首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Groundwater samples collected from both open and bore wells in an area of about 270 km2 from Madras City, India, have been analyzed for major ions (HCO3, Cl, Si, Na, Ca, and Mg) and trace elements (As, Se, B, V, Cr, Fe, Co, Pb, Cu, Zn, Cd, Mn, Ni, Mo, and Ba). The study reveals that the quality of potable water has deteriorated to a large extent. Seawater intrusion into the aquifer has been observed in nearly 50 percent of the study area. The toxic elements (As and Se) have already exceeded the maximum permissible limits of drinking water in almost the entire city. A positive correlation of As and Se with other toxic metals such as V, Cr, Fe, B, etc., indicates that all these elements are anthropogenic in origin. Applying multivariate analysis, the source for trace elements in groundwater has been grouped into two major factors: pollution and mobilization factors. The groundwater in the study area is largely contaminated by organic effluents and reflects the intensity of pollution caused by the overlying soil sediment and rapid infiltration of the pollutants.  相似文献   

2.
Chemical weathering and resulting water compositions in the upper Ganga river in the Himalayas were studied. For the first time, temporal and spatial sampling for a 1 year period (monthly intervals) was carried out and analyzed for dissolved major elements, trace elements, Rare Earth Elements (REE), and strontium isotopic compositions. Amounts of physical and chemical loads show large seasonal variations and the overall physical load dominates over chemical load by a factor of more than three. The dominant physical weathering is also reflected in high quartz and illite/mica contents in suspended sediments. Large seasonal variations also occur in major elemental concentrations. The water type is categorized as HCO3–SO42––Ca2+ dominant, which constitute >60% of the total water composition. On an average, only about 5–12% of HCO3 is derived from silicate lithology, indicating the predominance of carbonate lithology in water chemistry in the head waters of the Ganga river. More than 80% Na+ and K+ are derived from silicate lithology. The silicate lithology is responsible for the release of low Sr with extremely radiogenic Sr (87Sr/86 Sr>0.75) in Bhagirathi at Devprayag. However, there is evidence for other end-member lithologies for Sr other than carbonate and silicate lithology. Trace elements concentrations do not indicate any pollution, although presence of arsenic could be a cause for concern. High uranium mobilization from silicate rocks is also observed. The REE is much less compared to other major world rivers such as the Amazon, perhaps because in the present study, only samples filtered through <0.2 m were analysed. Negative Eu anomalies in suspended sediments is due to the excess carbonate rock weathering in the source area.  相似文献   

3.
This article reports on the concentration of selected trace elements (Mn, Zn, Cr, Cu, Ba, As, B, V, and Hg) and major elements (Fe and Al) from the intertidal sediment cores from Sundarban wetland, India. This is a typical meso-macrotidal estuarine area affected by domestic and industrial activities located upstream. The overall concentrations range is low to moderate, indicating the environmental conditions in the outfall zone (grain size, hydrodynamic regime, and confinement), which favors the in situ accumulation of pollutants. The extent of contamination from trace elements in Sundarban core sediments is evaluated through a two-pronged approach: (i) by determining the metal enrichment in the sediments through the calculation of Pollution Load Index (PLI), Enrichment Factor (EF) and Index of Geoaccumulation (I geo), and (ii) by defining a potential level of biological risk by the use of quality criteria such as Threshold Effect Level (TEL) and Effects Range-Low (ERL) benchmarks. On the basis of the calculated indices, sediments are particularly enriched with Cr, Cu, B, V, and As. Those enrichments seem to be due to the fine granulometry of the regions with Fe and Mn oxi-hydroxides being the main metal carriers. Trace Elements input to the Sundarban wetland need to be kept under strict control in future specially with reference to As since, according to TEL and ERL benchmarks, it already appears to be associated with a potential biological risk.  相似文献   

