首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present our long-term photometric and spectroscopic observations of a high-latitude B supergiant with an infrared excess—the protoplanetary nebula IRAS 18062+2410. OurU BV observations in 2000–2006 have confirmed the rapid irregular photometric variability of the star with a maximum amplitude as high as 0 . m 4 in V that we found previously. The BV and UB color indices vary with amplitudes as high as 0 . m 10 and 0 . m 25, respectively, and show no clear correlation with the brightness. Our V-band CCD observations on 11 nights in 2006 have revealed brightness trends during the night. The variability of IRAS18062+2410 is similar in pattern to the light variations in other hot post-AGB objects and some of the nuclei of young planetary nebulae. We assume that pulsations and a variable stellar wind can be responsible for the variability of these stars. In addition to the rapid variability, our 12-year-long observations have revealed a systematic decline in the mean brightness of IRAS 18062+2410. This may be related to a rise in the temperature of the star at constant luminosity as a result of its evolution. Low-resolution spectroscopic observations have shown a systematic increase in the equivalent widths of the Hα, Hβ, [NII]λ6584 Å, OI λ8446 Å, and [OII] λ7320–7330 Å emission lines. The changes in the star’s emission line spectrum are probably caused by an increase in the degree of ionization of the gas shell due to a rise in the temperature of the ionizing star. Our photometric and spectroscopic observations of IRAS 18062+2410 confirm the previously made assumptions that the star evolves very rapidly to the region of planetary nebulae.  相似文献   

2.
We present photoelectric and spectral observations of a hot candidate proto-planetary nebula—early B-type supergiant with emission lines in spectrum—IRAS 19336-0400. The light and color curves display fast irregular brightness variations with maximum amplitudes \(\Delta V = 0_ \cdot ^m 30\), \(\Delta B = 0_ \cdot ^m 35\), \(\Delta U = 0_ \cdot ^m 40\) and color-brightness correlations. By the variability characteristics IRAS 19336-0400 appears similar to other hot proto-planetary nebulae. Based on low-resolution spectra in the range λ4000–7500 Å we have derived absolute intensities of the emission lines Hα, Hβ, Hγ, [S II], [N II], physical conditions in gaseous nebula: n e = 104 cm?3, T e = 7000 ± 1000 K. The emission line Hα, Hβ equivalent widths are found to be considerably variable and related to light changes. By UBV-photometry and spectroscopy the color excess has been estimated: E B-V = 0.50–0.54. Joint photometric and spectral data analysis allows us to assume that the star variability is caused by stellar wind variations.  相似文献   

3.
We present the results of spectroscopic and photometric observations for the young compact planetary nebula Hen 3–1357 and its central star SAO 244567. High-resolution spectroscopy has allowed the expansion velocity of the nebula, V exp = 8.4 ± 1.5 km s?1, and the heliocentric velocity of the object, V r = +12.6 ± 1.7 km s?1, to be determined. The gas shell parameters (N e , T e ), the extinction in the Hβ line, and the O, N, Ne, Ar, S, Cl, He, and C abundances have been determined from low-resolution spectra taken in 1992 and 2011. We have found significant changes in the relative intensities of forbidden lines in the spectrum of Hen 3–1357 within the last 20 years: the low-excitation [O I], [O II], and [N II] lines became stronger relative to Hβ by a factor of ~2, while the [O III] lines weakened by a factor of ~ 2, suggesting a decrease in the excitation class of the nebula. The V-band photometry performed under the ASAS-3 program revealed a decline in the yearly mean brightness of SAO 244 567 from 2001 to 2009 by $0_.^m 5$ and rapid variability with an amplitude of a few tenths of a magnitude. Published observational data in a wide spectral range, from the near ultraviolet to the radio band, suggest an appreciable weakening of the flux from the star and the nebula.  相似文献   

