共查询到19条相似文献,搜索用时 62 毫秒
1.
青藏高原中部高寒草甸蒸散发特征及其影响因素 总被引:1,自引:2,他引:1
蒸散发作为水量平衡和能量平衡的重要组成部分,其变化对于农业、生态和水文具有重要的影响。全球变暖导致青藏高原上冻土活动层加厚,改变大气和土壤的水热交换过程,为明确唐古拉多年冻土区的蒸散发在全球变暖大背景下的变化趋势,依托中国科学院冰冻圈国家重点实验室唐古拉站,利用小型称重式蒸渗仪的观测数据分析了2007-2013年蒸散发的变化特征及其影响因素。结果表明:2007-2013年草地生长季实际蒸散发总量呈现递增的趋势;在草地生长季内,草地生长中期的总蒸散量最大,生长初期的总蒸散量最小,但是日蒸散量则是在生长初期最大,生长后期最小;无降水日,草地的蒸散发主要受到净辐射和气温的影响,降雨日的蒸散发则主要受到净辐射和风速的影响。 相似文献
2.
基于涡度相关技术对三江平原典型沼泽湿地的水热通量进行了连续观测,研究沼泽湿地能量平衡和蒸散发的季节变化,确定观测期内沼泽湿地总蒸散量,并通过逐步回归方程估算沼泽湿地水面蒸发和植被蒸腾。结果表明,沼泽湿地的能量平衡具有明显的季节变化特征,总体看来,潜热通量是湿地的主要能量支出项,占净辐射的45.5%,感热通量和存储热通量分别占净辐射的27.9%和26.7%。2006年5~10月份沼泽湿地总蒸散量为310.6mm,月均日蒸散量最高值出现在7月。观测期内沼泽湿地水面蒸发量约为221mm,占总蒸散量的71%左右,植被蒸腾量则约占总蒸散量的29%,湿地蒸散发以水面蒸发为主。 相似文献
3.
青藏高原作为“亚洲水塔”对气候变化极为敏感,研究气候变化下青藏高原多年冻土退化对蒸散发的影响有助于理解多年冻土地区水文过程对气候变化的响应情况。基于Budyko-Fu假设,构建了考虑多年冻土活动层厚度变化的水热耦合模型,建立了符合青藏高原多年冻土区的模型参数化方案,通过设置情景假设探讨了多年冻土退化对蒸散发的影响。模拟结果表明:1982—2018年青藏高原多年冻土区平均年蒸散发为275.6 mm,空间分布由东南向西北递减;研究区年蒸散发整体上以3.57 mm/a的速率上升。多年冻土活动层加深会引起蒸散发的增大,忽略冻土退化因素将导致约2.2%的蒸散发低估。冻土退化对蒸散发的影响呈现显著的空间异质性,土壤有效含水量和植被覆盖度越低的地区,蒸散发对冻土退化的响应越敏感。 相似文献
4.
蒸散发是地表水文循环和能量交换过程的重要组成部分,且在高寒山区有极强的时空异质性,准确模拟蒸散发对于研究高寒山区水文循环过程有着重要的意义。CLM5.0(Community Land Model5.0)是CLM模式的最新版本,具有较为完善的水文循环机制,是目前国际上发展最为完善的陆面过程模式之一。基于典型高寒山区黑河上游五个观测站的观测数据,对CLM5.0的蒸散发模拟性能进行评估。结果表明:CLM5.0在模拟蒸散发时结果总体上可信,其R值的范围在0.601~0.839之间,RSR值的范围在0.964~1.145之间,BIAS值的范围在^(-1).220~-0.597 mm·d^(-1)之间。说明CLM5.0在高寒山区可以较好地捕捉观测到蒸散发的时间趋势,但仍存在一定的低估。非生长季的BIAS值的范围在-0.904~-0.367 mm·d^(-1)之间,生长季的BIAS值的范围在-2.094~-0.794 mm·d^(-1)之间,这表明蒸散发模拟值的低估主要来自生长季的模拟。高寒草甸上R值的范围在0.299~0.651之间,RSR值的范围在1.135~1.332之间,高寒草地上R值为0.209,RSR值为1.450,因此,CLM5.0在草甸的模拟性能优于草地。CLM5.0白天R值的范围在0.605~0.840之间,RSR值的范围在0.252~1.193之间,夜晚R值的范围在0.344~0.651之间,RSR值的范围在0.482~2.966之间,对比可知CLM5.0在白天模拟蒸散发的性能优于夜晚。这些结论可为CLM5.0的应用和改进提供科学依据。 相似文献
5.
