首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper aims to investigate the mechanical behaviour of a hybrid reinforced earth embankment built in limited width adjacent to a slope. This embankment system incorporates reinforced earth embankments with soil nails, installed in the existing ground. Soil nails work to provide additional resisting forces to stabilize the embankment which may be unstable due to insufficient reinforcement length. Nail forces developed in the hybrid reinforced earth embankment with various geometric conditions in the fill space are analyzed. The FE method is used to simulate the construction of the hybrid reinforced earth embankment. Influence of reinforcement length, reinforcement stiffness, and slope gradient on the nail forces developed following the construction is analyzed and discussed. Additionally, design concerns for the hybrid reinforced earth embankment system are also studied. Simple charts for estimating the maximum nail force mobilized at back of the hybrid reinforced earth embankment are established in this research and can be helpful in the design of the soil nails in the system.  相似文献   

2.
土工格栅加筋土边坡是一种新型的边坡支护结构,对于提高边坡稳定性、节约工程用地、保护生态环境意义重大。为了对机场加筋高填方边坡加固方案进行优化设计,本文以某机场跑道西北角的6#高填方边坡为例,首先基于边坡的地质条件和高填方边坡的实际情况,提出3种不同边坡坡率的加筋土边坡设计方案;其次采用简化Bishop法、Spencer楔形体法以及Morgenstern-Price法分别计算在天然、暴雨以及地震工况下的边坡稳定系数;最后利用有限元法分析3种加固方案下的加筋土边坡在天然工况下的变形特征以及筋材轴力分布规律。结果表明:3种设计方案在天然、暴雨以及地震工况下均能满足边坡稳定性要求,贴坡填筑的多级加筋土边坡的筋材轴力分布规律沿着竖向呈现锯齿状分布,最大筋材轴力在每级边坡的坡脚处突变增大。与加筋土缓坡(坡率1∶1.5)设计方案相比,加筋土挡墙(坡率1∶0.25)在坡高、筋材使用量、护坡面积以及挖填方量等方面均有明显减小。综合考虑稳定性、工程造价以及施工周期,采用加筋土挡墙的设计方案更合理。  相似文献   

3.
Summary A procedure for the stability analysis and design of geosynthetic reinforced soil slopes over a firm foundation is described. Firstly the unreinforced slope is analysed, and for this a circular failure method is used which allows a surcharge load to be taken into account. Any method of slip circle analysis could be used to identify the coordinates of the centre of the slip circle, its radius and the minimum factor of safety. In this study, both internal and external stability analysis of the reinforced slope is presented. Internal stability deals with the resistance to pullout failure within the reinforced soil zone resulting from the soil/reinforcement interaction. The external stability is considered by an extension of the bilinear wedge method which allows a slip plane to propagate horizontally along a reinforcing sheet. The results for total tensile force, internal and external stability are presented in the form of charts.For given properties of soil and slope geometry, the required strength of the geosynthetic and the length of reinforcement at the top and bottom of the slope can be determined using these charts. The results are compared with the published design charts by Schmertmannet al. (1987).  相似文献   

4.
Though the technology of using stabilizing piles to prevent landsliding is not new, the design of such piles with a meaningful optimization framework has been rarely reported. In this paper, a multiobjective optimization-based framework for design of stabilizing piles is presented, in which both reinforcement effectiveness and cost efficiency could be explicitly considered. The design parameters considered in the proposed design framework are the pile parameters, including pile diameter, spacing, length, and position, and the design objectives considered are the reinforcement effectiveness and cost efficiency. The design of stabilizing piles is then implemented as a multiobjective optimization problem. In that the desire to maximize the reinforcement effectiveness and that to maximize the cost efficiency are two conflicting objectives, the output of this multiobjective optimization will be a Pareto front that depicts a trade-off between these two design objectives. With the obtained Pareto front, an informed decision regarding the design of stabilizing piles is reached. The effectiveness and significance of the proposed multiobjective optimization-based design framework for stabilizing piles are demonstrated through two illustrative examples: one is the design of stabilizing piles in a one-layer earth slope and the other the design of stabilizing piles in a two-layer earth slope. Further, parametric analyses are conducted to investigate the influences of the pile design parameters on the stability of reinforced slopes.  相似文献   

