability, hydrocarbon production loss, oil sand production, and ground surface subsidence. Specifically, the compaction of carbonate reservoirs with soft rocks often induces large plastic deformation due to rock pore collapse. On the other hand, following the compaction of reservoirs and failure of rock formations, the porosity and permeability of formations will, in general, decrease. These bring a challenge for reservoir simulations because of high nonlinearity of coupled geomechanics and fluid flow fields. In this work, we present a fully implicit, fully coupled, and fully consistent finite element formulation for coupled geomechanics and fluid flow problems with finite deformation and nonlinear flow models. The Pelessone smooth cap plasticity model, an important material model to capture rock compaction behavior and a challenging material model for implicit numerical formulations, is incorporated in the proposed formulation. Furthermore, a stress-dependent permeability model is taken into account in the formulation. A co-rotational framework is adopted for finite deformation, and an implicit material integrator for cap plasticity models is consistently derived. Furthermore, the coupled field equations are consistently linearized including nonlinear flow models. The physical theories, nonlinear material and flow models, and numerical formulations are the focus of part I of this work. In part II, we verify the proposed numerical framework and demonstrate the performance of our numerical formulation using several numerical examples including a field reservoir with soft rocks undergoing serious compaction.  相似文献   

6.
Coal seam gas (CSG) is an increasingly important source of natural gas all over the world. Although the influence of conventional oil and gas extraction on surface subsidence has been widely recognized and studied, few studies are carried out on the surface subsidence in coal seam gas fields and its impact on surface infrastructure and the environment. This paper discusses modelling of the surface subsidence associated with coal seam gas production by applying both analytical and numerical methods. By comparison of results from the numerical model and two analytical models, i.e. the disc-shaped reservoir model and the uniaxial compaction model, the analytical solutions cannot describe the complex process of water and gas extraction and have the limitations to predict the surface subsidence, while the numerical model can be better used in prediction of subsidence. After applying the numerical model in numerical analysis, the deformation characteristics of coupled fluid flow, and the effects of permeability change of coal seam, associated overlying and underlying layers, and depressurization rates on surface subsidence are investigated. The results demonstrate that the proposed model can simulate the production of water and gas from coal seams and the associated surface subsidence.  相似文献   

7.
A fully implicit, fully coupled, and fully consistent finite element framework has been formulated in part I of this work for modeling reservoir compaction through linearizing coupled solid and flow field equations and constructing a local material integrator. In part II of this work, we focus on verification and performance analysis of our numerical formulation and computer implementation using several numerical examples. First, we design a cube problem in triaxial compression to verify our numerical formulation and computer code implementation especially for rock formation in compaction using cap plasticity models. The finite element prediction on stresses is compared with the analytical solution. The second problem we select is a strip footing problem popular in the geotechnical area where the evolution of soil consolidation degrees following the diffusion of pore pressure is the main interest. In this example, we demonstrate a good performance of the proposed numerical formulation on solving different shear and compaction-dominated deformation behaviors by varying the footing length. Importantly, an extremely sharp cap model based on real experimental data for Leda clays, a challenging cap model, is successfully applied in this footing problem. Our focus in this work is to model field reservoirs undergoing serious compaction. A reservoir with complex payzone geometries, multiple horizontal wells, and cap plasticity models with sharp cap surfaces has been successfully solved using our fully implicit formulation. The last example is to model a horizontal wellbore damage problem. Finally, the sensitivity of predicted subsidence to nonlinear flow model, cap hardening parameters, and Lode angles have been systemically investigated and documented in detail, which can provide a constructive guidance on how to successfully model field reservoir compaction problems with cap plasticity models.  相似文献   

8.
石油开采引起的油藏压实与地面沉陷预测   总被引:1,自引:0,他引:1  
石油开采过程中的油藏压实和地面沉陷是海上油田开发不容忽视的问题。通过对油藏压实与沉陷的机理及影响因素分析,给出了油藏压实与沉陷量的预测模型及计算方法,并以某海上油藏实例进行了计算。对于油藏开发整体规划、海上作业平台优化设计有一定的指导意义。  相似文献   