4.
The Upper Cretaceous Toyajo Formation is distributed around the Mt. Toyajo in the Aridagawa area, Wakayama, southwestern Japan. The formation is subdivided into three newly defined members, the Nakaibara Siltstone Member, Hasegawa Muddy Sandstone Member, and Buyo Sandstone Member, in ascending order. Close field observation elucidated the detailed biostratigraphy of the Toyajo Formation, and high-precision biostratigraphic correlation was made with the Yezo Group in Hokkaido (northern Japan) and Sakhalin and the Izumi Group in southwestern Japan.The Toyajo Formation contains diversified lower Campanian to upper Campanian heteromorph ammonoid assemblages, including Eubostrychoceras and Scaphites. Discovery of the heteromorph fauna demonstrates that scaphitid ammonoids survived until Campanian time in the northwestern Pacific region. Although Eubostrychoceras elongatum has been known in the northeastern Pacific region, the occurrence of this species in the northwestern Pacific region has been uncertain before. The rich occurrence of E. elongatum in the Aridagawa area indicates that this species was distributed widely in the northern Pacific realm.The Toyajo Formation is similar to the Izumi Group in various geologic features, and may indicate that the Toyajo Formation was deposited in a strike-slip basin along the Chichibu Belt formed by the movement along the Kurosegawa Tectonic Zone in the latest Cretaceous, like the Izumi Group, along the Median Tectonic Line.  相似文献   

5.
Groundwater in some deep wells of Maydavood aquifer, southwestern Iran, contains relatively high concentrations of arsenic. Detailed hydrochemical analysis of these groundwaters (with ICP-OES instrument) showed that concentrations of iron, manganese, nickel, and vanadium are also high in them and concentrations of total arsenic in 81% of deep wells are greater than World Health Organization’s permissible value (10 ppb). XRF analysis of surrounding geological formations and aquifer sediments proposed that original source of arsenic in aquifer material can be attributed to minerals from Asmari Formation. It appears that a key mechanism for arsenic mobilizing to deep wells is microbial biodegradation of petroleum related organic matters (PROMs), which exist in aquifer sediments and originates from the bedrock of the aquifer (Gachsaran Formation). This process is followed by microbially mediated reductive dissolution of arsenic-bearing iron/manganese oxyhydroxides/oxides and further by nickel and vanadium mobilizing to groundwater. According to hydrogeochemical conditions and cluster analysis, water wells in Maydavood aquifer are divided to four subgroups: the wells with mildly reducing condition (subgroup I), moderately reducing condition (subgroup II), reducing condition (subgroup III), and high reducing condition (subgroup IV). Affected wells to arsenic are belonged to subgroups III and IV.  相似文献   

6.
Geochemical study of the Holocene sediments of the Meghna River Delta, Chandpur, Bangladesh was conducted to investigate the distribution of arsenic and related trace and major elements. The work carried out includes analyses of core sediments and provenance study by rare earth element (REE) analysis. Results showed that the cores pass downward from silty clays and clays into fine to medium sands. The uppermost 3 m of the core sediments are oxidized [average oxidation reduction potential (ORP) + 230 mV], and the ORP values gradually become negative with depths (−45 to −170 mV), indicating anoxic conditions prevail in the Meghna sediments. The REE patterns of all lithotypes in the study areas are similar and are comparable to the average upper continental crust. Arsenic and other trace elements (Pb, Zn, Cu, Ni, and Cr) have greater concentrations in the silts and clays compared to those in the sands. Positive correlation between As and Fe was found in the sediments, indicating As may be adsorbed on Fe oxides in aquifer sediments.  相似文献   

7.
A numerical simulation was applied to first characterize the groundwater flow and patterns of nitrate pollution of a small-agricultural catchment in Tsukuba City, Japan, for a 10-year period. There was a good performance of the flow simulation. In contrast, although the transport model calculated the evolution of the plume, it only provided estimates of solute concentrations. Groundwater contamination increased exponentially during the first 594 days of the simulation, reaching then a near-equilibrium state. Fertilizer applications are responsible for most of the leaching of NO3 to groundwater, therefore, shifting of crops and the associated agricultural practices may translate into decreases of contamination levels. A series of hypothetical scenarios demonstrated that replacing grasslands by other crops may reduce the contamination levels up to 12%. As the chosen field is a representative of many other agricultural areas in Japan, the approach and results should also be applicable to similar cases around the country.  相似文献   