5.
返包式加筋土挡墙是一种柔性面板挡墙,因其良好的地基适应性及地震安全性广泛应用于交通、市政和水利等诸多领域中。本文使用FLAC3D数值模拟程序对返包式加筋土挡墙墙面坡度、土工袋填料及筋材强度进行了抗震性能研究。研究结果表明:当墙面坡度<1∶0.30时,墙后侧向土压力分布均匀且数值较小,近似于一条竖向直线;当墙面坡度≥1∶0.30时,墙后侧向土压力分布规律一致且符合朗肯土压力理论。因此,当墙面坡度<1∶0.30时,加筋土结构应按加筋土边坡进行设计;当墙面坡度≥1∶0.30时,加筋土结构应按加筋土挡墙进行设计。土工袋填料种类对返包式加筋土挡墙地震动力响应几乎没有影响,在抗震设计时可不考虑其对挡墙的影响。筋材强度越高,返包式加筋土挡墙抗震性能越好,但筋材强度与挡墙的抗震性能不成正比例,由于加筋土结构的"加筋作用饱和"现象,大幅度提升筋材强度并不会使挡墙的抗震性能得到大幅度提升;因此,工程中在保证筋材强度达标的前提下需注意经济性。  相似文献   

6.

Slope stability analysis is one of the most intricate problems of geotechnical engineering because it is mathematically difficult to search the critical slip surface of earth slopes with complex strata owing to the involved multimodal function optimization problem. At present, a minimum factor of safety for a non-circular slip surface in a uniform and unreinforced earth slope can be calculated using several methods; however, for a reinforced soil slope, it cannot be easily calculated because of the additional effect of the reinforcement. One efficient method to search the critical slip surface is particle swarm optimization (PSO). PSO can solve complex non-differentiable problems, and its increasing ease of use has facilitated its application to multimodal function optimization problems in a variety of fields. However, the recommended PSO parameters to calculate the safety factors of unreinforced and reinforced soil slopes, namely the inertia and local and global best solution weighting coefficients, have not been sufficiently investigated. Moreover, the computational efficiency of PSO for safety factor calculation, including computational accuracy and time, has not been clarified. To calculate the unreinforced and reinforced soil slope safety factors, this study considers force and moment equilibriums, including the tensile force of the reinforcement. Firstly, the computational efficiency of the calculation process by PSO was shown to increase the maximum number of slip surface nodes in the calculation of the safety factor. Then, an analysis was carried out to investigate the safety factor sensitivity to the PSO parameters. Based on this analysis, appropriate PSO parameters for the safety factor calculation of unreinforced and reinforced soil slopes were proposed.

  相似文献   

7.
徐鹏  蒋关鲁  王宁  雷涛  王智猛 《岩土力学》2018,39(11):4010-4016
自加筋土出现以来,由面板、筋材、填土组成的加筋土挡墙被广泛研究并应于道路、铁路等土建工程中。填土的压实对加筋土挡墙的变形、土压力及筋材拉力等影响显著。为研究填土相对密实度对加筋土挡墙的影响,进行了3组不同相对密实度的离心模型试验,通过试验数据分析得到以下结论:相对密实度越大,墙体变形越小,特别是加载期变形量;压实可增大面板附近土体约束,使水平土压力大于设计值;试验挡墙设计较保守,筋材填土界面摩擦系数小于设计值;筋材面板之间连接拉力分析表明,连接拉力实测值小于测试土压力。  相似文献   

8.
汤风林  林希强 《现代地质》2000,14(1):100-104
复合土钉支护技术是在土钉支护结构中复合其他土体加固技术的综合支护技术 ,是近年来在城市建筑深基坑支护工程中发展起来的一种具有中国特色的土钉支护技术。通过工程实例讨论了广州地区复合土钉支护工程中使用的基本支护结构、施工技术和工艺流程 ,并在此基础上提出了建议和意见  相似文献   