长江源区高寒退化湿地地表蒸散特征研究 总被引:1,自引:0,他引:1
青藏高原作为“亚洲水塔”,对东亚乃至全球大气水分循环都有非常显著的影响.高寒退化湿地是高原上生态多样性的保证,也是水汽循环和地表径流的重要源地,其地气之间水分交换不但可以反映气候变化,而且也对生态环境保护具有重要意义.以长江源区隆宝滩湿地连续一年、每10分钟一次的观测资料为基础,利用FAO Penman-Monteith方法分析了长江源区高寒退化湿地蒸散量的变化特征及其与环境因子之间的关系.结果表明:1)牧草生长期,潜在蒸散量日、月变化特征显著;实际蒸散量整体表现为冬小、夏大,夏季蒸散贡献最大.2)观测期间,蒸散量远大于降水量,水分亏损严重,局地蒸散对降水的贡献较高.3)土壤温度对蒸散发过程影响显著,尤其是表层5 cm地温与蒸散发相关性较好,土壤湿度变化表明其为蒸散发过程提供了充足的水分.4)全年变化中,气温是影响蒸散的主要因素.晴天中,高寒退化湿地实际蒸散量与辐射具有几乎相同的变化趋势,气温对蒸散量影响较小,蒸散量与相对湿度呈现显著的反相关. 相似文献
6.
分析地表蒸散发时空变化规律及驱动因素,对促进区域水资源的科学分配、做好生态系统水源保护具有重要意义。本文基于MOD16蒸散发遥感数据产品,采用趋势分析及显著性检验法,深入分析了近20年三江平原地表蒸散量的时空变化特征,根据Penman-Monteith公式选取与地表蒸散量(ET)相关的驱动因子,分析各驱动因子对地表蒸散量变化的影响,并构建岭回归统计模型,分析研究地表蒸散量变化的主要驱动因子及其相对贡献率。结果表明:近20年三江平原地表蒸散发(ET)年际起伏特征明显,整体呈上升趋势;研究区内91.53%的地区ET呈增加趋势,且ET分布的地域差异逐年缩小;年内ET呈单峰型周期性变化,季节差异性明显;研究区坡度对ET有正向影响,高程和风速对ET有负向影响;气温、日照时数、降水量及NDVI与ET均呈正相关性,其中降水量与ET相关性最为显著;构建岭回归驱动分析模型的决定系数R2为0.823,能够有效解释各驱动因素与ET的关系。模型计算结果表明:降水量和植被覆盖度对三江平原地表蒸散量影响较大,是影响地表蒸散量变化的主要驱动力。 相似文献
7.
利用GLEAM V3.3a实际蒸散发资料,评估了中国科学院地球系统模式(CAS-ESM2)对青藏高原蒸散发的模拟性能,并给出了模式对未来气候变化情景下高原蒸散发变化的预估.结果 表明:CAS-ESM2可以较好地模拟出青藏高原蒸散发的空间分布与季节循环特征,以及1981-2014年蒸散发的增加趋势,但趋势的幅值相对观测偏弱.未来预估试验结果显示,4种不同未来共享社会经济路径(SSPs)情景下青藏高原蒸散发均普遍增加,其中SSP585情景下的增加最为显著,且喜马拉雅山脉地区蒸散发的增加量值最大.相较于1995-2014年历史时期,年均蒸散发在2041-2060年增加46.3~65.8 mm,增幅为13.4%~19.0%;2081-2100年,年均蒸散发增加75.7~151.1 mm,增幅为21.7%~43.6%.影响蒸散发未来变化的因素具有区域性差异,高原中部和南部受气温变化影响更大,而柴达木盆地、羌塘高原中部受降水变化影响更大. 相似文献
8.