8.
The arsenic accumulation process in intertidal sediments of Iriomote Island, Japan, is analyzed as a naturally balanced arsenic-fixation system. Major and minor element chemistry is analyzed by X-ray fluorescence photometry, mineralogy is investigated by X-ray diffractometry, and four arsenic compounds are characterized by hydrogen-generated atomic absorption photometry. It is found that arsenic is accumulated by iron hydroxides/oxides precipitated following the decomposition of humic acids in the shallower sediment, and is subsequently incorporated into iron sulfide minerals at depth. The arsenic is immobile during incorporation into arsenic-bearing phases, suggesting that arsenic is unlikely to be released into the porewater under natural conditions in early diagenesis. The formation and decomposition of arsenic-bearing organic compounds appear to be associated with the formation and decomposition of arsenic in oxyhydroxides/oxides, suggesting that microbial activity may play an important role in controlling the behavior of arsenic and arsenic-bearing phases in the sediment column.  相似文献   

9.
The island of Ischia belongs to the active volcanic area of Naples. It is formed from Quaternary volcanic rocks and exhibits intense hydrothermal activity, which is manifested through numerous springs, fumaroles and sporadic geysers. The content of minor and trace elements in groundwater has been analyzed, including some elements that are considered toxic for humans. Mean concentrations of As, B, Fe, Mn, Sb, and Se in samples from 43 aquifer points exceed the WHO recommended values and the limits set by European and Italian legislation (98/83/CE and DM 471, respectively). In general, the spatial distribution of the elements follows a common pattern: it is governed by a marked structural control, which favors hydrochemical processes that liberate the elements into the water.  相似文献   

10.
An integrated study has been carried out to elucidate the distribution and occurrence of arsenic in selected groundwater samples in the area of Sherajdikhan, Bangladesh. Arsenic and other parameters (T, pH, EC, Na+, K+, Ca2+, Mg2+, Cl, NO3 , SO4 2−, HCO3 , PO4 3−, Fe, Mn and DOC) have been measured in groundwater samples collected from shallow/deep tube wells at different depths. Hydrogeochemical data suggest that the groundwaters are generally Ca–Mg–HCO3 and Mg–Ca–HCO3 types with bicarbonate (HCO3 ) as the dominant anion, though the other type of water has also been observed. Dissolved arsenic in groundwater ranged from 0.006 to 0.461 mg/l, with 69% groundwater samples exceeded the Bangladesh limit for safe drinking water (0.05 mg/l). Correlation and principal component analysis have been performed to find out possible relationships among the examined parameters in groundwater. Low concentrations of NO3 and SO4 2−, and high concentrations of DOC, HCO3 and PO4 3− indicate the reducing condition of subsurface aquifer where sediments are deposited with abundant organic matter. Distinct relationship of As with Fe and Mn, and strong correlation with DOC suggests that the biodegradation of organic matter along with reductive dissolution of Fe–Mn oxyhydroxides has being considered the dominant process to release As in the aquifers studied herein.  相似文献   

11.
12.
 Water resources near a gold-mine waste site were studied for the distribution and contents of contaminants, and their behavior in the surface and groundwater systems. Arsenic, cadmium, and manganese were identified with levels exceeding the drinking water guidelines of WHO (World Health Organization), and their distribution depended upon the differences in source materials and in spatial pH variations. Originating from arsenopyrite, concentrations of dissolved arsenic were controlled by sorption with amorphous iron (Fe(OH)3) and carbonate minerals. Cadmium and manganese were derived from the mineral phase including sphalerite (ZnS), otavite (CdCO3), and rhodochrosite (MnCO3); their concentrations in water resources were limited by the solubility of mineral phases. All of these processes are significantly pH-dependent, implying that a small decline in pH could result in a drastic increase in contaminant concentrations and become a pollution threat to the water resources of the Gubong area. Received: 13 December 1999 · Accepted: 21 March 2000  相似文献   

13.

