首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A mesoscale iron fertilization experiment was carried out in the western subarctic Pacific during summer 2004. The iron-patch was traced for 26 days after the enrichment, and the abundance and behavior of meso- and microzooplankton was compared with those outside of the patch. The surface chlorophyll-a concentration in the patch was high between days 10 and 13 (2.5 mg m−3) and decreased to the initial level after day 20. Microzooplankton grazing rates, estimated by a dilution method, was mostly balanced with phytoplankton growth rates throughout the observed period. Dominant mesozooplankton species in the upper 200 m were copepods: dominated by Eucalanus bungii, Neocalanus plumchrus and Metridia pacifica. Species composition did not change in the patch over the observation period. The copepod biomass was 3–5 times higher than in Subarctic Pacific Iron Experiment for Ecosystem Dynamics Study (SEEDS), the previous iron-enrichment experiment in the same area, before the bloom, and exponentially increased both inside and outside the patch, which was mainly brought by the development of N. plumchrus. The development rates of N. plumchrus were not significantly different between inside and outside the patch. Estimated grazing rate suggest that the copepod grazing was main cause of the low accumulation of phytoplankton biomass, and dominance of grazing-resistant organisms such as large ciliates, large diatoms and diatoms with extremely long setae. “Arrested migration” for M. pacifica and upward shift of vertical distribution by E. bungii were observed during the bloom period, even if the accumulation of phytoplankton biomass was very low compared to other iron-enrichment experiments. These results indicate that the copepod grazing shaped the food-web structure of the lower trophic levels (biomass and species composition) in SEEDS II.  相似文献   

2.
《Journal of Oceanography》2007,63(6):983-994
A mesoscale iron-enrichment study (SEEDS II) was carried out in the western subarctic Pacific in the summer of 2004. The iron patch was traced for 26 days, which included observations of the development and the decline of the bloom by mapping with sulfur hexafluoride. The experiment was conducted at almost the same location and the same season as SEEDS (previous iron-enrichment experiment). However, the results were very different between SEEDS and SEEDS II. A high accumulation of phytoplankton biomass (∼18 mg chl m−3) was characteristic of SEEDS. In contrast, in SEEDS II, the surface chlorophyll-a accumulation was lower, 0.8 to 2.48 mg m−3, with no prominent diatom bloom. Photosynthetic competence in terms of F v/F m for the total phytoplankton community in the surface waters increased after the iron enrichments and returned to the ambient level by day 20. These results suggest that the photosynthetic physiology of the phytoplankton assemblage was improved by the iron enrichments and returned to an iron-stressed condition during the declining phase of the bloom. Pico-phytoplankton (<2 μm) became dominant in the chlorophyll-a size distribution after the bloom. We observed a nitrate drawdown of 3.8 μM in the patch (day 21), but there was no difference in silicic acid concentration between inside and outside the patch. Mesozooplankton (copepod) biomass was three to five times higher during the bloom-development phase in SEEDS II than in SEEDS. The copepod biomass increased exponentially. The grazing rate estimation indicates that the copepod grazing prevented the formation of an extensive diatom bloom, which was observed in SEEDS, and led to the change to a pico-phytoplankton dominated community towards the end of the experiment.  相似文献   