9.
Taiwan High Speed Rail (THSR), which began operations in January 2007, passes through an area in Yunlin County where the largest cumulative subsidence measured during 1992–2006 exceeds 100 cm. Leveling benchmarks, GPS pillars and multi-level monitoring wells were deployed in this area to collect detailed subsidence data from October 2003 to 2006. Leveling is carried out on both ground benchmarks and survey bolts attached to THSR columns. Minimum constraint solutions of leveling networks produce estimated heights accurate to a few mm. Special attention is paid to code smoothing, ionospheric, tropospheric and ocean tidal loading (OTL) effects, so that height estimates from GPS are optimal. Leveling and GPS-derived height changes are consistent to 1 cm, and show that from Stations 210 to 240K of TSHR, the subsidence is bowl shaped. Measurements of sediment compaction in specific depth intervals at three monitoring wells indicate that most of the subsidence is caused by sediment compaction at depths from 50 to 300 m. The major compaction occurs in the interval 220–300 m and is attributed to ground water withdrawal. Large angular deflections as determined from subsidence measurements are detected at some columns, but are below the upper bound (1/1,000) of tolerance specified in the safety code. With the current subsidence and sediment compaction, no significantly reduced loading capacity of the columns is expected to occur. For a safe THSR operation, subsidence and sediment-compaction monitoring should be continued, and current ground water withdrawal in Yunlin must be reduced or stopped.  相似文献   

10.
In this paper, we present a computational framework for the simulation of coupled flow and reservoir geomechanics. The physical model is restricted to Biot’s theory of single-phase flow and linear poroelasticity, but is sufficiently general to be extended to multiphase flow problems and inelastic behavior. The distinctive technical aspects of our approach are: (1) the space discretization of the equations. The unknown variables are the pressure, the fluid velocity, and the rock displacements. We recognize that these variables are of very different nature, and need to be discretized differently. We propose a mixed finite element space discretization, which is stable, convergent, locally mass conservative, and employs a single computational grid. To ensure stability and robustness, we perform an implicit time integration of the fluid flow equations. (2) The strategies for the solution of the coupled system. We compare different solution strategies, including the fully coupled approach, the usual (conditionally stable) iteratively coupled approach, and a less common unconditionally stable sequential scheme. We show that the latter scheme corresponds to a modified block Jacobi method, which also enjoys improved convergence properties. This computational model has been implemented in an object-oriented reservoir simulator, whose modular design allows for further extensions and enhancements. We show several representative numerical simulations that illustrate the effectiveness of the approach.  相似文献   

11.
A proper understanding and eventual assessment of reservoir compaction and land subsidence is crucial for decision-making in petroleum and gas extraction industry. This paper presents a multi-scale multi-physics study of coupling mechanisms in the long-term compaction of oil/gas bearing sediments, also known as aging. The principal goal of this work is to quantify such coupling mechanisms at different scales and link phenomena occurring at micro- and meso-scales to a mathematical model formulated at a macroscopic continuum level. The interaction between mechanical and non-mechanical processes, originating from intergranular damage and dissolution was examined through modeling the involved phenomena at their respective micro- and meso-scales. Two major consequences that result from the intensified chemo-mechanical coupling were investigated: porosity reduction, and subsequent stiffness and permeability evolution. It appears that permeability is mildly affected by the contact area increase, and for most of the duration, by the precipitation of the mineral solute; stiffening of the grain system results from the mineral precipitation and the consequent redistribution of mass within the pore space.  相似文献   

12.
The enhanced velocity mixed finite element method, due to Wheeler et al. (Comput Geosci 6(3–4):315–332, 2002), is analyzed and extended to the problem of modeling slightly compressible flow coupled to the transport of chemical species through porous media, on non-matching multiblock grids. Applications include modeling bio-remediation of heavy oil spills and many other subsurface hazardous wastes, angiogenesis in transition of tumors from dormant to malignant states, transport of contaminants in ground water flow, and acid injection from well bores to increase permeability of surrounding rock. The analysis and numerical examples presented here demonstrate convergence and computational efficiency of this method.  相似文献   