9.
了解加筋土边坡的破坏形式有助于加筋土边坡的设计和施工监测。对不同形式的加筋土边坡进行离心模型试验,绘制了边坡的破坏形式。试验结果表明:加筋土边坡能够保持较好的整体性,一般不会像未加筋边坡那样突然坍塌; 坡面附近土体内部可能先于坡顶产生裂缝,因此在实际工程中观察到显著的坡顶裂缝后,应当意识到在坡面附近的坡体内部也可能产生了裂缝。一般情况下筋材模量越大加筋效果越好,但在筋材和土接触面强度一定的情况下,筋材模量增大到一定程度后继续增大筋材模量是没有太大意义的。  相似文献   

10.
结合现有边坡加固理论和加固经验,对一紧临道路和8层老楼房且下部有厚度达14 m淤泥软弱土层的基坑边坡进行了复合加固设计。通过对边坡稳定性计算、分析,加固后的边坡满足最小安全系数的要求。按照本设计进行施工后,基坑边坡的变形和周围建筑物的沉降均在安全允许的范围之内,保证了地下室结构部分的顺利施工。所提供的加固技术对同类深基坑支护工程具有重要的参考价值。  相似文献   

11.
随着城市建设的发展,渣土边坡的数量和规模急剧增加,渣土边坡的防控研究受到了广泛关注。针对渣土边坡人工分层堆填建筑余渣土体参数的不确定性,采用预埋阻滑键加固渣土边坡的方式,提出了基于可靠度理论的阻滑键多目标优化设计方法。考虑不同阻滑键潜在组合对渣土边坡预估破坏损失的影响,将渣土边坡的预估破坏损失、稳定安全性和加固设计成本作为设计目标,通过多目标优化理论确定帕累托前沿并计算其关节点,获得预埋阻滑键加固边坡的最佳设计方案。以深圳市某渣土边坡为例,计算结果表明,将破坏概率作为衡量阻滑键加固渣土边坡效果指标时,应在渣土边坡前缘预埋两组尺寸长3 m、间距5 m的阻滑键加固边坡。采用上述阻滑键设计组合加固该渣土边坡时,可实现该边坡预估破坏损失、设计成本和稳定性达到最佳平衡。  相似文献   

12.
对于分级修建的边坡,如何选择合适的平台宽度还有待研究。利用离心模型试验和有限元强度折减法对加筋土边坡进行分析,探讨平台分级的影响。试验表明,设置平台可以使边坡分解成若干个次级边坡,边坡分级后,其整体破坏向各个次级边坡集中,失稳部分的规模有所减少;加筋增强了边坡的整体性,能够强化次级边坡之间的独立性;合适的宽度可以使滑动面只发生在次级边坡中,对整体安全是有利的。有限元计算表明,边坡高度较大时,土的黏聚力的作用就会削弱,通过将高大的边坡变成高度较小的次级边坡,能够充分发挥黏聚力对边坡稳定的作用。而加筋的主要效果就是给土体提供一个似黏聚力。也就是说,合适的边坡高度分级能够充分发挥筋材的加筋效果。另外,对加筋高边坡来说,筋材的模量和延伸率是更为关键的材料参数。延伸率不足,在其他筋材的强度还没有发挥时被拉断,就达不到共同承载的目的。  相似文献   

13.
A geogrid reinforced steep slope was built and monitored during construction and during the first ten months of service. The slope is located between Régua and Reconcos in the new Portuguese main itinerary, IP3, and is a part of reestablishment 2. The reinforced slope has an extension of about 206.2m, is in curve and the reinforced area reaches a maximum height of about 19.6m in the outside curve slope at 150.0m of extension (km 0+150). The monitored slope cross section is at km 0+150. The reinforcements are high density polyethylene geogrids;. materials with different tensile strength values were used. The reinforcement strains were measured at three reinforcement levels using linear extensometers. The soil vertical stresses were recorded using load cells. The internal horizontal displacements of the slope were recorded using two inclinometer tubes. The face displacements were recorded topographically in points spaced approximately 1.2m vertically along the face of the slope on the km 0+150 cross section. The reinforced slope behaviour was observed during a period of about 13 months, which includes three months of construction period. This way it was possible to obtain information about the slope behaviour during and after construction (the first 10 months of service). The behaviour of the observed reinforced slope is characterized by: low values of face displacements, slope internal horizontal displacements and reinforcement strains; change of the face displacements configuration at the end of construction during service;tendency to stabilization of the horizontal displacements in a relatively short period of service; change, during service, of the position of the line passing through the points of the reinforcements where maximum strains were recorded. The reinforced slope behaviour express the conservative design of Equilibrium Limit methods and encourage the research on new design methods for geosynthetic reinforced soil systems.  相似文献   

