首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A one-day field investigation on an unvegetated backbeach documents the importance of surface sediment drying to aeolian transport. Surface sediments were well sorted fine sand. Moisture content of samples taken in the moist areas on the backbeach varied from 2·9 to 9·2 per cent. Lack of dry sediment inhibited transport prior to 08:50. By 09:10 conspicuous streamers of dry sand moved across the moist surface. Barchan-shaped bedforms, 30 to 40 mm high and composed of dry sand (moisture content <0·10 per cent), formed where sand streamers converged. The surface composed of dry sand increased from 5 per cent of the area of the backbeach at 09:50 to 90 per cent by 12:50 Mean wind speeds were beetween 5·6 and 8·6 m s−1 at 6 m above the backbeach. Corresponding shear velocities were always above the entrainment threshold for dry sand and below the threshold for the moist sand on the backbeach. Measured rates of sand trapped (by vertical cylindrical traps) increased during the day relative to calculated rates. The measured rate of sand trapped on the moist foreshore was higher than the rate trapped on the backbeach during the same interval, indicating that the moist foreshore (moisture content 18 per cent) was an efficient transport surface for sediment delivered from the dry portion of the beach upwind. Measured rates of sand trapped show no clear relationship to shear velocities unless time-dependent surface moisture content is considered. Results document conditions that describe transport across moist surfaces in terms of four stages including: (1) entrainment of moist sediment from a moist surface; (2) in situ drying of surface grains from a moist surface followed by transport across the surface; (3) entrainment and transport of dry sediment from bedforms that have accumulated on the moist surface; and (4) entrainment of sand from a dry upwind source and transport across a moist downwind surface. © 1997 John Wiley & Sons, Ltd.  相似文献   

2.
Concepts derived from previous studies of offshore winds on natural dunes are evaluated on a dune maintained for shore protection during three offshore wind events. The potential for offshore winds to form a lee‐side eddy on the backshore or transfer sediment from the dune and berm crest to the water are evaluated, as are differences in wind speed and sediment transport on the dune crest, berm crest and a pedestrian access gap. The dune is 18–20 m wide near the base and has a crest 4.5 m above backshore elevation. Two sand‐trapping fences facilitate accretion. Data were obtained from wind vanes on the crest and lee of the dune and anemometers and sand traps placed across the dune, on the beach berm crest and in the access gap. Mean wind direction above the dune crest varied from 11 to 3 deg from shore normal. No persistent recirculation eddy occurred on the 12 deg seaward slope. Wind speed on the berm crest was 85–89% of speed at the dune crest, but rates of sediment transport were 2.27 times greater during the strongest winds, indicating that a wide beach overcomes the transport limitation of a dune barrier. Limited transport on the seaward dune ramp indicates that losses to the water are mostly from the backshore, not the dune. The seaward slope gains sand from the landward slope and dune crest. Sand fences causing accretion on the dune ramp during onshore winds lower the seaward slope and reduce the likelihood of detached flows during offshore winds. Transport rates are higher in access gaps than on the dune crest despite lower wind speeds because of flatter slopes and absence of vegetation. Transport rates across dunes and through gaps can be reduced using vegetation and raised walkover structures. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
Comparison of eolian transport during five high-velocity wind events over a 29 day period on a narrow estuarine beach in Delaware Bay, New Jersey, USA, reveals the temporal variability of transport, due to changes in direction of wind approach. Mean wind speed measured 6 m above the dune crest for the five events ranged from 8·5 to 15·9 ms?1. Mean wind direction was oblique to the shoreline (63° from shore-normal) during one event but was within 14° of shore-normal during the other events. Eolian transport is greatest during low tide and rising tide, when the beach source area is widest and when drying of surface sediments occurs. The quantity of sediment caught in a vertical trap for the five events varied from a total of 0·07 to 113·73 kgm?1. Differences in temperature, relative humidity and moisture and salt content of surficial sediments were slight. Mean grain sizes ranged from 0·33 to 0·58 mm, causing slight differences in threshold shear velocity, but shear velocities exceeded the threshold required for transport during all events. Beach width, measured normal to the shoreline, varied from 15·5 to 18·0 m; beach slope differed by 0·5°. The oblique wind during one event created a source width nearly double the width during other days. Beach slope, measured in the direction of the wind, was less than half as steep as the slope measured normal to the shoreline. The amount of sand trapped during the oblique wind was over 20 times greater than any other event, even those with higher shear velocities. The ability of the beach surface to supply grains to the air stream is limited on narrow beaches, but increased source width, due to oblique wind approach, can partially overcome limitations of surface conditions on the beach.  相似文献   

4.