典型岩溶区潜在蒸散发变化及其影响因素 总被引:2,自引:0,他引:2
蒸散发过程是联系大气过程和陆面水文过程的关键环节,对区域/流域水循环过程和水量平衡具有重要影响。岩溶区,地表生态环境脆弱,对气候变化响应敏感,蒸散发可能是联系大气、水、热交换和碳循环的关键生态水文过程。准确地估算蒸散发对于深入研究岩溶水循环响应气候变化、碳循环、生态修复等具有重要作用。本文选择典型岩溶区桂林市为研究对象,基于1951~2015年桂林市气象站逐日气象数据,采用Penman- Monterith方法计算了潜在蒸散发量,利用Mann- Kendall非参数检验法和相关性分析研究桂林市潜在蒸散发的变化趋势及其影响因素。研究结果表明,桂林市潜在蒸散发具有明显的年、年际和季节尺度变化特征。1951~2015年桂林市潜在蒸散发呈显著的减小趋势,变化速率为-8. 02 mm/10a;夏季、秋季和冬季潜在蒸散发呈下降趋势,而春季呈微弱的上升趋势;夏季潜在蒸散发的显著减小是影响年蒸散发下降的主要原因;桂林市潜在蒸散发在1967和2003年左右发生突变;通过Mann- Kendall趋势检验和相关性分析得出,桂林市平均气温、最高、最低气温呈显著的上升趋势,而风速、相对湿度、日照时数呈显著的下降趋势;日照时数是影响桂林市潜在蒸散发变化的主要因素,其次是风速。 相似文献
9.
蒸散发是水循环的关键环节, 是水量平衡的重要组成部分. 由于在高寒山区进行长期野外观测的难度较大, 导致对区域实际蒸散发的认识不清, 从而无法明确区域水资源分配与不同植被的生态水文功能. 在天山山区, 高寒草甸占其总面积近15%, 其对降水的调节作用巨大, 但目前高寒草甸的实际蒸散发量多用潜在蒸散发进行推算, 缺少实际观测数据. 2012年10月-2013年9月, 利用3个小型蒸渗仪观测了阿克苏河上游科其喀尔冰川综合考察站附近山区的高寒草甸的实际蒸散量, 并尝试利用最小二乘支持向量机(LS-SVM)估算实际蒸散发. 结果表明:研究区高寒草甸全年内实测蒸散量511.3 mm, 日均蒸散量为1.4 mm·d-1; 在不同时期, 蒸散量变化剧烈, 冻结期、生长前期、生长期和生长后期的蒸散量分别为53.9、41.0、363.8和52.6 mm, 分别占全年蒸散量的10.5%、8.0%、71.2%和10.3%. 最小二乘支持向量机对实际蒸散发的估算精度较高, 对观测资料相对缺乏的高寒山区来说, 不失为一种较好的估算蒸散发方法. 相似文献
10.
为揭示科尔沁沙地典型区地表参数和蒸散发的时空分布以及变化特征,采用Landsat-7和气象数据,并结合METRIC(Mapping Evapotranspiration at high Resolution with Internalized Calibration)模型,分析了研究区净辐射(Rn)和蒸散发(ET)的时空变化、不同土地覆被类型ET特征及其影响因素。结果表明:(1)研究区典型土地覆被沙丘和草甸的Rn和ET估算值与涡度相关实测值拟合结果均良好,说明METRIC模型可以为研究区提供合理的ET估算;(2)研究区下垫面Rn和ET的时空分布情况为:各年Rn和ET在年内变化趋势相同,空间上不同土地覆被类型中水体的Rn和ET最大,农田和草甸次之,沙丘最小;(3)沙丘的CV值大于农田与草甸,表明年际间沙丘的ET波动较大,农田和草甸相对稳定,ET年际变化主要受气象因素的影响。 相似文献
11.