3.
To test the iron hypothesis in the subarctic Pacific Ocean, an in situ iron-enrichment experiment (SEEDS) was performed in the western subarctic gyre in July–August 2001. About 350 kg of iron (as acidic iron sulfate) and 0.48 mol of the inert chemical tracer sulfur hexafluoride were introduced into a 10-m deep surface mixed layer over an 80 km2 area. This single iron infusion raised dissolved iron levels to 2.9 nM initially. Dissolved iron concentrations rapidly decreased after the infusion, but levels remained close to 0.15 nM even at the end of the 14-day experimental period. During SEEDS there were iron-mediated increases in chlorophyll a concentrations (up to 20 μg l−1), primary production rates, biomass and photosynthetic energy conversion efficiency relative to waters outside the iron-enriched patch. The rapid and very high accumulation of phytoplankton biomass in response to the iron addition appeared to be partly attributable to shallow mixed-layer depth and moderate water temperature in the western subarctic Pacific. However, the main reason was a floristic shift to fast-growing centric diatom Chaetoceros debilis, unlike the previous iron-enrichment experiments in the equatorial Pacific and the Southern Ocean, in both of which iron stimulated the growth of pennate diatoms. The iron-mediated blooming of diatoms resulted in a marked consumption of macronutrients and drawdown of pCO2. Biological and physiological measurements indicate that phytoplankton growth in the patch became both light- and iron-limited, making phytoplankton biomass relatively constant after day 9. The increase in microzooplankton grazing rate after day 9 also influenced the net growth rate of phytoplankton. There was no significant increase in the export flux of carbon to depth during the 14-day occupation of the experimental site. The export flux between day 4 and day 13 was estimated to be only 13% of the integrated primary production in the iron-enriched patch. The major part of the carbon fixed by the diatom bloom remained in the surface mixed layer as biogenic particulate matter. Our findings support the hypothesis that iron limits phytoplankton growth and biomass in a ‘bottom up’ manner in this area, but the fate of algal carbon remains unknown.  相似文献   

4.
To fill temporal gaps in iron-enrichment experimental data and gain further understanding of marine ecosystem responses to iron enrichments, we apply a fifteen-compartment ecosystem model to three iron-enrichment sites, namely SEEDS (the Subarctic Pacific Iron Experiment for Ecosystem Dynamics Study; 48.5°N, 165°E) in the western North Pacific, SOIREE (the Southern Ocean Iron RElease Experiment; 61°S, 140°E) in the Southern Ocean, and IronExII (the second mesoscale iron enrichment experiment; 3.5°S, 104°W) in the Equatorial Pacific. The ecological effects of iron in the model are represented by changing two photosynthetic parameters during the iron-enrichment period. The model results successfully reproduce the observed biogeochemical responses inside and outside the iron patch at each site, such as rapid increases in plankton biomass and biological productivity, and decreases in surface nutrients and pCO2, inside the patch. However, the modeled timing and magnitude of changes differ among the sites because of differences in both physical environments and plankton species. After the iron enrichment, the diatom productivity is strongly controlled by light at SOIREE and by silicate at IronExII and SEEDS. Light limitation due to self-shading by the phytoplankton is significant during the bloom at all sites. Sensitivity analysis of the model results to duration of the iron enrichment reveals that long-term multiple infusions over more than a week would not be effective at SEEDS because of strong silicate limitation on diatom growth. Sensitivity of the model to water temperature shows that export production is higher at lower temperatures, because of slower recycling of particulate organic carbon. Therefore, the e-ratio (the ratio of export production to primary production) is inversely correlated with temperature, and the relationship can be described with a linear function. Through this study, we conclude that ecosystem modeling is a powerful tool to help design future iron-enrichment experiments and observational plans.  相似文献   

5.
The cumulative evidence from more than a dozen mesoscale iron-enrichment studies in high nitrate low chlorophyll (HNLC) waters demonstrates that iron limitation is widespread and very likely affects atmospheric carbon dioxide and thus global climate. However, the responses of microphytoplankton (>20 μm), predominantly diatoms, vary greatly among these mesoscale experiments even though similar amounts of iron were added, making it difficult to quantitatively incorporate iron effects into global climate models. Nowhere is this difference more dramatic than between the massive bloom observed during Subarctic Pacific Iron Experiment for Ecosystem Dynamics Study (SEEDS) I and the order of magnitude smaller ecosystem response in SEEDS II; two mesocale experiments performed in the same HNLC region of the western subarctic Pacific in different years. Deckboard incubation experiments initiated during the early, middle, and late stages of the 32-day SEEDS II experiment show that while the two iron infusions increased phytoplankton growth, diatoms remained significantly limited by iron availability, despite total dissolved Fe concentrations in the patch being well above the diffusion-limited threshold for rapid diatom growth. This iron limitation was apparent <6 days after the initial iron infusion and was not alleviated by the second, smaller iron infusion. In contrast, smaller phytoplankton (<20 μm) showed a more restricted response to further iron amendments, indicating that their iron nutrition was near optimal. Iron complexed to desferrioximine B, a commonly available siderophore produced by at least one marine bacterium, was poorly available to diatoms throughout the patch evolution, indicating that these diatoms lacked the ability to induce high-affinity iron uptake systems. These results suggest that the strong organic complexation of Fe(III) observed in the SEEDS II-fertilized patch was not compatible with rapid diatom growth. In contrast, iron associated with protoporphyrin IX, a weaker iron complexing ligand of a class hypothesized to be representative of recycled iron species, was readily available to diatoms. Our findings demonstrate that a persistence of iron limitation was the primary factor underlying the comparatively small diatom response during SEEDS II. This continued growth limitation would have increased the importance of mesozooplankton grazing as a controlling factor in the SEEDS II ecosystem response.  相似文献   