Changes in wind speed and sediment transport are evaluated at a gap and adjacent crest of a 2 to 3 m high, 40 m wide foredune built by sand fences and vegetation plantings on a wide, nourished fine sand beach at Ocean City, New Jersey. Anemometer masts, cylindrical sand traps and erosion pins were placed on the beach and dune during two obliquely onshore wind events in February and March 2003. Results reveal that: (1) changes in the alongshore continuity of the beach and dune system can act as boundaries to aeolian transport when winds blow at an angle to the shoreline; (2) oblique winds blowing across poorly vegetated patches in the dune increase the potential for creating an irregular crest elevation; (3) transport rates and deflation rates can be greater within the foredune than on the beach, if the dune surface is poorly vegetated and the beach has not had time to dry following tidal inundation; (4) frozen ground does not prevent surface deflation; and (5) remnant sand fences and fresh storm wrack have great local but temporary effect on transport rates. Temporal and spatial differences due to sand fences and wrack, changes in sediment availability due to time‐dependent differences in surface moisture and frozen ground, combined with complex topography and patchy vegetation make it difficult to specify cause–effect relationships. Effects of individual roughness elements on the beach and dune on wind flow and sediment transport can be quantified at specific locations at the event scale, but extrapolation of each event to longer temporal and spatial scales remains qualitative. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Wind characteristics and aeolian transport were measured on a naturally evolving beach and dune and a nearby site where the beach is raked and sand‐trapping fences are deployed. The beaches were composed of moderately well sorted to very well sorted fine to medium sand. The backshore at the raked site was wider and the foredune was more densely vegetated and about 1 m higher than at the unraked site. Wind speeds were monitored using anemometers placed at 1 m elevation and sand transport was monitored using vertical traps during oblique onshore, alongshore and offshore winds occurring in March and April 2009. Inundation of the low backshore through isolated swash channels prevented formation of a continuously decreasing cross‐shore moisture gradient. The surface of the berm crest was dryer than the backshore, making the berm crest the greatest source of offshore losses during offshore winds. The lack of storm wrack on the raked beach reduced the potential for sediment accumulation seaward of the dune crest during onshore winds, and the higher dune crest reduced wind speeds and sediment transport from the dune to the backshore during offshore winds. Accretion at wrack seaward of the dune toe on the unraked beach resulted in a wider dune field and higher, narrower backshore. Although fresh wrack is an effective local trap for aeolian transport, wrack that becomes buried appears to have little effect as a barrier and can supply dry sand for subsequent transport. Aeolian transport rates were greater on the narrower but dryer backshore of the unraked site. Vegetation growth may be necessary to trap sand within zones of buried wrack in order to allow new incipient foredunes to evolve. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Wind tunnel experiments were conducted with a well mixed, flat sand bed, 5·7 m in length, to study the initial sand flux response at three different shear velocities. In some experiments, the bed was allowed to deplete without replenishment; in others, sand was fed 10·8 m upstream of the monitored cross-section. The results indicated that the transport rate increases rapidly during the first minute, and then adjusts slowly towards a steady rate. The time to reach such an equilibrium was observed to be on the order of 2–4 min in non-fed experiments and on the order of 8–9 min in fed experiments. Many factors may affect such development and bring about non-stationarity in total sand transport rate. Among these factors are differences in the natural composition of the sand bed, changes in both the topographical features of the sand bed (ripples) and its surface texture, and any artificial features that influence the adjustment between the boundary layer profile and the sand load on the wind. A useful key to the influence of each factor is obtained by noting that each has a typical and distinct ‘time constant’. The nature and relative importance of each is discussed by reference to the reported wind tunnel experiments and to the behaviour of saltation cloud numerical models. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
With both sides of the Taklimakan Desert highway line as the study area, three typical aeolian sand landforms, i.e. complex dune ridge, barchan dune and flat sand land, were selected as sand beds for the observation, analysis and research of the characteristics of aeolian sand movement such as aeolian sand stream structure, sand transport intensity, etc. in the Taklimakan Desert. The results show that there is a linear relation between the height and the log of sand transport rate over transverse dune chain, longitudinal dune ridge and flat sand land, i.e. the sand transport percentage decreases exponentially with increasing height. Sand transport rate within the 10 cm height above the bed surface accounts for 80%-95% of the total sand transport rate of the observed height (40 cm), while the sand transport rate in 20 cm occupies 98% of the total amount. Sand transport rate (g·cm-1·min-1) differs greatly with respect to different landform types and different topographic positions. Based on the investig  相似文献   

8.