青藏高原冷湿地生态系统CH4排放量估算 总被引:3,自引:0,他引:3
The areal extent of cold freshwater wetlands on the Tibetan Plateau is estimated to be 0.133×10 6 km 2, suggesting a significant methane potential. Methane fluxes from wet alpine meadows, peatlands, Hippuris vulgaris mires and secondary marshes were 43.18,12.96,-0.28 and 45.90 mg·m -2 ·d -1 , respectively, based on the transection studies at the Huashixia Permafrost Station from July to August 1996. Average CH 4 flux in the thaw season was extrapolated to be 5.68 g·m -2 according to the areal percentage of wetland areas in the Huashixia region. CH 4 fluxes at four fixed sites, representative of similar ecosystems, ranged from -19.384 to 347.15 mg·m -2 ·d -1 , and the average CH 4 fluxes varied from 6.54 to 71.97 mg·m -2 ·d -1 at each site from April to September 1997. CH 4 emissions at each site during the entire thaw season was estimated from 1.21 to 10.65 g·m -2 , displaying strong spatial variations. Seasonal variations of CH 4 fluxes were also observed at the four sites. It is found that CH 4 bursted in the early thaw season, and increased afterwards with rising soil temperatures. Episodic fluxes were observed in summer, which influenced the average CH 4 flux considerably. Annual CH 4 emissions from cold wetlands on the plateau were estimated at about 0.7~0.9 Tg based on the distribution of wetlands, representative CH 4 fluxes, and number of thaw days. The centers of CH 4 releasing are located in the sources of the Yangtze and Yellow Rivers, and Zoige Peatlands. 相似文献
12.
青藏高原复杂地表能量通量研究 总被引:4,自引:0,他引:4
“全球能量水循环之亚洲季风青藏高原试验研究”(GAME/Tibet)和“全球协调加强观测计划(CEOP)亚澳季风之青藏高原试验研究”(CAMP/Tibet)的加强期观测和长期观测已经进行了9年多,并且已取得了大量的珍贵资料。首先介绍了GAME/Tibet 和CAMP/Tibet 试验的情况,并利用观测资料给出了局地能量分布(日变化和月际变化)特征。复杂地表区域能量通量研究是青藏高原地气相互作用研究中的重中之重。卫星遥感的应用成为解决这一问题,即实现GAME/Tibet和CAMP/Tibet试验主要初衷的必不可少的手段。利用卫星遥感观测(Landsat 7 ETM)资料结合地面观测的方法,计算得到了相关地区非均匀地表区域上的地表温度、地表反射率、标准化差值植被指数(NDVI)、校准的调整土壤植被指数(MSAVI)、植被覆盖度和叶面指数(LAI)及能量平衡各分量(净辐射通量、土壤热通量、感热和潜热通量)的分布图像,所得结果基本可信。为了得到整个青藏高原复杂地表的热通量分布,中国科学院青藏高原研究所正在与其他研究单位一起建立青藏高原地表和大气过程监测系统(MORP)。最后介绍了该监测计划和已建立的3个综合观测研究站及如何利用建立的台站把站点观测的热通量推广到整个青藏高原的途径。 相似文献
13.
利用静止卫星估算青藏高原全域地表潜热通量 总被引:1,自引:0,他引:1
青藏高原全域高时间分辨率潜热通量变化对定量理解高原能量和水分循环过程尤其是其日变化过程至关重要.为此,利用中国最新一代静止气象卫星Fengyun-4A上搭载的多通道扫描成像辐射计数据,结合中国区域高时空分辨率地表气象驱动数据集,基于陆面能量平衡系统模型估算得到青藏高原全域的地表潜热通量,卫星估算值与青藏高原观测研究平台站点实测值的均方根误差和平均偏差分别为76.05和17.33 W/m2.结果 表明,青藏高原地表潜热通量呈现显著的季节变化、昼夜分野和区域差异:4月高原潜热整体上略低于感热,而7月高原西部、中部和东部的潜热均高于感热;潜热通量昼夜相差极大,4月的昼间、夜间和昼夜平均值分别为74.22、3.09和38.66 W/m2,而7月的相应值分别为122.75、6.49和64.62W/m2.青藏高原地表热通量的空间分布具有经向区域差异,其中,净辐射通量与感热通量在高原西部和中部的数值明显高于高原东部,而潜热通量正好相反,在高原东部数值较高.研究结果可为青藏高原地表蒸散与大气热源的定量分析提供参考. 相似文献
14.