6.
Several in situ iron-enrichment experiments have been conducted, where the response of the phytoplankton community differed. We use a marine ecosystem model to investigate the effect of iron on phytoplankton in response to different initial plankton conditions and mixed-layer depths (MLDs). Sensitivity analysis of the model results to the MLDs reveals that the modeled response to the same iron enhancement treatment differed dramatically according to the different MLDs. The magnitude of the iron-induced biogeochemical responses in the surface water, such as maximum chlorophyll, is inversely correlated with MLD, as observed. The significant decrease in maximum surface chlorophyll with MLD results from the difference in diatom concentration in the mixed layer, which is determined by vertical mixing. The modeled column-integrated chlorophyll, on the other hand, is the highest with intermediate MLD cases, suggesting difference in iron-induced biogeochemical responses between volume and area considerations. The iron-induced diatom bloom is severely restricted below the compensation depth due to both light limitation and grazing pressure, irrespective of the MLD. Sensitivity of the model to initial mesozooplankton (as grazers on diatoms) biomass shows that column-integrated biomass, net community production and export production are strongly controlled by the initial mesozooplankton biomass. Higher initial mesozooplankton biomass yields high grazing pressure on diatoms, which results in less accumulation of diatom biomass and may account for notably lower surface chlorophyll during SEEDS (Subarctic Pacific Iron Experiment for Ecosystem Dynamics Study) II than during SEEDS. The initial diatom biomass is also important to the outcome of iron enrichment but is not as crucial as the MLD and the initial mesozooplankton biomass. This modeling study suggests that not only MLD but also the initial biomass of diatoms and its principle grazers are crucial factors in the response of the phytoplankton community to iron enrichments, and should be considered in designing future iron-enrichment experiments.  相似文献   

7.
During two mesoscale iron-enrichment studies in the northwestern subarctic Pacific (SEEDS in 2001 summer and SEEDS II in 2004 summer), particulate materials from the iron-induced phytoplankton bloom in the upper water column were monitored to analyze the export processes beneath the upper mixed layer, mainly with drifting sediment traps. We could not observe the total downward export process of the high accumulation of particulate organic carbon from the mixed layer induced by the large diatom bloom of SEEDS [e.g., Tsuda, A., Takeda, S., Saito, H., Nishioka, J., Nojiri, Y., Kudo, I., Kiyosawa, H., Shiomoto, A., Imai, K., Ono, T., Shimamoto, A., Tsumune, D., Yoshimura, T., Aono, T., Hinuma, A., Kinugasa, M., Suzuki, K., Sohrin, Y., Noiri, Y., Tani, H., Deguchi, Y., Tsurushima, N., Ogawa, H., Fukami, K., Kuma, K., Saino, T., 2003. A mesoscale iron enrichment in the western subarctic Pacific induces large centric diatom bloom. Science 300, 958–961] because the 2-week observation period was too short to examine the decline phase of the bloom. In contrast, in SEEDS II, the particulate organic carbon and particulate organic nitrogen were accumulated 123 and 23 mmol m−2, respectively, in the mixed layer until day-15 (days from iron-enrichment), and then ca. 90% were removed from the mixed layer by day-25. The sediment traps at 40 m depth between day-15 and day-25 accounted for at least more than 35% of these particles. There was no large variation in chemical composition in settling particles above 100 m depth throughout the experimental periods both in SEEDS and SEEDS II. The content of biogenic opal remained more than 50% of all settling particles during SEEDS, while the content of biogenic calcium carbonate was relatively high, with a low biogenic opal content of consistently less than 30% during SEEDS II. These results suggest that high standing stock of seed population of diatoms before the iron fertilization, indicated by low C/Si ratio of particulate matter, is an important factor to induce the large diatom bloom in SEEDS.  相似文献   