13.
The Galerkin finite-element discretization of the force balance equation typically leads to large linear systems for geomechanical problems with realistic dimensions. In iteratively coupled flow and geomechanics modeling, a large linear system is solved at every timestep often multiple times during coupling iterations. The iterative solution of the linear system stemming from the poroelasticity equations constitutes the most time-consuming and memory-intensive component of coupled modeling. Block Jacobi, LSOR, and Incomplete LU factorization are popular preconditioning techniques used for accelerating the iterative solution of the poroelasticity linear systems. However, the need for more effective, efficient, and robust iterative solution techniques still remains especially for large coupled modeling problems requiring the solution of the poroelasticity system for a large number of timesteps. We developed a supercoarsening multigrid method (SCMG) which can be multiplicatively combined with commonly used preconditioning techniques. SCMG has been tested on a variety of coupled flow and geomechanics problems involving single-phase depletion and multiphase displacement of in-situ hydrocarbons, CO2 injection, and extreme material property contrasts. Our analysis indicates that the SCMG consistently improves the convergence properties of the linear systems arising from the poroelasticity equations, and thus, accelerates the coupled simulations for all cases subject to investigation. The joint utilization of the two-level SCMG with the ILU1 preconditioner emerges as the most optimal preconditioning/iterative solution strategy in a great majority of the problems evaluated in this work. The BiCGSTAB iterative solver converges more rapidly compared to PCG in a number of test cases, in which various SCMG-accelerated preconditioning strategies are applied to both iterators.  相似文献   

14.
In a previous paper1 the authors have developed and implemented a new boundary element (BE) model to simulate and predict land subsidence occurring over three-dimensional gas/oil fields in a homogeneous and isotropic half-space. The approach relies on Betti's reciprocal theorem and makes use of the classical fundamental solution of Boussinesq in the framework of the theory of linear poroelasticity. The BE method is here extended to inhomogeneous, transversally anisotropic soils by the aid of a two-dimensional finite element (FE) model which provides a fundamental numerical solution for the actual multi-layer setting of the subsurface system. The new FE–BE approach is then used to simulate the subsidence caused by gas production over the deep reservoir of Campo Ravenna Terra, Ravenna (Italy) from 1950 to 1980. The results compare very favourably with the outcome from a full more expensive three-dimensional FE model of the same occurrence.  相似文献   

15.
采空场覆岩变形数值模拟与相似模拟比较研究   总被引:24,自引:0,他引:24  
李向阳  李俊平  周创兵  向文飞 《岩土力学》2005,26(12):1907-1912
用有限元数值计算尝试了离层模拟,并分别采用数值模拟与相似模拟的方法研究了木架山矿区143剖面倾斜采空场处理时的地表移动与覆岩破坏规律。研究发现,随着矿柱的崩落,覆岩跨度不断增加,引起的地表移动范围也不断增大,地表垂直沉降范围大致为跨度的1.5~1.7倍,垂直沉降曲线始终对称于最大沉降点;水平移动的范围大于垂直沉降的范围,最大水平移动量大约为最大沉降量的40 %,且水平移动不对称。另外,当覆岩发生整体下沉时离层主要存在于跨度两端,离层由层理剪切破坏引起。  相似文献   

16.
Review: Regional land subsidence accompanying groundwater extraction   总被引:9,自引:4,他引:5  
The extraction of groundwater can generate land subsidence by causing the compaction of susceptible aquifer systems, typically unconsolidated alluvial or basin-fill aquifer systems comprising aquifers and aquitards. Various ground-based and remotely sensed methods are used to measure and map subsidence. Many areas of subsidence caused by groundwater pumping have been identified and monitored, and corrective measures to slow or halt subsidence have been devised. Two principal means are used to mitigate subsidence caused by groundwater withdrawal??reduction of groundwater withdrawal, and artificial recharge. Analysis and simulation of aquifer-system compaction follow from the basic relations between head, stress, compressibility, and groundwater flow and are addressed primarily using two approaches??one based on conventional groundwater flow theory and one based on linear poroelasticity theory. Research and development to improve the assessment and analysis of aquifer-system compaction, the accompanying subsidence and potential ground ruptures are needed in the topic areas of the hydromechanical behavior of aquitards, the role of horizontal deformation, the application of differential synthetic aperture radar interferometry, and the regional-scale simulation of coupled groundwater flow and aquifer-system deformation to support resource management and hazard mitigation measures.  相似文献   