14.
非预应力格构锚固机制与优化设计研究   总被引:1,自引:1,他引:1  
祝启坤  覃雯  盛建豪 《岩土力学》2010,31(7):2173-2178
非预应力格构锚固是集坡面生态防护、浅表层与深层加固于一体的新型边坡加固技术,但目前无论就其加固力学机制,还是工程设计计算方法而言,学术界尚未达成共识。在分析边坡开挖失稳破坏力学过程与稳定性工况的基础上,依据应力扩散原理与Mohr-Coulomb强度理论,探讨了非预应力全长黏结格构锚固通过自主调动稳定区岩土体的力学强度来有效改善不稳定区边坡的受力状态和主动约束边坡不稳定变形持续发展的综合加固机制,包括双向挤密效应、锚拉效应、销钉效应、框箍效应与土拱效应;依照优化设计的基本原理与有关规范,构建了格构框架的优化设计数学模型与相关约束方程;利用Matlab7.0编写了该结构优化模型的自动寻优程序;通过在三峡库区某边坡治理工程中的应用,详细地介绍了其优化设计的计算过程;与基于工程类比法的原设计相比,可达到节省工程造价和优化设计结果的目的。  相似文献   

15.
In recent years, blocks created by pressure grouting of cement into soil were used to reinforce slopes by targeting specific weak areas. A clear understanding of the block reinforcement mechanism is essential for the accurate evaluation of the stability of block-reinforced slopes and reasonable design of block layouts. A series of centrifuge model tests was conducted to investigate the bearing capacity and the full deformation and failure behavior of block-reinforced slopes, with a focus on the influence of block layouts on the reinforcement effect. A block reinforcement with a reasonable layout was confirmed to increase the stiffness and the ultimate bearing capacity of the slope. The block reinforcement significantly changed the failure mode to the complex disturbance and destruction from slippage failure in an unreinforced slope. The block reinforcement restrained the deformation localization around the blocks and thus prevented the development of the coupling effect between the deformation localization process and the failure process in an unreinforced slope during loading. Such a reinforcement mechanism could be used to explain why the block reinforcement increased the bearing capacity and changed the failure mode of the slope. The blocks exhibited significant motion along with the development of deformation localization in the slope during loading. The block reinforcement effect was significantly affected by the rotation of blocks, which was determined by the block layout.  相似文献   

16.
确定边坡最危险滑动面并计算与之相对应的安全系数是边坡支护的重要任务。本文结合简化Bishop法,用一种新的智能优化算法混沌优化算法来搜索全局最优解。该方法利用混沌运动本身具有遍历性、随机性、规律性等内在特点,能在一定范围内按其自身规律不重复地遍历所有状态,易于跳出局部最优解,具有很强的全局搜索能力。通过坡高为12.3m的某电厂三层土质边坡的典型算例分析,并和遗传算法、枚举法计算结果对比可知,计算结果超于一致,其差值接近于0,因此混沌优化算法能在很高精度下搜索到全局最优解,能很好地解决边坡稳定性分析中的优化问题。  相似文献   