8.
Little is known about the effects of iron enrichment in high-nitrate low-chlorophyll (HNLC) waters on the community composition of heterotrophic bacteria, which are crucial to nutrient recycling and microbial food webs. Using denaturing gradient gel electrophoresis (DGGE) of 16S rDNA fragments, we investigated the heterotrophic eubacterial community composition in surface waters during an in situ iron-enrichment experiment (SEEDS-II) in the western subarctic Pacific in the summer of 2004. DGGE fingerprints representing the community composition of eubacteria differed inside and outside the iron-enriched patch. Sequencing of DGGE bands revealed that at least five phylotypes of α-proteobacteria including Roseobacter, Cytophaga-Flavobacteria-Bacteroides (CFB), γ-proteobacteria, and Actinobacteria occurred in almost all samples from the iron-enriched patch. Diatoms did not bloom during SEEDS-II, but the eubacterial composition in the iron-enriched patch was similar to that in diatom blooms observed previously. Although dissolved organic carbon (DOC) accumulation was not detected in surface waters during SEEDS-II, growth of the Roseobacter clade might have been particularly stimulated after iron additions. Two identified phylotypes of CFB were closely related to the genus Saprospira, whose algicidal activity might degrade the phytoplankton assemblages increased by iron enrichment. These results suggest that the responses of heterotrophic bacteria to iron enrichment could differ among phylotypes during SEEDS-II.  相似文献   

9.
In order to detect iron (Fe) stress in micro-sized (20–200 μm) diatoms in the Oyashio region, western subarctic Pacific during spring, immunological ferredoxin/flavodoxin assays were applied to samples collected from the surface layer in May 2005. Concomitantly, the community composition of the micro-sized phytoplankton and hydrographic conditions, including dissolved Fe and macronutrient concentrations, were also examined. Chlorophyll (Chl) a concentrations were <2 mg m−3 at all sampling stations, except at a station where the Chl a level was 9.0 mg m−3 and a micro-sized diatom bloom occurred. A high abundance of ferredoxin in micro-sized diatoms was detected only at a rather near-shore station where dissolved Fe and macronutrient concentrations were higher, indicating that the micro-sized diatoms did not suffer from iron deficiency. On the other hand, flavodoxin in micro-sized diatoms was often observed at the other stations, including the bloom station, where macronutrients were replete but dissolved Fe concentration was low (0.31 nM). A significant amount of chlorophyllide a, a degradation product of Chl a, was also observed at the bloom station, suggesting a decline of the diatom bloom. The micro-sized phytoplankton species at all the stations were mainly composed of the diatoms Thalassiosira, Chaetoceros, and Fragilariopsis spp. Our study indicates that micro-sized diatoms were stressed by Fe bioavailability during the spring season in the Oyashio region  相似文献   

10.
A mesoscale iron-fertilization experiment was carried out in the western subarctic Pacific during summer 2001. The iron-patch was traced for 14 days after the fertilization, and the abundance and behavior of mesozooplankton were compared with those outside of the patch. The phytoplankton biomass in the patch rapidly increased to over 15 times the initial level by the later half of the observation period, and was composed of large-sized (>10 mm), centric diatoms. Dominant zooplankton species in the upper 200-m depth were large copepods: Neocalanus plumchrus, Neocalanus cristatus, Eucalanus bungii and Metridia pacifica. Mesozoplankton biomass as well as species composition did not change significantly in the patch over the observation period. Furthermore, no changes of vertical distribution or diel vertical migration were observed for any species or stages of mesozooplankton throughout the observation period. However, the abundance of the first copepodite stages of N. plumchrus and E. bungii increased several fold in the patch after the diatom bloom formation compared to the densities outside the patch. The increases of both species are considered to be due to lowered mortality during the egg and nauplius stages. Spawning of N. plumchrus takes place at depth using lipid storage, while spawning of E. bungii takes place in the surface layer supported by grazing. These facts suggest that the relative importance of nauplii in the diets of the large copepods was decreased in the patch by the diatom bloom. Gut-pigment contents of dominant copepods in the patch increased 4–18 times, and the maximum values were observed during the bloom peak. However, the grazing impact on phytoplankton was low throughout the experiment, especially during the bloom period (<6% of the primary production).  相似文献   

