首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A relatively unknown coastal zone of southern Mozambique in Africa is covered by vast mobile and stabilized dunefields. The aeolian dynamics of these transgressive dunefields are studied based on mobility and stability models, statistical analysis of climate data and topographic profiles. Detailed analyses of regional winds, rainfall records, atmospheric temperature records and annual monitoring of dune migration rates helped to find reliable data about instantaneous aeolian sand transport rates, wind drift potential, dune mobility and dune migration rates. The data obtained suggest that the coastal transgressive dunefields are controlled by the southeast winds, availability of loose sediments on the beach, the presence of headland boundary between Maputo and Gaza provinces and the appropriate deposition spaces between the coastline and lacustrine‐lagoon systems. Two distinctive segments of transgressive dunefields were identified in the region studied, including the northern segment of Maputo province with active (mobile) and semi‐vegetated dunes that migrate 23 m/yr landward, and Gaza province dunefields with stabilized (vegetated) and semi‐vegetated dunes. The data obtained in this research have considerable potential to make a valuable contribution to the study of coastal dunefields. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

2.
Aeolian sand transport was studied at the Lanphere Dunes, a coastal dune complex in northern California, by comparing slipface advance rates with transport predicted based on local wind data. The slipfaces of a 2·5 m high transverse ridge and 10 m high parabolic dune were monitored over a period of three months to estimate sand discharge. The study was performed during the dry season, which has the maximum sand‐driving potential. Over the three month study period, average sand discharge was 12·5 m3 per m width per year at the transverse ridge and 8·8 m3 per m width per year at the parabolic dune. A method was developed for modelling slipfaces that are sinuous and where sediment transport rates are not constant across the width of the slipface. Field measurements were used to generate three‐dimensional representations of dune slipfaces. Periodic measurements over the course of three months were used to compute the volume of displaced sediment. Theoretical sand transport was computed from local wind data using the Bagnold model and compared with the observed transport rates. Predicted rates were substantially lower than observed rates. Wind velocities rarely exceeded the threshold velocity. Discrepancies between the observed and predicted values appear to be caused by a combination of wind data recording procedures and differences between wind velocities at the anemometer location and the site where sand transport was measured. Wind data collected by weather bureaux have been utilized in numerous studies for modelling sediment transport. Such data typically have sample intervals of one hour or greater and are often averaged prior to reporting. The effect of averaging was investigated by comparing sand transport estimates based on daily average wind velocities with those based on the original hourly observations. The daily average data were depleted of high velocity winds and sand transport estimates were accordingly much lower than those based on the hourly data. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
An analysis is undertaken of the temporal variability of climatic parameters that influence dunefield aeolian activity. Data from seven meteorological stations in the southwestern Kalahari Desert are used, spanning the period 1960–1992. Erosivity is considered through analysis of wind data, and erodibility through analysis of precipitation and potential evapotranspiration, which together influence dune surface plant growth. The data are integrated using Lancaster's ‘mobility’ index which provides a measure of potential dune surface sand transport. This is renamed ‘potential dune surface activity index’, to reflect the actual characteristic that is measured. The subsequent analysis indicates that dunefield activity is episodic and temporally variable, that both erosivity and erodibility vary through time, and that present levels of activity cannot be characterized by a single simple state. © 1997 by John Wiley & Sons, Ltd.  相似文献   

4.