17.
A linear boundary element (BE) model is proposed for the uncoupied simulation of land subsidence due to gas, oil and hot water production over three-dimensional (3-D) arbitrarily shaped reservoirs. The pore pressure decline is assumed to be specified in advance, e.g. via a numerical model of flow. Use is made of the fundamental solution derived in 1885 by Boussinesq for a vertical load acting upon the traction-free surface of a semi-infinite medium. A straightforward application of Betti's (1872) reciprocal theorem allows for the development of a boundary integral whose numerical execution yields directly the downward settlement over the point of interest. The new procedure is applied to assess land sinking caused by an uniform pore pressure decline occurring within fields of elliptical shape and to explore the influence of the assumption of small reservoir thickness which underlies the ‘tension center’ or ‘strain nucleus’ approach previously developed by Geertsma in 1966. The results emphasize the numerical efficiency of the solution and the promising features of the BE method for the evaluation of ground subsidence in 3-D problems. The present model is based on the theory of the linear poroelasticity and is implemented for a mechanically homogeneous and isotropic half-space. It allows for any arbitrary geometry of the reservoir and for a non-uniform distribution of the pore pressure decline. It may easily be extended to other physical settings for which a vertical surface point load solution is available.  相似文献   

18.
In an attempt to derive more information on the parameters driving compaction, this paper explores the feasibility of a method utilizing data on compaction-induced subsidence. We commence by using a Bayesian inversion scheme to infer the reservoir compaction from subsidence observations. The method’s strength is that it incorporates all the spatial and temporal correlations imposed by the geology and reservoir data. Subsequently, the contributions of the driving parameters are unravelled. We apply the approach to a synthetic model of an upscaled gas field in the northern Netherlands. We find that the inversion procedure leads to coupling between the driving parameters, as it does not discriminate between the individual contributions to the compaction. The provisional assessment of the parameter values shows that, in order to identify adequate estimate ranges for the driving parameters, a proper parameter estimation procedure (Markov Chain Monte Carlo, data assimilation) is necessary.  相似文献   

19.
介绍了瞬时均匀拉伸模型、挠曲悬臂梁模型和多幕伸展模型,特别强调各种模型的基本假设和适用条件,以及基于这些模型发展出的二维正反演模拟和一维应变速率模拟的方法。这些方法在计算岩石圈伸展系数和盆地张裂的过程中,具有一定的优越性。在盆地的数值模拟中,有时需要综合运用多种数值模型来突破单个模型假设条件的约束。为了研究南海北部白云凹陷的裂后沉降特点,分别应用二维正反演和一维应变速率正反演方法计算岩石圈的伸展系数,并计算理论热沉降,与实测裂后沉降进行对比。模拟结果表明,白云凹陷岩石圈的伸展系数大致呈钟形分布,在凹陷中心处最大,大约为3.5;凹陷的实测裂后沉降远大于理论值,即存在裂后异常沉降,裂后期的异常沉降总量在凹陷中心和南部在2km以上。  相似文献   

20.
The pressure variations during the production of petroleum reservoir induce stress changes in and around the reservoir. Such changes of the stress state can induce marked deformation of geological structures for stress sensitive reservoirs as chalk or unconsolidated sand reservoirs. The compaction of those reservoirs during depletion affects the pressure field and so the reservoir productivity. Therefore, the evaluation of the geomechanical effects requires to solve in a coupling way the geomechanical problem and the reservoir multiphase fluid flow problem. In this paper, we formulate the coupled geomechanical‐reservoir problem as a non‐linear fixed point problem and improve the resolution of the coupling problem by comparing in terms of robustness and convergence different algorithms. We study two accelerated algorithms which are much more robust and faster than the conventional staggered algorithm and we conclude that they should be used for the iterative resolution of coupled reservoir‐geomechanical problem. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号