11.
We characterized the community composition of phytoplankton in the western subarctic Pacific from the pre-bloom to the decline phase of the spring bloom with special reference to decreases in the silicic acid concentration in surface waters as an index for diatom bloom development. Furthermore, responses of heterotrophic bacteria and viruses to the spring bloom were also concomitantly investigated. Under pre-bloom conditions when nutrients were abundant but the surface mixed layer depth was relatively deep, chlorophyll (Chl) a concentrations were consistently low and green algae (chlorophytes and prasinophytes), cryptophytes, and diatoms were predominant in the phytoplankton assemblages as estimated by algal pigment signatures. Together with the shallowing of the mixed layer depth and the decrease in silicic acid concentration, diatoms bloomed remarkably in the Oyashio region, though the magnitude of the bloom in the Kuroshio-Oyashio transition (hereafter Transition) region was relatively small. A total of 77 diatom species were identified, with the bloom-forming diatoms mainly consisting of Thalassiosira, Chaetoceros, and Fragilariopsis species. It has become evident that the carotenoid fucoxanthin can serve as a strong indicator of the diatom carbon biomass during the spring diatom bloom. Differences in the species richness of diatoms among stations generally enabled us to separate the Oyashio bloom stations from the Transition and the Oyashio pre-bloom stations. Relatively high values of the Shannon-Wiener index for the diatom species were also maintained during the Oyashio bloom, indicating that a wide variety of species then shared dominance. In the decline phase of the Oyashio bloom when surface nutrient concentrations decreased, senescent diatom cells increased, as inferred from the levels of chlorophyllide a. Although the cell density of heterotrophic bacteria changed little with the development of the diatom bloom, viral abundance increased toward the end of the bloom, suggesting an increased likelihood of mortality among organisms including diatoms resulting from viral infection. This is the first report on the microbial trophodynamics, including viruses, during the spring diatom bloom in the western subarctic Pacific.  相似文献   

12.
The effect of added iron on bacterial cycling of the climate-active gas dimethylsulfide (DMS) and its precursor dimethylsulfoniopropionate (DMSP) was tested during the second Subarctic Pacific Iron Experiment for Ecosystem Dynamics Study (SEEDS II) from 19 July to 21 August 2004 aboard the R/V Hakuho-Maru. The study area in the northwest Pacific Ocean (48°N 165°E) was enriched with Fe and the conservative tracer, SF6, allowing the fertilized patch to be tracked. Microbial DMSP cycling rates were determined in the surface mixed layer (5 m) during incubations using the 35S-DMSP technique. The addition of iron resulted in a 4-fold increase in concentrations of chlorophyll a (chl a) within the surface mixed layer (5 m depth), and the length of the sampling period allowed the observation of both bloom and post-bloom conditions. Inside the fertilized patch, the alleviation of resource limitation gave rise to the concurrent increase in bacterial abundance and production. Changes in the phytoplankton community within the Fe-enriched patch translated into a sustained decrease in chl a-normalized particulate DMSP (DMSPp) concentrations, suggesting a preferential stimulation of the growth of DMSPp-poor phytoplankton species. Despite short-lived peaks of DMSPp within the Fe-enriched area, concentrations of DMSPp generally remained stable during the entire sampling period inside and outside the fertilized patch. During the Fe-induced bloom, microbial DMSP-sulfur (DMSP-S) assimilation efficiency increased 2.6-fold inside the Fe-enriched area, which indicated that as bacterial production increased, a greater proportion of DMSP-S was assimilated and possibly diverted away from the bacterial cleavage pathway (i.e. production of DMS). Our results suggest that iron-induced stimulation of weak DMSPp-producers and DMSP-assimilating bacteria may diminish the potential production of DMS and thus limit its flux towards the atmosphere over the subarctic Pacific Ocean.  相似文献   