4.
Based on our high-spectral-resolution observations performed with the NES echelle spectrograph of the 6-m telescope, we have studied the peculiarities of the spectrum and the velocity field in the atmosphere and envelope of the cool supergiant V1027 Cyg, the optical counterpart of the infrared source IRAS 20004+2955. A splitting of the cores of strong absorptions of metals and their ions (Si II, Ni I, Ti I, Ti II, Sc II, Cr I, Fe I, Fe II, BaII) has been detected in the stellar spectrum for the first time. The broad profile of these lines contains a stable weak emission in the core whose position may be considered as the systematic velocity V sys = 5.5 km s?1. Small radial velocity variations with an amplitude of 5–6 km s?1 due to pulsations have been revealed by symmetric low- and moderate-intensity absorptions. A long-wavelength shift of the Hα profile due to line core distortion is observed in the stellar spectrum. Numerous weak CN molecular lines and the KI 7696 Å line with a P Cyg profile have been identified in the red spectral region. The coincidence of the radial velocities measured from symmetric metal absorptions and CN lines suggests that the CN spectrum is formed in the stellar atmosphere. We have identified numerous diffuse interstellar bands (DIBs) whose positions in the spectrum, V r (DIBs) = ?12.0 km s?1, correspond to the velocity of the interstellar medium in the Local Arm of the Galaxy.  相似文献   

5.
We present the results of spectroscopic and photometric observations for three hot southern-hemisphere post-AGB objects, Hen 3-1347 = IRAS 17074-1845, Hen 3-1428 = IRAS 17311-4924, and LSS 4634 = IRAS 18023-3409. In the spectrograms taken with the 1.9-m telescope of the South African Astronomical Observatory (SAAO) in 2012, we have measured the equivalent widths of the most prominent spectral lines. Comparison of the new data with those published previously points to a change in the spectra of Hen 3-1428 and LSS 4634 in the last 20 years. Based on ASAS data, we have detected rapid photometric variability in all three stars with an amplitude up to 0 · m 3-0 · m 4 in the V band. A similarity between the patterns of variability for the sample stars and other hot protoplanetary nebulae is pointed out. We present the results of UBV observations for Hen 3-1347, according to which the star undergoes rapid irregular brightness variations with maximum amplitudes ΔV = 0 · m 25, ΔB = 0 · m 25, and ΔU = 0 · m 30 and shows color-magnitude correlations. Based on archival data, we have traced the photometric history of the stars over more than 100 years. Hen 3-1347 and LSS 4634 have exhibited a significant fading on a long time scale. The revealed brightness and spectrum variations in the stars, along with evidence for their enhanced mass, may be indicative of their rapid post-AGB evolution.  相似文献   

6.
We present properties of the low-surface-brightness galaxy KDG218 observed with the HST/ACS. The galaxy has a half-light (effective) diameter of a e = 47″ and a central surface brightness of SB V (0) = 24.m4/□″. The galaxy remains unresolved with the HST/ACS, which implies its distance of D > 13.1 Mpc and linear effective diameter of A e > 3.0 kpc. We notice that KDG218 is most likely associated with a galaxy group around the massive lenticular NGC4958 galaxy at approximately 22 Mpc, or with the Virgo Southern Extension filament at approximately 16.5 Mpc. At these distances, the galaxy is classified as an ultra-diffuse galaxy (UDG) similar to those found in the Virgo, Fornax, and Coma clusters. We also present a sample of 15 UDG candidates in the Local Volume. These sample galaxies have the following mean parameters: 〈D〉 = 5.1 Mpc, 〈A e 〉 = 4.8 kpc, and 〈SB B (e)〉 = 27.m4/□″. All the local UDG candidates reside near massive galaxies located in the regions with the mean stellar mass density (within 1 Mpc) about 50 times greater than the average cosmic density. The local fraction of UDGs does not exceed 1.5% of the Local Volume population. We notice that the presented sample of local UDGs is a heterogeneous one containing irregular, transition, and tidal types, as well as objects consisting of an old stellar population.  相似文献   

7.
We present our photoelectric and spectroscopic observations of the early B supergiant with an IR excess IRAS 19200+3457, a poorly known post-AGB candidate. The star has been found to be photometrically variable. We observed rapid irregular brightness variations with amplitudes up to \(\Delta V = 0\mathop .\limits^m 4, \Delta B = 0\mathop .\limits^m 4\), and \(\Delta U = 0\mathop .\limits^m 5\). IRAS 19200+3457 and three other hot post-AGB stars—V886 Her, V1853 Cyg, and LSIV—12°111—exhibit a similar variability pattern. Our low-resolution spectroscopic observations in the period 2001–2003 show that the spectrum of IRAS 19200+3457 represents an early B star with hydrogen emission lines originating from a circumstellar gaseous envelope. The HeI λ5876 Å, λ6678 Å, λ7065 Å, and OI λ7774 Å lines are in absorption. The hydrogen and, probably, HeI lines proved to be variable. Our observations confirm the conclusion that IRAS 19200+3457 belongs to the class of intermediate-mass protoplanetary objects.  相似文献   