青藏高原典型下垫面的土壤温湿特征 总被引:12,自引:4,他引:12
利用中国科学院纳木错站、 珠峰站和藏东南站2007年土壤温湿度的观测资料, 分别分析了这3个不同下垫面下观测站的土壤温湿度分布的时空特征.结果显示:3个站土壤温度的年变化和年平均的日变化趋势基本相同, 与太阳辐射变化特征一致; 它们在冻结深度和冻结时间上差别较大; 下垫面特征、 土壤的冻结消融及其物理性质的差异使3个站表现出了不同的土壤湿度变化特征; 3个站均表现为在某一深度有一个高含水层, 土壤消融(冻结)使土壤湿度迅速增大(减小). 相似文献
15.
近21年青藏高原植被覆盖变化规律 总被引:30,自引:0,他引:30
利用GIMMS NDVI遥感数据和GIS技术,结合多种统计、计算方法,定量分析了1982—2002年青藏高原植被覆盖随时间和空间的变化规律,评定了植被变化的自然和人类的影响。结果表明,21年来,青藏高原植被覆盖呈总体增加的变化趋势,平均增长率为3 961.9 km2/年,仅局部出现退化现象,人类对高原植被覆盖未造成破坏性影响。1982—1991年,高原植被呈现良好增加趋势,增加幅度从东部南部向西部北部逐渐减弱,表明由东南向西北逐步减弱的有利气候条件具有经向和纬向的变化规律。1992—2002年,高原中部和西北地区植被呈现退化趋势,强烈退化的地区集中在长江、黄河、澜沧江和怒江的源头地区,显示了高原中部和西北地区的气候条件向不利于植被生长方向转变,高原中部和西北地区植被是响应气候变化的最敏感区。高原植被变化具有7年、3.5年两个显著周期,均为温度所致,表现对温度的变化敏感性。21年期间,高原的8种主要植被类型中有7种类型表现为波动上升的趋势,且寒区旱区植被表现出脆弱性和难恢复性。 相似文献
16.
青藏高原地表能量通量的估计 总被引:1,自引:0,他引:1
利用1981—2000年逐日气候、植被和土壤基础资料作为输入,以大气—植被相互作用模式(AVIM2)计算了青藏高原0.1°分辨率的年平均地表能量通量的空间分布和季节变化特征。结果显示,年平均地表净辐射通量由高原西南部的100 W/m2减少到东部的70 W/m2左右。高原东南部的林区潜热通量强而感热通量弱,从高原东南向西、向北潜热通量逐渐减少,而感热通量逐渐增大。夏季这种趋势更加显著。冬季除东南部外,高原上广大地区地表能量通量都较低。 相似文献
17.
18.
青藏高原西部陆面过程特征的模拟分析 总被引:11,自引:4,他引:11
利用1998年5月1日至9月18日狮泉河自动气象站(AWS)的观测资料作为强迫场,运用改进的陆面过程模式CoLM(Common Land Model),对青藏高原西部的陆面特征进行了模拟研究.结果表明,该模式能够较好地模拟出高原地区的陆面特征.在高原西部地表能量平衡过程中,感热通量占主要地位,潜热通量较小,但在高原西部的湿季,潜热通量也是不可忽略的.在5月及6月初表层土壤频繁的发生水分相变,使土壤在相变过程中不断地吸收和释放潜热.降水及土壤表层频繁的冻结-消融使地表有效通量(感热+潜热)发生变化.有效辐射中的感热、潜热的分配,即Bowen会发生变化,进一步影响到对大气的加热及大气水汽输送情况,大气状况的改变又反过来影响地表蒸散及土壤持水能力,使土壤水分状态和含量发生变化. 相似文献