13.
研究了热带西太平洋雅浦Y3海山冬季和马里亚纳M2海山春季网采浮游植物群落结构,对调查区浮游植物的物种组成、优势种类、细胞丰度以及多样性指数进行了分析。结果表明,两个海山区共鉴定浮游植物4门50属219种,其中硅藻门30属106种,甲藻门17属112种,蓝藻门1属2种,金藻门2属3种。两个航次研究区浮游植物优势种均以链状硅藻如根管藻(Rhizosolenia)、半管藻(Hemiaulus)和角毛藻(Chaetoceros)等属的种类为主,此外太阳漂流藻(Planktoniella sol)、铁氏束毛藻(Trichodesmium thiebautii)以及部分角藻(Ceratium)物种优势度也比较明显。Y3海山区浮游植物细胞丰度介于1.60~16.61 cells/L,平均值为5.02 cells/L; M2海山区浮游植物细胞丰度介于1.36~10.20 cells/L,平均值为4.12cells/L。两个海山区浮游植物细胞丰度的分布趋势均受硅藻影响较大,甲藻细胞丰度相对较低。在属的水平上,角毛藻、根管藻、角藻和半管藻等属的细胞丰度对两个海山区浮游植物总细胞丰度的贡献较大。多样性指数方面, Y3海山区浮游植物群落香农-威纳指数H′(shannon-wiener index)介于3.95~4.69,平均值为4.30; M2海山区浮游植物群落香农-威纳指数介于3.23~4.46,平均值为3.83。两个海山区浮游植物群落多样性指数均处于较高水平,但站位间的变化不明显。目前,关于热带西太平洋海山区浮游植物群落结构的研究还非常缺乏,亟需后续研究的补充。  相似文献   

14.
The phytoplankton community in the western subarctic Pacific (WSP) is composed mostly of pico- and nanophytoplankton. Chlorophyll a (Chl a) in the <2 μm size fraction accounted for more than half of the total Chl a in all seasons, with higher contributions of up to 75% of the total Chl a in summer and fall. The exception is the western boundary along the Kamchatka Peninsula and Kuril Islands and the Oyashio region where diatoms make up the majority of total Chl a during the spring bloom. Among the picophytoplankton, picoeukaryotes and Synechococcus are approximately equally abundant, but the former is more important in term of carbon biomass. Despite the lack of a clear seasonal variation in Chl a concentration, primary productivity showed a large seasonal variation, and was lowest in winter and highest in spring. Seasonal succession in the phytoplankton community is also evident with the abundance of diatoms peaking in May, followed by picoeukaryotes and Synechococcus in summer. The growth of phytoplankton (especially >10 μm cell size) in the western subarctic Pacific is often limited by iron bioavailability, and microzooplankton grazing keeps the standing stock of pico- and nano-phytoplankton low. Compared to the other HNLC regions (the eastern equatorial Pacific, the Southern Ocean, and the eastern subarctic Pacific), iron limitation in the Western Subarctic Gyre (WSG) may be less severe probably due to higher iron concentrations. The Oyashio region has similar physical condition, macronutrient supply and phytoplankton species compositions to the WSG, but much higher phytoplankton biomass and primary productivity. The difference between the Oyashio region and the WSG is also believed to be the results of difference in iron bioavailability in both regions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
As part of the E-Flux project, we documented spatial variability and temporal changes in plankton community structure in a cold-core cyclonic eddy in the lee of the Hawaiian Islands. Cyclone Opal spanned 200 km in diameter, with sharply uplifted isopycnals (80–100 m relative to surrounding waters) and a strongly expressed deep chlorophyll a maximum (DCM) in its central core region of 40 km diameter. Microscopic and flow cytometric analyses of samples from across the eddy revealed dramatic transitions in phytoplankton community structure, reflecting Opal's well-developed physical structure. Upper mixed-layer populations in the eddy resembled those outside the eddy and were dominated by picophytoplankton. In contrast, the DCM was composed of large chain-forming diatoms dominated by Chaetoceros and Rhizosolenia spp. Diatoms attained unprecedented levels of biomass (nearly 90 μg C l−1) in the center of the eddy, accounting for 85% of photosynthetic biomass. Protozoan grazers displayed two- to three-fold higher biomass levels in the eddy center as well. We also found a distinct and persistent layer of senescent diatom cells overlying healthy populations, often separated by less than 10 m, indicating that we were sampling a bloom in a state of decline. Time-series sampling over 8 days showed a successional shift in community structure within the central diatom bloom, from the unexpected large chain-forming species to smaller forms more typical of the subtropical North Pacific. The diatom bloom of Cyclone Opal was a unique, and possibly extreme, example of biological response to physical forcing in the North Pacific subtropical gyre, and its detailed study may therefore help to improve our predictive understanding of environmental controls on plankton community structure.  相似文献   