More than 4000 hourly wind profiles measured on three topographically different foredunes are analysed and discussed. Wind flow over the foredunes is studied by means of the relative wind speed: the ratio between wind speed at a certain location and the reference wind speed at the same height. Relative wind speeds appear to be independent of general wind speed but dependent on wind direction. For perpendicular onshore winds the flow over the foredune is accelerated due to topographic changes and decelerated due to changes in surface roughness. Accelerations dominate over decelerations on the seaward slope. The pattern of acceleration and deceleration in relation to wind direction is more or less comparable for different foredunes, but the magnitudes differ. An increase in foredune height from 6 to 10m leads to an increase in speed-up near the top of the seaward slope from 110 to 150 per cent during onshore wind, but further increase of foredune height from 10 to 23m appears to have little effect, due to increased roughness and deflection of flow. Topography also influences the direction of the flow. Between beach and top, the flow deflects in the direction of the normal during onshore winds. During offshore winds the flow is deflected to the parallel. Near the dunefoot, deflection is always in the direction of the parallel, and increases with steeper topography. The maximum deflection near the dunefoot was 90°, over a 23 m high dune, observed during offshore winds. Patterns of erosion and sedimentation resulting from winds from different directions can be explained by the observed accelerations and decelerations. Owing to speed-up on the seaward front of the foredune, sand transport capacity of the wind increases, which results in erosion if vegetation is absent. During strong onshore wind, sand is lifted near the dunefoot and moves over the foredune in suspension. During weaker winds, vertical wind velocities do not exceed fall velocities of the sand grains, and most of the sand is deposited near the dunefoot.  相似文献   

9.
The unusual location of ventifacts, on a boulder‐built jetty at the mouth of the Siuslaw River, Oregon coast, western USA, allows ventifact age and wind abrasion rates to be estimated with some precision. The jetty was built mainly between 1892–1901 and extended throughout the twentieth century. Consideration of historical shoreline position and the history of jetty construction and repair suggests the ventifacts have formed since about 1930. Morphologically the ventifacts are aligned south‐to‐north reflecting winter winds and sediment transport from the adjacent beach. Wind‐parallel grooves and ridges with sharp, sinuous crests are developed on inclined boulder surfaces on top of the jetty and reflect suspended sand transport in wind vortices. Deeply pitted surfaces on steep boulder surfaces nearest the beach reflect impact by saltating sand grains. Based on present wind regimes (1992–2000) from three regional weather stations, southerly winds above the sand transport threshold occur for 21·9–29·6 per cent of the time. Based on estimated depth of loss from boulder surfaces, wind abrasion rates are calculated to be on the order of 0·24–1·63 mm a?1. This is the first well‐constrained field estimate of ventifact age and ventifaction rate from a modern coastal environment. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
This paper discusses a two-dimensional second-order closure model simulating air flow and turbulence across transverse dunes. Input parameters are upwind wind speed, topography of the dune ridge and surface roughness distribution over the ridge. The most important output is the distribution of the friction velocity over the surface. This model is dynamically linked to a model that calculates sand transport rates and the resulting changes in elevation. The sand transport model is discussed in a separate paper. The simulated wind speeds resemble patterns observed during field experiments. Despite the increased wind speed over the crest, the friction velocity at the crest of a bare dune is reduced compared to the upstream value, because of the effect of stream line curvature on turbulence. These curvature effects explain why desert dunes can grow in height. In order to obtain realistic predictions of friction velocity it was essential to include equations for the turbulent variables in the model. In these equations streamline curvature is an important parameter. The main flaw of the model is that it cannot deal with flow separation and the resulting recirculation vortex. As a result, the increase of the wind speed and friction velocity after a steep dune or a slipface will be too close to the dune foot. In the sand transport model this was overcome by defining a separation zone. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