8.
Based on CCD spectra obtained with the PFES echelle spectrometer of the 6-m telescope, we have determined for the first time the effective temperature T eff=5900 K, surface gravity logg=0.0, and detailed chemical composition of the faint star identified with the infrared source IRAS 23304+6147 by the model-atmosphere method. Its metallicity indicates that the object belongs to the old Galactic disk (the mean abundance of the iron-group elements V, Cr, and Fe for IRAS 23304+6147 is [X/H]=?0.61 dex). The stellar atmosphere exhibits an enhancement of carbon and nitrogen, [C/Fe]=+0.98, [N/Fe]=+1.36, and C/O>1. Significant overabundances of lanthanides were detected: the mean [X/Fe]=+1.04 for La, Ce, Pr, Nd, and Eu. The elemental abundances suggest that the atmospheric chemical composition of IRAS 23304+6147 was modified mainly by nucleosynthesis followed by mixing. By modeling the object's spectrum, we revealed absorption features at the positions of well-known absorption diffuse interstellar bands (DIBs). An analysis of radial-velocity and intensity measurements for these DIBs leads us to conclude that, for IRAS 23304+6147, the DIBs originate mostly in its circumstellar dust envelope expanding at a velocity of about 20 km s?1. Molecular C2 Swan emission bands were detected in the object's spectrum, which also originate in the circumstellar envelope. There is a close match between the object's atmospheric effective temperatures determined independently by the model-atmosphere method and by modeling its optical and infrared energy distribution, within the accuracy of the methods.  相似文献   

9.
We present the results of spectroscopic and photometric observations for the B star StHα62 with an IR excess, a post-AGB candidate identified with the IR source IRAS 07171+1823. High-resolution spectroscopy has allowed the λ4330–7340 Å spectrum of the star to be identified: it contains absorption lines of an early B star and emission lines of a gaseous shell. The residual line intensities have been measured. The heliocentric radial velocities measured from absorption lines of the star and emission lines of the shell are 〈V r 〉 = +45 ± 1 and +52 ± 1 km s?1, respectively. The line-of-sight velocities of gas-dust clouds determined from the interstellar Na I lines are 12 and 33 km s?1. The He I λ5876 Å line exhibits a P Cyg profile, which is indicative of an ongoing mass loss by the star. The expansion velocity of the outer shell estimated from forbidden lines is 12–13 km s?1. Quantitative classification gives the spectral type B0.51 for the star. The parameters of the gaseous shell have been determined: N e = 3.1 × 103 cm?3 and T e ~ 21 000 K. Over 4 years of its observations, the star showed rapid irregular light variations with the amplitudes ΔV = We present the results of spectroscopic and photometric observations for the B star StHα62 with an IR excess, a post-AGB candidate identified with the IR source IRAS 07171+1823. High-resolution spectroscopy has allowed the λ4330–7340 ? spectrum of the star to be identified: it contains absorption lines of an early B star and emission lines of a gaseous shell. The residual line intensities have been measured. The heliocentric radial velocities measured from absorption lines of the star and emission lines of the shell are 〈V r 〉 = +45 ± 1 and +52 ± 1 km s−1, respectively. The line-of-sight velocities of gas-dust clouds determined from the interstellar Na I lines are 12 and 33 km s−1. The He I λ5876 ? line exhibits a P Cyg profile, which is indicative of an ongoing mass loss by the star. The expansion velocity of the outer shell estimated from forbidden lines is 12–13 km s−1. Quantitative classification gives the spectral type B0.51 for the star. The parameters of the gaseous shell have been determined: N e = 3.1 × 103 cm−3 and T e ∼ 21 000 K. Over 4 years of its observations, the star showed rapid irregular light variations with the amplitudes ΔV = , ΔB = , and ΔU = and no color-magnitude correlation. We estimate the total extinction for the star from our photometric observations as A v = . Near-IR observations have revealed dust radiation with a temperature of ∼1300 K. We estimate the distance to StHα62 to be r = 5.2 ± 1.2 kpc by assuming that the star is a low-mass (M = 0.55 ± 0.05 M ) protoplanetary nebula. Original Russian Text ? V.P. Arkhipova, V.G. Klochkova, E.L. Chentsov, V.F. Esipov, N.P. Ikonnikova, G.V. Komissarova, 2006, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2006, Vol. 32, No. 10, pp. 737–747.  相似文献   