16.
The first iron (Fe) – fertilization experiment in the western North Pacific was carried out using SF6 to trace the Fe-fertilized water mass. A solution in 10,800 liters of seawater of 350 kg of Fe and 0.48 M of SF6 tracer was released into the mixed layer over a 8 × 10 km area. On the first underway transects through the patch after the Fe release, we observed a significant increase of dissolved Fe (ave. 2.89 nM). The fertilized patch was traced for 14 days by on-board SF6 analysis. A Lagrangian frame of reference was maintained by the use of a drogued GPS buoy released at the center of the patch. The patch moved westward at a rate of 6.8 km d−1. Mixed layer depth increased from 8.5 to 15 m during the experiment. Horizontal diffusivity was determined by the change of SF6 concentration in the patch. The horizontal diffusivity increased during the experiment. We evaluate here the fate of Fe in a Fe-fertilized patch using the dilution rate determined from sulphur hexafluoride (SF6) concentration. Dissolved Fe concentrations subsequently decreased rapidly to 0.15 nM on Day 13. However, the dissolved Fe half-life of 43 h was relatively longer than in previous Fe-enrichment studies, and we observed a larger increase of the centric diatom standing stock and corresponding drawdown of macro-nutrients and carbon dioxide than in the previous studies. The most important reason for the larger response was the phytoplankton species in the western North Pacific. In addition, the smaller diffusivity and shallower mixed layer were effective to sustain the higher dissolved Fe concentration compared to previous experiments. This might be one reason for the larger response of diatoms in SEEDS.  相似文献   

17.
The dynamics, composition and grazing impact of microzooplankton were studied during the in situ iron fertilisation experiment EisenEx in the Antarctic Polar Frontal Zone in austral spring (November 2000). During the 21 day experiment, protozooplankton and small metazooplankton were sampled from the mixed layer inside and outside the patch using Niskin bottles. Aplastidic dinoflagellates increased threefold in abundance and biomass in the first 10 days of the experiment, but decreased thereafter to values twofold higher than pre-fertilisation values. The decline after day 10 is attributed to increasing grazing pressure by copepods. They also constrained ciliate abundances and biomass which were higher inside the fertilised patch than outside but highly variable. Copepod nauplii abundance remained stable whereas biomass doubled. Numbers of copepodites and adults of small copepod species (<1.5 mm) increased threefold inside the patch, but doubled in surrounding waters. Grazing rates estimated using the dilution method suggest that microzooplankton grazing constrained pico- and nanoplankton populations, but species capable of feeding on large diatoms (dinoflagellates and small copepods including possibly nauplii) were selectively predated by the metazoan community. Thus, iron fertilisation of a developing spring phytoplankton assemblage resulted in a trophic cascade which favoured dominance of the bloom by large diatoms.  相似文献   