Sediment budget data from an 18‐month topographic survey were analysed with data from brief experiments on wind parameters, beach moisture contents, bedforms and sand mobilization in order to monitor conditions and patterns of embryo dune development over a flat 150–1000 m wide accreting upper beach. The surface conditions over the upper beach locally affect aeolian transport, but net dune development over time depends on sustained strong winds and their orientation. Incoming marine sand supplied by storms and onshore winds is reorganized by the dominant offshore to longshore winds into elongated embryo dunes over this upper beach, imprinting a regional morphology of long‐term longshore dune ridge development. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
A study of the erosion rate and the stability of sandy slopes was conducted on an eastern arm of a parabolic coastal sand dune, De Blink, central Netherlands. The contribution of rabbits to these processes was found to depend on two types of activity; the building of caves and sand mounds of up to 1·5 m2 in area; and the digging of shallow burrows, whereby amounts of sand up to 1 kg per burrow were excavated. The burrowing activity was found over the whole dune, while cave holes were dug mainly on the northern slope. The total amount of sand actually transported on the dune due to this activity is not clear yet, but their influence on the development of stepped slopes is well established.  相似文献   

13.
Studies of sediment transport on developed coasts provide perspective on how human adjustments alter natural processes. Deployment of sand‐trapping fences is a common adjustment that changes the characteristics of the dune ramp and its role in linking sediment transfers from the backshore to the foredune. Fence effects were evaluated in the field using anemometer arrays and vertical sediment traps placed across a beach and dune at Seaside Park, New Jersey, USA during onshore and longshore winds. The foredune is 18 m wide and 4.5 m above the backshore. The mean speed of onshore winds at 0.5 m elevation decreased by 17% from the berm crest to the upper ramp and 36% in the lee of a fence there. Sediment transport during mean wind speeds up to 8.0 m s?1 at 0.5 m elevation was < 0.06 kg m?1 h?1 on the berm crest and backshore where fetch distances were < 45 m and surface sediment was relatively coarse (0.74–0.85 mm) but increased to 5.63 kg m?1 h?1 on the upper ramp aided by the longer fetch distances (up to 82 m) and finer grain size of the source sediment there (0.52 mm). Sediment transport along the berm crest and backshore during longshore winds, where fetch distances were > 200 m, was up to 58.69 kg m?1 h?1, about three orders of magnitude greater than during the onshore winds. Fences can displace the toe of the ramp farther seaward than would occur under natural conditions. They can create a gentler slope and change the shape of the ramp to a more convex form. A fence on the ramp can cut off a portion of sediment supply to the upper slope. Decisions about fence placement thus should consider these morphologic changes in addition to the effects on dune volume. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