10.
Based on CCD spectra taken with an echelle spectrometer attached to the 6-m telescope, we have determined for the first time the fundamental parameters and detailed chemical composition of HD 331319, an optical counterpart of the infrared source IRAS 19475+3119, by the model-atmosphere method. Helium lines were detected in the spectrum of this luminous (m object with the effective temperature T eff=7200 K. This detection can be interpreted as a significant helium overabundance in the observed atmospheric layers and may be considered as a manifestation of helium synthesis during the preceding evolution. Nitrogen and oxygen were found to be overabundant, [N/Fe]=+1.30 dex and [O/Fe]=+0.64 dex, with the carbon overabundance being modest. The metallicity of the stellar atmosphere, [Fe/H]=+0.25, differs only slightly from its solar value. The s-process metals are not overabundant but most likely underabundant relative to iron: [X/Fe]=?0.68 for Y and Zr. Barium is also underabundant relative to iron: [Ba/Fe]=?0.47. The heavier elements La, Ce, Nd, and Eu are slightly enhanced relative to iron: the mean [X/Fe]=?0.16 for them. In general, the elemental abundances confirm that IRAS 19475+3119 is a post-AGB object. The metallicity in combination with the radial velocity Vr=?3.4 km s?1 and Galactic latitude $\left| b \right| = 2_.^ \circ 7$ of the object suggest that it belongs to the Galactic disk population. The envelope expansion velocity, V exp≈21 km s?1, was determined from the positions of the absorption bands that originate in the circumstellar envelope. A comparison of our results for the comparison star HD 161796=IRAS 17436+5003, a typical post-AGB object, with previously published data revealed an evolutionary increase in the effective temperature of HD 161796 at a mean rate of ≥50° per year.  相似文献   

11.
Using the high-resolution spectra obtained at the 6-meter telescope of the SAO RAS over 2002–2013, we studied the spectral features of the lines of interstellar medium. The radial velocities of the Na I 5890 Å, Na I 5896 Å, Ca II 3934 Å and Ca II 3968 Å absorption lines were analyzed. Seven diffuse interstellar bands 4964, 5780, 5797, 6196, 6203, 6379 Å were identified in the optical spectrum of IRAS01005+7910. Radial velocities Vr and equivalent widths Wλ of these DIBs were measured, for which the values of the interstellar reddening EB?V and column density of neutral hydrogen log [N(H)] were calculated.  相似文献   

12.
We present the results of our photometric (BV R) and spectroscopic CCD observations of NGC 304 and NGC 7625, candidate polar-ring galaxies, performed with the 6-m Special Astrophysical Observatory telescope. For NGC 304, such a study has been carried out for the first time. We have obtained basic integrated characteristics of the galaxies and determined their morphological types (S0 for NGC 304 and Sa for NGC 7625). The absolute magnitudes of the galaxies, M B = ?20m.81 for NGC 304 and M B = ?19m.34 for NGC7625, are indicative of their fairly high luminosities. The disk and bulge parameters have been determined forNGC 304 (µ0 = 20m.60, h = 3.86 kpc, µ e = 21m.59, r e = 1.26 kpc in the B band); these correspond to the parameters of S0-type objects. The rotation velocity for NGC 304 (200 km s?1) reaches its maximum at a galactocentric distance of 3.1 kpc, which yields a mass estimate for the galaxy of 2.8 × 1010 \(\mathcal{M}_ \odot \). The observed photometric features at the center of NGC 304 indicate that it may have an inner ring structure, although we have failed to confirm the existence of two kinematic systems based on our spectroscopic observations. In NGC 7625, the disk makes a dominant contribution to the total brightness. The derived integrated color indices (B-V = 0m.81 and V-R = 0m.61) agree with previous determinations of other authors. We have estimated the учештсешщт in the inner galactic regions. In the outer regions, we have detected structures with bluer colors (B-V = 0m.60), which may be indicative of a polar ring with a minor stellar component.  相似文献   