17.
微生物诱导碳酸盐沉淀(MICP)是一种微生物矿化过程,能够胶结松散土体。将其应用于加固土体坡面提高抗降雨侵蚀能力具有潜在的发展前景。通过模拟降雨冲刷试验,对微生物诱导矿化加固前后粉土坡面的径流水动力与侵蚀特性开展研究,分析和讨论了水动力参数之间的相关性以及对土壤剥蚀率的影响规律。结果显示,加固后与加固前相比,粉土坡面径流的弗劳德数平均下降50%;在降雨前期的阻力系数平均下降66%,径流稳定后二者阻力系数接近;径流剪切力平均提高52%。径流系数与坡面入渗速率呈线性负相关(R2=0.857),与加固层的贯入强度呈指数负相关(R2=0.824);入渗速率与加固层的贯入强度呈二次负相关R2=0.930);径流剪切力与坡度呈指数正相关(R2=0.964)。加固粉土坡面的剥蚀率与加固层的贯入强度呈指数负相关(R2=0.822),与径流剪切力线性正相关(R2=0.912),临界径流剪切力为0.5 Pa。对于坡度10~25°的粉土坡面,微生物加固能将其剥蚀率从58.2~118.4 g/m2s降至2.4~21.2 g/m2s,剥蚀率最大降幅可达95.0%。粉土坡面经微生物诱导矿化加固后,水动力参数值发生显著变化,径流特性与水动力参数、加固层特性及坡度相关,坡面的抗冲刷侵蚀性能得到有效提升。  相似文献   

18.
Probabilistic stability analyses of constructed wrapped-face reinforced slopes (or embankments) using frictional soils were carried out using the random finite element method (RFEM). Soil properties reported in the literature for unsaturated frictional fills compacted to different densities were used in the simulations. Bar elements were added to the RFEM code to simulate extensible geosynthetic reinforcement layers and the Davis approach was used to improve numerical stability for purely frictional soil slopes at collapse. The influence of isotropic and anisotropic spatially variable soil strength was investigated and shown to have a large influence on the variation of maximum mobilised tensile forces in reinforcement layers for the steep 5 m-high slopes in the study. The influence of fill placed at different layer thickness and compacted to different levels was simulated by adjusting the soil strength and unit weight, and the vertical strength correlation length in the anisotropic spatially variable strength field used in each slope realisation. Numerical results showed that vertical strength correlation lengths approaching the magnitude of fill lift heights can control the probability of failure for reinforced slopes constructed with weak fills placed in lift heights close to but less than the wrapped reinforcement spacing used in the study.  相似文献   

19.
加筋率对稻秸秆加筋土开裂特性的试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
针对花岗岩残积土边坡生态防护采用的稻秸秆加筋土,通过室温与模拟日照条件下的加筋土开裂试验研究稻秸秆加筋率对土体开裂性能的影响规律,结果表明:室温条件下稻秸秆加筋率为0.3%,0.4%和0.5%的试样均未发生开裂;模拟日照条件下加筋土试样开裂过程按裂缝宽度发展速度可分为缓慢发展Ⅰ、快速发展Ⅱ、缓慢发展Ⅲ和稳定发展Ⅳ4个阶段,快速发展阶段加筋率0%,0.4%,0.5%的试样均完成70%以上的裂缝开裂宽度,加筋土样含水率呈现出快—慢—快—慢的变化过程,而裂缝宽度呈现快—慢—稳定的变化过程,稻秸秆对试样具有保湿作用,但加筋率过多会导致土样中的空隙增大,为水分蒸发提供通道;稻秸秆加筋土开裂的界限加筋率应为0.3%,其结果可为稻秸秆加筋土生态防护设计提供借鉴。  相似文献   

20.
This paper describes a design application of non-linear deformation analysis to a complex soil–structure–foundation interaction problem through use of a finite element analysis. The problem consists of a proposed renovation to an existing soil-founded U-frame lock structure consisting of construction of a densely reinforced soil berm adjacent to an existing lock wall. Major questions facing the designer involve reduction of the earth pressure on the lock wall, layout of the reinforcing in the soil berm, and collateral effects of berm construction on the U-frame lock structure. A non-linear deformation analysis played a central role in addressing all of these questions. Berm construction and four operational load cases were used to understand the performance of the reinforced berm and to discern interactions among the lock, the backfill, the foundation strata of the U-frame lock, the reinforced berm, and the foundation strata of the reinforced berm. Insight gained from the soil–structure–foundation interaction analyses led to an alteration to the proposed reinforcement layout to enhance the performance of the reinforced soil berm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号