江西中部相山矿田及其周边铀多金属成矿作用复杂。近些年,在其南部古塘地区地表新发现了一处锡石矿化带,赋存于加里东期花岗岩中。通过对该矿点锡石开展原位LA-ICP-MS U-Pb定年和微量元素分析,获得其207Pb/206Pb-238U/206Pb谐和年龄为150.44±2.78 Ma、下交点年龄为150.64±2.78 Ma,两者相近,可以代表该锡石矿的成矿年龄,与矿化带周边的燕山期山心单元花岗岩成岩年龄(152.4±1.1 Ma)相近。微量元素中,高场强元素Ti、Nb、Ta富集明显。与Sn容易发生类质同象的Mn、Nb、Hf、Ta等4种元素彼此正相关性明显,Fe和Mo呈正相关关系,却与Nb、Mn、Hf、Ta均呈现负相关性。在W-Fe图解中,处于花岗岩岩浆热液型锡矿床的右侧,说明研究区成矿物质应该主要来自岩浆热液,而且成矿温度较高。古塘地区锡石矿与山心单元花岗岩虽然具有相近的成矿、成岩年龄,但由于后者具有极高的氧逸度,不利于Sn元素的富集,而与Mo成矿有关;与山心单元花岗岩中可见辉钼矿矿囊而未发现锡矿化的地质现象保持一致。

  相似文献   

14.
The occurrence of human health problems resulting from arsenic contamination of domestic water supplies in Ron Phibun District, Nakhon Si Thammarat Province, southern Thailand was first recognized in 1987. The area has an extensive history of bedrock and alluvial mining, the waste from which is typically rich in arsenopyrite and related alteration products. In 1994 a collaborative study was instigated involving Thai and British government authorities to establish the distribution and geochemical form of As in surface drainage and aquifer systems in the affected area, the probable sources of As contamination, and the potential for problem alleviation. Hydrochemical analyses of surface- and groundwaters have confirmed the presence of dissolved As at concentrations exceeding WHO potable water guidelines by up to a factor of 500. Contamination of the shallow alluvial aquifer system is systematically more severe than the underlying carbonate-hosted aquifer. Deep boreholes may therefore provide the best available potable water source for the local population. The presence of up to 39% of total As as arsenite (H3AsO3) within the carbonate aquifer may, however, constitute a hidden toxicological risk, not evident in the shallow groundwater (in which arsenate species account for > 95% of total As). Mineralogical investigations of As-rich tailings and flotation wastes were undertaken to evaluate their likely impact on water quality. The results indicate that although some flotation wastes contain up to 30% As, the rate of leaching is extremely low. Consequently the As loading of drainage emanating from such waste is below the subregional average. Analyses of the silty alluvium that covers much of the central sector of the study area have highlighted As concentrations of up to 5000 mg kg–1, probably carried by disseminated arsenopyrite. Following sulfide dissolution, the mobility of As in this material may be high (with resultant contamination of shallow groundwater) due to the low Fe content of the soil. On the basis of the data acquired, a range of pollution mitigation schemes are currently under investigation including Fe supplementation of alluvium and microbial degradation of disseminated arsenopyrite.  相似文献   