13.
We obtained U BV R photometric and spectroscopic observations during the outburst of V838 Mon. Before its outburst, the B brightness of the star had been stable ( $\tilde15.^m 85$ ) for 45 years. This was a blue star with the color index $(B - V)_0 = - 0\mathop .\limits^m 03 \pm 0\mathop .\limits^m 1$ and may have been a cataclysmic variable. In the middle of March 2002, the outburst amplitude reached $8\mathop .\limits^m 1$ in B. The star has the counterpart V 1006/7 in M 31 in luminosity at maximum and in spectrum. The unusual spectrum at the premaximum stage originated in the expanding photosphere of a cool K-type giant. The expansion velocity of the photosphere was 150 km s?1; the maximum velocity in the expanding stellar envelope reached 500 km s?1. The absorption components of neutral metal lines were enhanced by a factor of 3 or 4 compared to a normal K-type star. No overabundance of s-process elements was found. One day before the brightness peak, an intense Hα emission line with broad wings, FWZI=3100 km s?1, and numerous lines of ionized metals appeared in V838 Mon, which is characteristic of normal classical novae. We show light, color, and spectral variations of the object.  相似文献   

14.
We present the results of our UBV and JHKLM photometry for the semiregular pulsating variable V1027 Cyg, a supergiant with an infrared excess, over the period from 1997 to 2015 (UBV) and in 2009–2015 (JHKLM). Together with the new data, we analyze the photometric observations of V1027 Cyg that we have obtained and published previously. Our search for a periodicity in the UBV brightness variations has led to several periods from P = 212d to 320d in different time intervals. We have found the period P = 237d based on our infrared photometry. The variability amplitude, the lightcurve shape, and themagnitude of V1027 Cyg atmaximum light change noticeably from cycle to cycle. The deepest minimum was observed in 2011, when the amplitudes of brightness variations in the star reached the following values: ΔU = 1 . m 28, ΔB = 1 . m 10, ΔV = 1 . m 05, ΔJ = 0 . m 30, ΔH = 0 . m 35, ΔK = 0 . m 32, ΔL = 0 . m 26, and ΔM = 0 . m 10. An ambiguous correlation of the B ? V and U ? B colors with the brightness has been revealed. For example, a noticeable bluing of the star was observed during the deep 1992, 2008, and 2011 minima, while the variations with smaller amplitudes show an increase in B ? V at the photometric minima. The spectral energy distribution for V1027 Cyg from our photometry in the range 0.36 (U)–5.0 (M) μm corresponds to spectral types from G8I to K3I at different phases of the pulsation cycle. Low-resolution spectra of V1027 Cyg in the range λ4400–9200 ?A were taken during 16 nights over the period 1995–2015. At the 1995 and 2011 photometric minima the star’s spectrum exhibited molecular TiO bands whose intensity corresponded to spectral types M0–M1, while the photometric data point to a considerably earlier spectral type. We hypothesize that the TiO bands are formed in the upper layers of the extended stellar atmosphere. We have measured the equivalent widths of the strongest absorption lines, in particular, the infrared Ca II triplet in the spectrum of V1027 Cyg. The calcium triplet (Ca T) with W λ(Ca T) = 20.3 ± 1.8 ?A as a luminosity indicator for supergiants places V1027 Cyg in the region of the brightest G–K supergiants. V1027 Cyg has been identified with the infrared source IRAS 20004+2955 and is currently believed to be a candidate for post-AGB stars. The evolutionary status of the star and its difference from other post-AGB objects are discussed.  相似文献   

15.
We present our photoelectric U BV observations of the candidate protoplanetary object IRAS 22223+4327 during four visibility seasons. The star exhibited periodic brightness variations with the maximum amplitudes \(\Delta U = 0\mathop .\limits^m 23, \Delta B = 0\mathop .\limits^m 18, and \Delta V = 0\mathop .\limits^m 12\) and a time scale of about 90 days, which is equal to the period derived by other authors from radial velocities. During these brightness variations, a correlation is observed between the (B-V) color index and brightness, which is characteristic of pulsations. We estimated the star’s spectral type from our photometric data to be F8 I. We detected a “deficit” of light in the U band. The star’s mean brightness and its spectral type appear to have not changed in the past half a century.  相似文献   