Evidence from a field study on wind flow and sediment transport across a beach–dune system under onshore and offshore conditions (including oblique approach angles) indicates that sediment transport response on the back‐beach and stoss slope of the foredune can be exceedingly complex. The upper‐air flow – measured by a sonic anemometer at the top of a 3·5 m tower located on the dune crest – is similar to regional wind records obtained from a nearby meteorological station, but quite different from the near‐surface flow field measured locally across the beach–dune profile by sonic anemometers positioned 20 cm above the sand surface. Flow–form interaction at macro and micro scales leads to strong modulation of the near‐surface wind vectors, including wind speed reductions (due to surface roughness drag and adverse pressure effects induced by the dune) and wind speed increases (due to flow compression toward the top of the dune) as well as pronounced topographic steering during oblique wind approach angles. A conceptual model is proposed, building on the ideas of Sweet and Kocurek (Sedimentology 37 : 1023–1038, 1990), Walker and Nickling (Earth Surface Processes and Landforms 28 : 111–1124, 2002), and Lynch et al. (Earth Surface Processes and Landforms 33 : 991–1005, 2008, Geomorphology 105 : 139–146, 2010), which shows how near‐surface wind vectors are altered for four regional wind conditions: (a) onshore, detached; (b) onshore‐oblique, attached and deflected; (c) offshore, detached; and (d) offshore‐oblique, attached and deflected. High‐frequency measurements of sediment transport intensity during these different events demonstrate that predictions of sediment flux using standard equations driven by regional wind statistics would by unreliable and misleading. It is recommended that field studies routinely implement experimental designs that treat the near‐surface wind field as comprising true vector quantities (with speed and direction) in order that a more robust linkage between the regional (upper air) wind field and the sediment transport response across the beach–dune profile be established. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Lee-side windspeed and sediment transport were measured over a small (1·2 m) transverse ridge in the Silver Peak dunefield, west-central Nevada, USA, using an intensive array of 25 cup anemometers and seven total flux traps. During crest-transverse and transporting flow conditions (u0·3crest ≈ 8·4 m s−1), windspeed near the surface of the lee slope averaged half (48 per cent) that of crest speeds. Dimensionless speeds in the separation zone ranged from 0·2 to 0·8 that of the outer flow (u12). Along the boundary of the separation cell, windspeed increased by 10 per cent of the crest speed before separation. Equilibrium of upper and lower wake regions was not observed by the documented eight dune heights, suggesting that wake recovery may not occur over closely spaced dunes. Sediment transport measured directly on both the lee slope and interdune surfaces averaged approximately 15 per cent of crest inputs. This suggests that a significant amount (c. 70–95 per cent) of sediment transported over the crest moved as fallout. For this data set, flux was approximately proportional to the cube of the near-surface windspeed (u0·3) and in general there was an order of magnitude difference between flux measured at the crest and that measured within the separation zone. Transport direction in the separation zone was acutely oblique to the incident direction owing to secondary flow deflection. Beyond the interdune, transport direction progressed from oblique to crest-transverse. This indicates that an appreciable amount of sediment may move laterally along the lee slope and interdune corridor under crest-transverse flows. Regarding the grain size and sorting properties of transported sediment, there was no significant difference in mean grain size over the dune, although in general particles were finer and more poorly sorted in the lee. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
Field studies conducted at Owens Lake, California, provide direct measurements of sand flux on sand sheets with zero to 20 per cent cover of salt grass. Results from 12 different sand transport events show that aerodynamic roughness length and threshold wind shear velocity increase with vegetation cover as measured by vertically projected cover and roughness density (λ). This results in a negative exponential decrease in sediment flux with increasing vegetation cover such that sand transport is effectively eliminated when the vertically projected cover of salt grass is greater than 15 per cent. A general empirical model for the relation between sand flux and vegetation cover has been derived and can be used to predict the amount of vegetation required to stabilize sand dune areas. © 1998 John Wiley & Sons, Ltd.  相似文献   

17.