Changes in wind speed and sediment transport are evaluated at a gap and adjacent crest of a 2 to 3 m high, 40 m wide foredune built by sand fences and vegetation plantings on a wide, nourished fine sand beach at Ocean City, New Jersey. Anemometer masts, cylindrical sand traps and erosion pins were placed on the beach and dune during two obliquely onshore wind events in February and March 2003. Results reveal that: (1) changes in the alongshore continuity of the beach and dune system can act as boundaries to aeolian transport when winds blow at an angle to the shoreline; (2) oblique winds blowing across poorly vegetated patches in the dune increase the potential for creating an irregular crest elevation; (3) transport rates and deflation rates can be greater within the foredune than on the beach, if the dune surface is poorly vegetated and the beach has not had time to dry following tidal inundation; (4) frozen ground does not prevent surface deflation; and (5) remnant sand fences and fresh storm wrack have great local but temporary effect on transport rates. Temporal and spatial differences due to sand fences and wrack, changes in sediment availability due to time‐dependent differences in surface moisture and frozen ground, combined with complex topography and patchy vegetation make it difficult to specify cause–effect relationships. Effects of individual roughness elements on the beach and dune on wind flow and sediment transport can be quantified at specific locations at the event scale, but extrapolation of each event to longer temporal and spatial scales remains qualitative. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
This paper compares the amount of sand that is potentially moved into a coastal dune system from a beach using estimates based solely on the wind force, with actual measured amounts. The actual sand inputs are determined by measuring sand level changes each month over a period of eighteen months, along a 1760-m section of foredune on Braunton Burrows, Southwest England. The calculation procedure used to estimate the potential rates of sand drift is based on the capacity of the wind force to transport sand using a published transport equation (White, 1979). The results show that the actual movement rates are markedly smaller than the potential rates for all months except in the summer. Meteorological variables and the watertable level in the adjacent dune system are used in an empirically derived regression equation in an attempt to explain the large discrepancy between the potential and actual movement rates. The resulting corrected potential movement rates are a closer estimate to the actual rates, but there remains much unexplained variance.  相似文献   

6.
Wind characteristics and aeolian transport were measured on a naturally evolving beach and dune and a nearby site where the beach is raked and sand‐trapping fences are deployed. The beaches were composed of moderately well sorted to very well sorted fine to medium sand. The backshore at the raked site was wider and the foredune was more densely vegetated and about 1 m higher than at the unraked site. Wind speeds were monitored using anemometers placed at 1 m elevation and sand transport was monitored using vertical traps during oblique onshore, alongshore and offshore winds occurring in March and April 2009. Inundation of the low backshore through isolated swash channels prevented formation of a continuously decreasing cross‐shore moisture gradient. The surface of the berm crest was dryer than the backshore, making the berm crest the greatest source of offshore losses during offshore winds. The lack of storm wrack on the raked beach reduced the potential for sediment accumulation seaward of the dune crest during onshore winds, and the higher dune crest reduced wind speeds and sediment transport from the dune to the backshore during offshore winds. Accretion at wrack seaward of the dune toe on the unraked beach resulted in a wider dune field and higher, narrower backshore. Although fresh wrack is an effective local trap for aeolian transport, wrack that becomes buried appears to have little effect as a barrier and can supply dry sand for subsequent transport. Aeolian transport rates were greater on the narrower but dryer backshore of the unraked site. Vegetation growth may be necessary to trap sand within zones of buried wrack in order to allow new incipient foredunes to evolve. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Concepts derived from previous studies of offshore winds on natural dunes are evaluated on a dune maintained for shore protection during three offshore wind events. The potential for offshore winds to form a lee‐side eddy on the backshore or transfer sediment from the dune and berm crest to the water are evaluated, as are differences in wind speed and sediment transport on the dune crest, berm crest and a pedestrian access gap. The dune is 18–20 m wide near the base and has a crest 4.5 m above backshore elevation. Two sand‐trapping fences facilitate accretion. Data were obtained from wind vanes on the crest and lee of the dune and anemometers and sand traps placed across the dune, on the beach berm crest and in the access gap. Mean wind direction above the dune crest varied from 11 to 3 deg from shore normal. No persistent recirculation eddy occurred on the 12 deg seaward slope. Wind speed on the berm crest was 85–89% of speed at the dune crest, but rates of sediment transport were 2.27 times greater during the strongest winds, indicating that a wide beach overcomes the transport limitation of a dune barrier. Limited transport on the seaward dune ramp indicates that losses to the water are mostly from the backshore, not the dune. The seaward slope gains sand from the landward slope and dune crest. Sand fences causing accretion on the dune ramp during onshore winds lower the seaward slope and reduce the likelihood of detached flows during offshore winds. Transport rates are higher in access gaps than on the dune crest despite lower wind speeds because of flatter slopes and absence of vegetation. Transport rates across dunes and through gaps can be reduced using vegetation and raised walkover structures. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
Parabolic dunes are widely distributed on coasts and margins of deserts and steppes where ecosystems are vulnerable and sensitive to environmental changes and human disturbances. Some studies have indicated that vegetated parabolic dunes can be activated into highly mobile barchan dunes and the catastrophic shift of eco‐geomorphic systems is detrimental to land management and social‐economic development; however, no detailed study has clarified the physical processes and eco‐geomorphic interactions that control the stability of a parabolic dune and its resistance to unfavorable environmental changes. This study utilizes the Extended‐DECAL (Discrete Eco‐geomorphic Aeolian Landscapes) model, parameterized by field measurements of dune topography and vegetation characteristics combined with remote sensing, to explore how increases in drought stress, wind strength, and grazing stress may lead to the activation of stabilizing parabolic dunes into highly mobile barchans. The modeling results suggest that the mobility of an initial parabolic dune at the onset of a perturbation determines the capacity of a system to absorb environmental change, and a slight increase in vegetation cover of an initial parabolic dune can increase the activation threshold significantly. The characteristics of four eco‐geomorphic interaction zones control the processes and resulting morphologies of the transformations. A higher deposition tolerance of vegetation increases the activation threshold of the dune transformation under both a negative climatic impact and an increased sand transport rate, whereas the erosion tolerance of vegetation influences the patterns of resulting barchans (a single barchan versus multiple barchans). The change in the characteristics of eco‐geomorphic interaction zones may indirectly reflect the dune stability and predict an ongoing transformation, whilst the activation angle may be potentially used as a proxy of environmental stresses. In contrast to the natural environmental changes that tend to affect relatively weak and young plants, grazing stress can exert a broader impact on any plant indistinctively. A small increase in grazing stress just above the activation threshold can accelerate dune activation significantly. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
Wind flow and sand transport intensity were measured on the seaward slope of a vegetated foredune during a 16 h storm using an array of sonic anemometers and Wenglor laser particle counters. The foredune had a compound seaward slope with a wave‐cut scarp about 0.5 m high separating the upper vegetated portion from the lower dune ramp, which was bare of vegetation. Wind direction veered from obliquely offshore at the start of the event to obliquely onshore during the storm peak and finally to directly onshore during the final 2 h as wind speed dropped to below threshold. Sand transport was initially inhibited by a brief period of rain at the start of the event but as the surface dried and wind speed increased sand transport was initiated over the entire seaward slope. Transport intensity was quite variable both temporally and spatially on the upper slope as a result of fluctuating wind speed and direction, but overall magnitudes were similar over the whole length. Ten‐minute average transport intensity correlates strongly with mean wind speed measured at the dune crest, and there is also strong correlation between instantaneous wind speed and transport intensity measured at the same locations when the data are smoothed with a 10 s running mean. Transport on the beach for onshore winds is decoupled from that on the seaward slope above the small scarp when the wind angle is highly oblique, but for wind angles <45° from shore perpendicular some sand is transported onto the lower slope. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Topographic surveys on an inland parabolic sand dune over a six‐year period provide insight into the effects of diminishing local sand supply on dune stabilization. During the interval (2003–2009) sparse vegetation cover (Psoralea lanceolata) increased despite drier than normal moisture conditions and steady wind power during the growing season. Whereas these climatic conditions are typically ascribed to sustaining or increasing dune activity, here they coincide with stabilization. Through the use of geographic information system (GIS) analysis of volumetric changes it is shown that the increase of P. lanceolata can be attributed to the reduction of local sand supply from two blowouts along the arms of the parabolic dune during the six‐year period. These results show that climate is not the only control on dune activity in vegetated inland dunefields. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The evolution of barchan-to-parabolic dunes can be driven by vegetation establishment, which may be linked to climate change and/or human activity. However, little is known of the impact of changes in wind strength on vegetation development and the resulting impacts on the evolution of dune morphology and sedimentological characteristics. To address this issue, we studied the morphology and grain-size characteristics of barchan, barchan-to-parabolic and parabolic dunes in the Mu Us Desert in north China, which was combined with an analysis of changes in normalized difference vegetation index (NDVI) and climatic variables during 1982–2018. The results reveal a trend of increasing growing-season NDVI which was related to a significant decrease in drift potential (DP). Therefore, we suggest that the initiation of dune transformation was caused by the reduced wind strength which favored the establishment and development of vegetation. To reveal the response of sedimentological reorganization during the processes of dune transformation, grain-size characteristics along the longitudinal profile of the three different types of dunes were examined. The decreasing wind strength led to the transport of fine sands on the upper part of the windward face of the dunes, resulting in a progressive coarsening of the grain-size distribution (GSD) and a reduction in dune height at the crest area. No distinct trend in sorting and mean grain-size was observed on the windward slope of the barchan-to-parabolic dune, indicating that the sand in transit had little influence on the GSD. Conversely, progressive sorting and coarsening of the sand occurred towards the crest of the parabolic dune. This indicates that vegetation development limited the transport of sand from upwind of the dune, and affected a shift in the dune source material to the underlying source deposits, or to reworked pre-existing aeolian deposits, and resulted in the trapping of sand in the crest area. © 2020 John Wiley & Sons, Ltd.  相似文献   

12.
Although extensive data exist on runoff erosion and rates for non‐sandy hillslopes, data for arid dune slopes are scarce, owing to the widespread perception that the high infiltrability of sand will reduce runoff. However, runoff is generated on sandy dunes in the Hallamish dune field, western Negev Desert, Israel (P ≈ 95 mm) due to the presence of a thin (usually 1–3 mm) microbiotic crust. The runoff in turn produces erosion. Sediment yield was measured on ten plots (140–1640 m2) on the north‐ and south‐facing slopes of longitudinal dunes. Two plots facing north and two facing south were subdivided into three subplots. The subplots represented the crest of the active dune devoid of crust, the extensively crusted footslope of the dune, and the midslope section characterized by a patchy crust. The remaining plots extended the full length of the dune slope. No runoff and consequently no water‐eroded sediments were obtained from the crest subplots devoid of crust. However, runoff and sediment were obtained from the mid‐ and footslope crusted subplots. Sediment yield from the footslope subplots was much higher than from the midslopes, despite the higher sediment concentration that characterized the midslope subplots. The mean annual sediment yield at the Hallamish dune field was 432 g per metre width and was associated with high average annual concentrations of 32 g l?1. The data indicate that owing to the presence of a thin microbiotic crust, runoff and water erosion may occur even within arid sandy dune fields. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
14.