16.
We analyzed the X-ray data obtained by the Chandra telescope for the galaxy cluster CL0024+17 (z = 0.39). The mean temperature of the cluster is estimated (kT = 4.35 ?0.44 +0.51 keV) and the surface brightness profile is derived. We generated the mass and density profiles for dark matter and gas using numerical simulations and the Navarro-Frenk-White dark matter density profile (Navarro et al., 1995) for a spherically symmetric cluster in which gas is in hydrostatic equilibrium with the cluster field. The total mass of the cluster is estimated to be M 200 = 3.51 ?0.47 +0.38 × 10 Sun 14 within a radius of R 200 = 1.24 ?0.17 +0.12 Mpc of the cluster center. The contribution of dark matter to the total mass of the cluster is estimated as ${{M_{200_{DM} } } \mathord{\left/ {\vphantom {{M_{200_{DM} } } {M_{tot} }}} \right. \kern-0em} {M_{tot} }} = 0.89$ .  相似文献   

17.
We present the results of magnetic field measurements of four chemically peculiar (CP) stars with helium abundance anomalies which are the members of the Orion stellar association OB1. The stars under study were classified as magnetic by other authors earlier. The present paper contains the results of the extensive study of the stars. Magnetic field measurements allowed us to conclude that HD36540 has a weak field and the longitudinal component B e does not exceed 500 G. The longitudinal field of HD36668 varies with the period P = 2. d 11884 and the amplitude from ?2 to +2 kG. The magnetic field of HD36916 has mainly negative polarity and varies within the range from 0 to ?1 kG with the period P = 1.d 565238. HD37058 is a magnetic star, the longitudinal field of which varies from ?1.2 to +0.8 kG with the period P = 14. d 659. The B e field variability pattern for the stars HD36916 and HD37058 is of a simple harmonic type. The longitudinal field of HD36668 is best described with two combined harmonic functions (“a doublewave”). The variability period of HD36540 is still undetermined. For all the stars from this paper, we measured radial velocities V r, axial rotation rates v e sin i, and determined basic parameters of atmospheres (effective temperatures T eff and gravity acceleration log g). We also estimated masses M, luminosities L, and radii R of the stars.  相似文献   

18.
19.
The high-mass star-forming region IRAS 17333-3606 has been mapped in the 13CO (J = 2–1) and C18O (J = 2–1) lines in the submillimeter wavelength range using the APEX (Chile) radio telescope. The analysis of the low-velocity part of the molecular outflow has been carried out, and the main parameters of the outflow have been determined. We have used a novel approach for calculating parameters of the low-velocity part of bipolar molecular outflows in molecular clouds. The approach excludes the influence of the surrounding cloud on the parameters of the outflow. The mass of the low-velocity part is much greater than that of the high-velocity part of the molecular outflow, while their energies are comparable. The core of the young stellar object is significantly deformed by the impact of the bipolar outflow.  相似文献   

20.
In this study we investigated the effects of external trigger on the characteristics of young stellar objects (YSOs) associated with cometary globules (CGs). We made optical spectroscopy of stars associated with star-forming CGs. We find that the masses of the most massive stars associated with CGs are correlated with the masses of the parent cloud but they are systematically larger than expected for clouds of similar mass from the relation M max-star=0.33M cl 0.43 given by Larson (Mon. Not. R. Astron. Soc. 200:159, 1982). We have also estimated the luminosities of the IRAS sources found associated with CGs as a function of cloud mass and then compared them with those of the IRAS sources found associated with isolated opacity class 6 clouds (isolated and relatively away from large star forming regions). We find that the luminosities of IRAS sources associated with CGs are larger than those of the opacity class 6 clouds. These findings support results from recent simulations in which it was shown that the Radiation Driven Implosion (RDI) process, believed to be responsible for the cometary morphology and star formation, can increase the luminosity 1–2 orders of magnitudes higher than those of protostars formed without external triggering due to an increase in accretion rates. Thus implying that the massive stars can have profound influence on the star formation in clouds located in their vicinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号