18.
Sulfur hexafluoride (SF6) tracer release experiments were carried out to trace the iron-fertilized water mass during the iron-fertilization experiments in the western North Pacific of Subarctic Pacific Iron Experiment for Ecosystem Dynamics Study II (SEEDS II) in 2004. A solution of Fe and SF6 tracer was released into the surface mixed layer over an 8×8 km area, and the fertilized patch was traced by onboard SF6 analysis for 12 days during each experiment. A Lagrangian frame of reference was maintained by the use of a drogued GPS buoy released at the center of the patch to reduce the advection effect on observations. The patch moved along the contour of sea-surface height (SSH) of a clockwise mesoscale eddy for 4 days after release. Then strong easterly winds dragged the patch across the contour of SSH. The patch behavior was affected by both the mesoscale eddy and surface winds. Apparent horizontal diffusivities were determined by the change of the distribution of SF6 concentrations. The averaged apparent horizontal diffusivity was about 49 m2 s−1 during SEEDS II. It was larger than the one in SEEDS. Mixed-layer depth (MLD) was 8.5–18 m during SEEDS, and 12–33 m during SEEDS II. The larger horizontal diffusivity and deeper MLD in SEEDS II were disadvantages to maintain a high iron concentration in the surface layer compared to SEEDS. Temporal change of the MLD corresponded to the temporal change of chlorophyll-a concentration. Temporal change in the surface MLD was also important for the response of phytoplankton by iron fertilization.  相似文献   

19.
Temporal changes in the abundance, community composition, and photosynthetic physiology of phytoplankton in surface waters were investigated during the second in situ iron (Fe) fertilization experiment in the NW subarctic Pacific (SEEDS-II). Surface chlorophyll a concentration was 0.75 mg m−3 on the day before the first Fe enrichment (i.e. Day 0), increased ca. 3-fold until Day 13 after two Fe additions, and thereafter declined with time. The photochemical quantum efficiency (Fv/Fm) and functional absorption cross-section (σPSII) of photosystem II for total phytoplankton in surface waters increased and decreased inside the Fe-enriched patch through Day 13, respectively. These results indicate that the photosynthetic physiological condition of the phytoplankton improved after the Fe infusions. However, the maximum Fv/Fm value of 0.43 and the maximum quantum yield of carbon fixation (φmax) of 0.041 mol C (mol photon)−1 during the development phase of the bloom were rather low, compared to their theoretical maximum of ca. 0.65 and 0.10 mol C (mol photon)−1, respectively. Diatoms, which were mainly composed of oceanic species, did not bloom, and autotrophic nanoflagellates such as cryptophytes and prasinophytes became predominant in the phytoplankton community inside the Fe-enriched patch. In ferredoxin/flavodoxin assays for micro-sized (20–200 μm in cell length) diatoms, ferredoxin was not detected but flavodoxin expressions consistently occurred with similar levels both inside and outside the Fe-enriched patch, indicating that the large-sized diatoms were stressed by Fe bioavailability inside the Fe-enriched patch even after the Fe enrichments. Our data suggest that the absence of a Fe-induced large-sized diatom bloom could be partly due to their Fe stress throughout SEEDS-II.  相似文献   

20.
Egg production rates and/or hatching success in the copepods Acartia clausi, Calanus helgolandicus and Temora longicornis were negatively affected by a late spring (May–June 2003) phytoplankton bloom in the North Adriatic Sea, dominated mainly by the large diatom Cerataulina pelagica. Highest total concentrations of 3.3·104 cells·ml?1 were located in the vicinity of the Po River, which also corresponded to the area where the highest numbers of phaeophorbides were measured (0.779, 0.528 and 0.419 μg·l?1, respectively, compared to an average of the remaining stations of 0.183 ± 0.049 SD), suggesting some grazing on the bloom. Phytoplankton biomass in terms of carbon was dominated by diatoms, representing on average 42% of total phytoplankton carbon and more than 80% at several stations. Cerataulina pelagica, Cyclotella spp., Chaetoceros spp. and small unidentified centric diatoms dominated the diatom community numerically but C. pelagica was by far the dominant diatom in terms of carbon due to its large cell size. This species represented more than 60% of the diatom biomass at nine of the 14 stations sampled, and was absent only at one station, which was the most offshore station sampled during the cruise. Although polyunsaturated aldehydes (PUAs) were not detected, other oxylipins which are hydroxy and keto derivatives of eicosapentaenoic and docosahexaenoic acids that affect copepod reproduction were found in these samples. Hence, we can attribute the negative impact of diatoms not only to PUAs, as previously believed, but also to these compounds. This is the first direct evidence of the presence of oxylipins other than PUAs in marine blooms dominated by diatoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号