15.
It is important to know the shape of a subducting slab in order to understand the mechanisms of inter-plate earthquakes and the process of subduction. Seismicity data and converted phases have been used to detect plate boundaries. The configuration of the Philippine Sea slab has been obtained at the western part of southwestern Japan. At the eastern part of southwestern Japan, however, the configuration of the Philippine Sea slab has not yet been confirmed. A spatially high-density seismic network makes it possible to detect the boundaries of the Philippine Sea slab. We used a spatially high-density temporal seismic array in the area. The configuration of the Philippine Sea plate is obtained at the eastern part of southwestern Japan using the temporal seismic array and permanent seismic network data and comparing the seismic structure obtained from the results of refraction surveys. The configuration of the Philippine Sea plate obtained by this study does not bend sharply compared to previous models obtained from receiver function analyses. We delineated the upper boundary of the slab to a depth of about 45 km. The weak image of the boundary, which corresponds to the upper mantle reflector beneath the source area of the 2000 Western Tottori earthquake, was detected using the spatially dense array.  相似文献   

16.
A baseline might be used as a point of reference to monitor change from some specific data without concern for whether the baseline determination is natural or has been changed by human activity. We selected 326 sediment samples from Dexing area, South China, and analyzed for 17 chemical elements. The geochemical baseline was predicted with the method of the normalization procedure combined with the relative cumulative frequency curve. The results indicate Al was the best reference element for the normalization procedure among four potential reference elements (Al, Fe, Ti, and Mn). The baseline value range obtained from the normalization procedure method included both the regional geochemical background of the sediment and the median value of the measured contents. The median value of baselines obtained from relative cumulative frequency method was lower than that obtained from normalization procedure method. In contrast to the geochemical patterns of heavy metals in 1987, the spatial distribution of anomalies sprawled in 2004 in study area, especially for Cu, Pb, Zn, Cd, As, Fe, and Cr.  相似文献   

17.
The ash yield and concentrations of twenty-four minor and trace elements, including twelve potentially hazardous trace elements were determined in Mukah coal from Sarawak, Malaysia. Comparisons made to the Clarke values show that Mukah coal is depleted in Ag, Ba, Be, Cd, Co, Mn, Ni, Se, U, and V. On the other hand, it is enriched in As, Cr, Cu, Pb, Sb, Th, and Zn. Among the trace elements studied, V and Ba are associated predominantly with the clay minerals. Manganese, Cr, Cu, Th, and Ni are mostly bound within the aluminosilicate, sulphide and/or carbonate minerals in varying proportions, though a portion of these elements are also organically bound. Arsenic, Pb and Sb are mostly organically bound, though some of these elements are also associated with the sulphide minerals. Zinc is associated with both the organic and inorganic contents of the coal. Among the potentially hazardous trace elements, Be, Cd, Co, Mn, Ni, Se, and U may be of little or no health and environmental concerns, whereas As, Cr, Pb, Sb and Th require further examination for their potential health and environmental concerns. Of particular concern are the elements As, Pb and Sb, which are mostly organically bound and hence cannot be removed by physical cleaning technologies. They escape during coal combustion, either released as vapours to the atmosphere or are adsorbed onto the fine fly ash particles.  相似文献   

18.
Twenty-two bottled mineral and spring waters from Norway, Sweden, Finland and Iceland have been analysed for 71 inorganic chemical parameters with low detection limits as a subset of a large European survey of bottled groundwater chemistry (N = 884). The Nordic bottled groundwaters comprise mainly Ca–Na–HCO3–Cl water types, but more distinct Ca–HCO3, Na HCO3 and Na–Cl water types are also offered. The distributions for most elements fall between groundwater from Fennoscandian Quaternary unconsolidated aquifers and groundwater from Norwegian crystalline bedrock boreholes. Treated tap waters have slightly lower median values for many parameters, but elements associated with plumbing have significantly higher concentrations in tap waters than in bottled waters. The small dataset is able to show that excessive fluoride and uranium contents are potential drinking water problems in Fennoscandia. Nitrate and arsenic displayed low to moderate concentrations, but the number of samples from Finland and Northern Sweden was too low to detect that elevated concentrations of arsenic occur in bedrock boreholes in some regions. The data shows clearly that water sold in plastic bottles is contaminated with antimony. Antimony is toxic and suspected to be carcinogenic, but the levels are well below the EU drinking water limit. The study does not provide any health-based arguments for buying bottled mineral and spring waters for those who are served with drinking water from public waterworks. Drinking water from crystalline bedrock aquifers should be analysed. In case of elevated concentrations of fluoride, uranium or arsenic, most bottled waters, but not all, will be better alternatives when treatment of the well water is not practicable.  相似文献   