For development of embryo dunes on the highly dynamic land–sea boundary, summer growth and the absence of winter erosion are essential. Other than that, however, we know little about the specific conditions that favour embryo dune development. This study explores the boundary conditions for early dune development to enable better predictions of natural dune expansion. Using a 30 year time series of aerial photographs of 33 sites along the Dutch coast, we assessed the influence of beach morphology (beach width and tidal range), meteorological conditions (storm characteristics, wind speed, growing season precipitation, and temperature), and sand nourishment on early dune development. We examined the presence and area of embryo dunes in relation to beach width and tidal range, and compared changes in embryo dune area to meteorological conditions and whether sand nourishment had been applied. We found that the presence and area of embryo dunes increased with increasing beach width. Over time, embryo dune area was negatively correlated with storm intensity and frequency. Embryo dune area was positively correlated with precipitation in the growing season and sand nourishment. Embryo dune area increased in periods of low storm frequency and in wet summers, and decreased in periods of high storm frequency or intensity. We conclude that beach morphology is highly influential in determining the potential for new dune development, and wide beaches enable development of larger embryo dune fields. Sand nourishment stimulates dune development by increasing beach width. Finally, weather conditions and non‐interrupted sequences of years without high‐intensity storms determine whether progressive dune development will take place. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
GPR provides high resolution images of aeolian strata in frozen sand in the McMurdo Dry Valleys of Antarctica. The results have positive implications for potential GPR surveys of aeolian strata on Mars. Within the Lower Victoria Valley, seasonal changes in climate and a topographically-constrained wind regime result in significant wind reversals. As a consequence, dunes show reversing crest-lines and flattened dune crests. Ground-penetrating radar (GPR) surveys of the dunes reveal sets of cross-strata and low-angle bounding surfaces produced by reversing winds. Summer sand transport appears to be dominant and this is attributed to the seasonal increase in solar radiation. Solar radiation which heats the valley floor melts ice cements making sand available for transport. At the same time, solar heating of the valley floor generates easterly winds that transport the sand, contributing to the resultant westward dune migration. The location of the dune field along the northern edge of the Lower Victoria Valley provides some shelter from the powerful föehn and katabatic winds that sweep down the valley. Topographic steering of the winds along the valley and drag against the valley wall has probably aided the formation, migration and preservation of the dune field. Optically-stimulated luminescence (OSL) ages from dune deposits range from 0 to 1.3 kyr showing that the dune field has been present for at least 1000 yr. The OSL ages are used to calculate end-point migration rates of 0.05 to 1.3 m/yr, which are lower than migration rates reported from recent surveys of the Packard dunes and lower than similar-sized dunes in low-latitude deserts. The relatively low rates of migration are attributed to a combination of dune crest reversal under a bimodal wind regime and ice cement that reduces dune deflation and restricts sand entrainment.  相似文献   

16.
Declining sand inputs to a channel with bimodal bed sediment can lead to degradation, armoring, and reduced bedload transport rates. Where sand loading is episodic, channels may alternate between high‐sand and low‐sand conditions, with ensuing responses in bed texture and bedload transport rates. The effects of episodic sand loading are explored through flow, grain size, and bedload transport measurements on the Pasig‐Potrero River, a sediment‐rich channel draining Mount Pinatubo, Philippines. Sand loading on the Pasig‐Potrero River is highly seasonal, and channel adjustments between seasons are dramatic. In the rainy season, inputs from sand‐rich 1991 eruption deposits lead to active, sand‐bedded, braided channels. In the dry season, many precipitation‐driven sand sources are cut off, leading to incision, armoring, and significantly lower bedload transport rates. This seasonal transition offers an excellent opportunity to examine models of degradation, incision, and armoring as well as the effectiveness of sediment transport models that explicitly encapsulate the importance of sand on transport rates. During the fall 2009 seasonal transition, 7·6 km of channel incised and armored, carving a 2–3 m deep channel on the upper alluvial fan. Bedload transport rates measured in the August 2009 rainy season were over four orders of magnitude greater than gravel‐bedded dry‐season channels surveyed in January 2010, despite having similar shear stress and unit discharge conditions. Within dry‐season incised channels, bed armoring is rapid, leading to an abrupt gravel‐sand transition. Bedload transport rates adjust more slowly, creating a lag between armoring and commensurate reductions in transport. Seasonal channel incision occurred in steps, aided by lateral migration into sand‐rich banks. These lateral sand inputs may increase armor layer mobility, renewing incision, and forming terraces within the incised seasonal channel. The seasonal incised channel is currently being reset by precipitation‐driven sand loading during the next rainy season, and the cycle begins again. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Digital elevation models and topographic pro?les of a beach with intertidal bar and trough (ridge‐and‐runnel) morphology in Merlimont, northern France, were analysed in order to assess patterns of cross‐shore and longshore intertidal bar mobility. The beach exhibited a pronounced dual bar–trough system that showed cross‐shore stationarity. The bars and troughs were, however, characterized by signi?cant longshore advection of sand under the in?uence of suspension by waves and transport by strong tide‐ and wind‐driven longshore currents. Pro?le changes were due in part to the longshore migration of medium‐sized bedforms. The potential for cross‐shore bar migration appears to be mitigated by the large size of the two bars relative to incident wave energy, which is modulated by high vertical tidal excursion rates on this beach due to the large tidal range (mean spring tidal range = 8·3 m). Cross‐shore bar migration is also probably hindered by the well‐entrenched troughs which are maintained by channelled high‐energy intertidal ?ows generated by swash bores and by tidal discharge and drainage. The longshore migration of intertidal bars affecting Merlimont beach is embedded in a regional coastal sand transport pathway involving tidal and wind‐forced northward residual ?ows affecting the rectilinear northern French coast in the eastern English Channel. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
A computer simulation model for transverse‐dune‐field dynamics, corresponding to a uni‐directional wind regime, is developed. In a previous formulation, two distinct problems were found regarding the cross‐sectional dune shape, namely the erosion in the lee of dunes and the steepness of the windward slopes. The first problem is solved by introducing no erosion in shadow zones. The second issue is overcome by introducing a wind speedup (shear velocity increase) factor, which can be accounted for by adding a term to the original transport length, which is proportional to the surface height. By incorporating these features we are able to model dunes whose individual shape and collective patterns are similar to those observed in nature. Moreover we show how the introduction of a non‐linear shear‐velocity‐increase term leads to the reduction of dune height, and this may result in an equilibrium dune field configuration. This is thought to be because the non‐linear increase of the transport length makes the sand trapping efficiency lower than unity, even for higher dunes, so that the incoming and the outgoing sand flux are in balance. To fully describe the inter‐dune morphology more precise dynamics in the lee of the dune must be incorporated. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
Fluorescent tracer procedures, originally developed for research on fluvial sediment movement, were used to monitor the movement of three commercially purchased sands in a natural dune environment. Results were compared with estimates of transport rates from three theoretical models. Estimates from models by Bagnold (1941) and Hsu (1971) were larger by as much as one order of magnitude than the rates observed in the tracer study. The model of A. A. Kadib (1965) provided closer correspondence to observed transport rates for medium sand (mean diam. 0.653 mm) but underestimated rates for coarse sand (mean diam. 0.992 mm).  相似文献   

20.
Soft‐sediment deformation occurs in ancient eolian dune deposits, but understanding its extent and the conditions and forces behind the deformation often remains elusive. Here we gain insight into the aerial extent and environmental conditions related to intense soft‐sediment deformation, based on an exceptional three dimensional (3D) exposure of eolian dune deposits and preserved geomorphic landscape expressions in the Jurassic Navajo Sandstone at White Pocket, Vermilion Cliffs National Monument, Arizona. Deformation features include elongate northeast trending decameter‐scale mounds and raised ridges cored by deformed and upturned eolian dune sets, overlain by a massive blanket sandstone with breccia blocks. The geomorphic mounds display ~40–60 m spacing, roughly perpendicular to the southerly paleoflow dune foreset directions. The geometry of the deformation is imaged by oblique aerial photography using cameras mounted on a remote control airplane and high resolution panoramas with a robotic camera mount. We interpret the exquisitely preserved deformation features as liquefaction‐induced ground failure, consistent with theoretical and laboratory studies of deformation in saturated sand. A shallow water table affected by differential dune loading facilitated lateral spreading and failure. The transition to steady‐state flow liquefaction near the top of the shallow water table destroyed original sedimentary structure, creating a massive sand blanket that entrained brecciated blocks ripped up during flow. The water‐pressurized, upwelled sediment created the mounds (a relief inversion). In underlying deformed dune sets, deformation was intense but sedimentary structure was not obliterated as deformation progressed from initial cyclic mobility to strain‐softening, but ceased prior to steady‐state flow liquefaction. The spatial extent, topographic relief, and intensity of dynamic deformation suggest an origin of strong ground motion driven by long‐duration surface waves of a large earthquake (> Mw 7–8), possibly related to back arc thrusting from Jurassic subduction of the Pacific plate under North America. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号