We investigate the use of the short‐lived fallout radionuclide beryllium‐7 (7Be; t1/2 = 53·4 days) as a tracer of medium and coarse sand (0·25–2 mm), which transitions between transport in suspension and as bed load, and evaluate the effects of impoundment on seasonal and spatial variations in bed sedimentation. We measure 7Be activities in approximately monthly samples from point bar and streambed sediments in one unregulated and one regulated stream. In the regulated stream our sampling spanned an array of flow and management conditions during the annual transition from flood control in the winter and early spring to run‐of‐the‐river operation from late spring to autumn. Sediment stored behind the dam during the winter quickly became depleted in 7Be activity. This resulted in a pulse of ‘dead’ sediment released when the dam gates were opened in the spring which could be tracked as it moved downstream. Measured average sediment transport velocities (30–80 metres per day (m d?1)) exceed those typically reported for bulk bed load transport and are remarkably constant across varied flow regimes, possibly due to corresponding changes in bed sand fraction. Results also show that the length scale of the downstream impact of dam management on sediment transport is short (c. 1 km); beyond this distance the sediment trapped by the dam is replaced by new sediment from tributaries and other downstream sources. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
A simple low‐cost sand catcher has been developed for use in wind‐tunnel experiments. It is 500 mm high with a 300 mm by 20 mm inlet opening, and is designed to measure total mass transport directly. The length is 280 mm and its walls slowly expand at an angle of 5·6°. The top view is similar to that of the widely used BSNE sampler. Each sidewall is vented with three ventilation screens. Two sets of experiments were conducted on dune sand and at different wind velocities to investigate to what degree the catcher samples isokinetically, ef?ciently and non‐selectively. The results indicate that the catcher measures suf?ciently isokinetically (inlet wind velocity over outside wind velocity >0·9). Catch ef?ciency was around 0·75 and the degree of non‐selectivity was >0·80 for 95 per cent of the particle sizes of the test material. It was also observed that the in?uence of wind velocity on the tested sampler characteristics was of minor importance so that no speci?c corrections need to be made for different wind velocities. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
Wind flow and sand transport intensity were measured on the seaward slope of a vegetated foredune during a 16 h storm using an array of sonic anemometers and Wenglor laser particle counters. The foredune had a compound seaward slope with a wave‐cut scarp about 0.5 m high separating the upper vegetated portion from the lower dune ramp, which was bare of vegetation. Wind direction veered from obliquely offshore at the start of the event to obliquely onshore during the storm peak and finally to directly onshore during the final 2 h as wind speed dropped to below threshold. Sand transport was initially inhibited by a brief period of rain at the start of the event but as the surface dried and wind speed increased sand transport was initiated over the entire seaward slope. Transport intensity was quite variable both temporally and spatially on the upper slope as a result of fluctuating wind speed and direction, but overall magnitudes were similar over the whole length. Ten‐minute average transport intensity correlates strongly with mean wind speed measured at the dune crest, and there is also strong correlation between instantaneous wind speed and transport intensity measured at the same locations when the data are smoothed with a 10 s running mean. Transport on the beach for onshore winds is decoupled from that on the seaward slope above the small scarp when the wind angle is highly oblique, but for wind angles <45° from shore perpendicular some sand is transported onto the lower slope. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The behaviour of offshore‐directed winds over coastal dune and beach morphology was examined using a combination of modelling (3‐D computational fluid dynamics (CFD)) and field measurement. Both model simulations and field measurements showed reversal of offshore flows at the back beach and creation of an onshore sediment transport potential. The influence of flow reversals on the beach‐dune transport system and foredune growth patterns has previously received little attention. Detailed wind flow measurements were made using an extensive array of mast‐mounted, 3‐D ultrasonic anemometers (50 Hz), arranged parallel to the dominant incident wind direction. Large eddy simulation (LES) of the offshore wind flow over the dune was conducted using the open‐source CFD tool openFOAM. The computational domain included a terrain model obtained by airborne LiDAR and detailed ground DGPS measurements. The computational grid (~22 million cells) included localized mesh refinement near the complex foredune terrain to capture finer details of the dune morphology that might affect wind flows on the adjacent beach. Measured and simulated wind flow are presented and discussed. The CFD simulations offer new insights into the flow mechanics associated with offshore winds and how the terrain steering of wind flow impacts on the geomorphological behaviour of the dune system. Simulation of 3‐D wind flows over complex terrain such as dune systems, presents a valuable new tool for geomorphological research, as it enables new insights into the relationship between the wind field and the underlying topography. The results show that offshore and obliquely offshore winds result in flow reversal and onshore directed winds at distances of up to 20 m from the embryo dune toe. The potential geomorphological significance of the findings are discussed and simple calculations show that incoming offshore and obliquely offshore winds with mean velocities over 13 m s?1 and 7 m s?1, respectively, have the potential to create onshore‐directed winds at the back beach with mean velocities above 3.3 m s?1. These are above the threshold of movement for dry sand and support previous conclusions about the significance of offshore winds in dune and beach budget calculations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号