19.
The Xiaoqinling district, the second largest gold producing district in China, is located on the southern margin of the North China Craton. It consists of three ore belts, namely, the northern ore belt, the middle ore belt and the southern ore belt. Pyrite from the Dahu gold deposit in the northern ore belt and Wenyu and Yinxin gold deposits in the southern ore belt were investigated using a combination of ore microscopy and in-situ laser-ablation inductively-coupled plasma-mass spectrometry (LA-ICP-MS). A range of trace elements was analyzed, including Au, Te, Ag, Pb, Bi, Cu, Co, Ni, Zn, Mo, Hg, As and Si. The results show that there are no systematic differences between the trace element compositions of pyrite in the three deposits from different ore belts. In general, Au concentrations in pyrite are low (from < 0.01 ppm to 2.2 ppm) but Ni concentrations are rather high (up to 8425 ppm). A four-stage mineralization process is indicated by microscopic and field observations and this can be related to the systematic trace element differences between distinct generations of pyrite. Stage I precedes the main gold mineralization stage; pyrite of this stage has the lowest Au concentrations. Stages II and III contributed most of the gold to the ore-forming system. The corresponding pyrite yielded the highest concentrations of Au and Ni. Our microscopic observations suggest that pyrite in the main gold mineralization stage precipitated simultaneously with molybdenite that has been previously dated as Indosinian (~ 218 Ma by Re–Os molybdenite dating), indicating the Indosinian as the main gold mineralization stage. The Indosinian mineralization age and the geological and geochemical features of these gold deposits (e.g., low salinity, CO2-rich ore fluids; spatial association with large-scale compressional structures of the Qinling orogen; δ18O and δD data suggestive of mixing between metamorphic and meteoric waters; δ34S and Pb-isotopic data that point to a mixed crustal-mantle source) all point to typical orogenic-type gold deposits. High Ni concentrations (up to 8425 ppm) of pyrite possibly linked to deep-seated mafic/ultramafic metamorphic rocks provide further evidence on the orogenic gold deposit affinity, but against the model of a granitic derivation of the mineralizing fluid as previously suggested by some workers. Generally low Au concentration in pyrite is also consistent with those from worldwide orogenic gold deposits. Therefore, the gold mineralization in the Xiaoqinling district is described as orogenic type, and is probably related to Indosinian collision between the North China Craton and the Yangtze Craton.  相似文献   

20.
Manipur State, with a population of 2.29 million, is one of the seven North-Eastern Hill states in India, and is severely affected by groundwater arsenic contamination. Manipur has nine districts out of which four are in Manipur Valley where 59% of the people live on 10% of the land. These four districts are all arsenic contaminated. We analysed water samples from 628 tubewells for arsenic out of an expected total 2,014 tubewells in the Manipur Valley. Analyzed samples, 63.3%, contained >10 μg/l of arsenic, 23.2% between 10 and 50 μg/l, and 40% >50 μg/l. The percentages of contaminated wells above 10 and 50 μg/l are higher than in other arsenic affected states and countries of the Ganga–Meghna–Brahmaputra (GMB) Plain. Unlike on the GMB plains, in Manipur there is no systematic relation between arsenic concentration and the depth of tubewells. The source of arsenic in GMB Plain is sediments derived from the Himalaya and surrounding mountains. North-Eastern Hill states were formed at late phase of Himalaya orogeny, and so it will be found in the future that groundwater arsenic contamination in the valleys of other North-Eastern Hill states. Arsenic contaminated aquifers in Manipur Valley are mainly located within the Newer Alluvium. In Manipur, the high rainfall and abundant surface water resources can be exploited to avoid repeating the mass arsenic poisoning that has occurred on the GMB plains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号