首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
国际海啸预警系统(ITWS)   总被引:5,自引:2,他引:5  
介绍了国际海啸预警系统的构成、地震与海啸信息的检测、海啸预警信息的发布,并介绍了太平洋海啸预警中心和阿拉斯加海啸预警中心。  相似文献   

2.
Operational prediction of near-field tsunamis in all existing Tsunami Warning Systems (TWSs) is based on fast determination of the position and size of submarine earthquakes. Exceedance of earthquake magnitude above some established threshold value, which can vary over different tsunamigenic zones, results in issuing a warning signal. Usually, a warning message has several (from 2 to 5) grades reflecting the degree of tsunami danger and sometimes contains expected wave heights at the coast. Current operational methodology is based on two main assumptions: (1) submarine earthquakes above some threshold magnitude can generate dangerous tsunamis and (2) the height of a resultant tsunami is, in general, proportional to the earthquake magnitude. While both assumptions are physically reasonable and generally correct, statistics of issued warnings are far from being satisfactory. For the last 55 years, up to 75% of warnings for regional tsunamis have turned out to be false, while each TWS has had at least a few cases of missing dangerous tsunamis. This paper presents the results of investigating the actual dependence of tsunami intensity on earthquake magnitude as it can be retrieved from historical observations and discusses the degree of correspondence of the above assumptions to real observations. Tsunami intensity, based on the Soloviev-Imamura scale is used as a measure of tsunami “size”. Its correlation with the M s and M w magnitudes is investigated based on historical data available for the instrumental period of observations (from 1900 to present).  相似文献   

3.
On November 15, 2006, Crescent City in Del Norte County, California was hit by a tsunami generated by a M w 8.3 earthquake in the central Kuril Islands. Strong currents that persisted over an eight-hour period damaged floating docks and several boats and caused an estimated $9.2 million in losses. Initial tsunami alert bulletins issued by the West Coast Alaska Tsunami Warning Center (WCATWC) in Palmer, Alaska were cancelled about three and a half hours after the earthquake, nearly five hours before the first surges reached Crescent City. The largest amplitude wave, 1.76-meter peak to trough, was the sixth cycle and arrived over two hours after the first wave. Strong currents estimated at over 10 knots, damaged or destroyed three docks and caused cracks in most of the remaining docks. As a result of the November 15 event, WCATWC changed the definition of Advisory from a region-wide alert bulletin meaning that a potential tsunami is 6 hours or further away to a localized alert that tsunami water heights may approach warning- level thresholds in specific, vulnerable locations like Crescent City. On January 13, 2007 a similar Kuril event occurred and hourly conferences between the warning center and regional weather forecasts were held with a considerable improvement in the flow of information to local coastal jurisdictions. The event highlighted the vulnerability of harbors from a relatively modest tsunami and underscored the need to improve public education regarding the duration of the tsunami hazards, improve dialog between tsunami warning centers and local jurisdictions, and better understand the currents produced by tsunamis in harbors.  相似文献   

4.
We describe a fully automated seismic event detection and location system, providing for real-time estimates of the epicentral parameters of both local and distant earthquakes. The system uses 12 telemetered short-period stations, with a regional aperture of 350 km, as well as two 3-component broad-band stations. Detection and location of teleseismic events is achieved independently and concurrently on the short-period and long-period channels. The long-period data is then used to obtain an estimate of the seismic momentM 0 of the earthquake through the mantle magnitudeM m, as introduced byOkal andTalandier (1989). In turn, this estimate ofM 0 is used to infer the expected tsunami amplitude at Papeete, within 15 minutes of the recording of Rayleigh waves. The performance of the method is discussed in terms of the accuracy of the epicentral parameters and seismic moment obtained in real time, as compared to the values later published by the reporting agencies. Our estimates are usually within 3 degrees of the reported epicenter, and the standard deviation on the seismic moment only 0.19 unit of magnitude for a population of 154 teleseismic events.  相似文献   

5.
The destructive Pacific Ocean tsunami generated off the east coast of Honshu, Japan, on 11 March 2011 prompted the West Coast and Alaska Tsunami Warning Center (WCATWC) to issue a tsunami warning and advisory for the coastal regions of Alaska, British Columbia, Washington, Oregon, and California. Estimating the length of time the warning or advisory would remain in effect proved difficult. To address this problem, the WCATWC developed a technique to estimate the amplitude decay of a tsunami recorded at tide stations within the Warning Center’s Area of Responsibly (AOR). At many sites along the West Coast of North America, the tsunami wave amplitudes will decay exponentially following the arrival of the maximum wave (Mofjeld et al., Nat Hazards 22:71–89, 2000). To estimate the time it will take before wave amplitudes drop to safe levels, the real-time tide gauge data are filtered to remove the effects of tidal variations. The analytic envelope is computed and a 2 h sequence of amplitude values following the tsunami peak is used to obtain a least squares fit to an exponential function. This yields a decay curve which is then combined with an average West Coast decay function to provide an initial tsunami amplitude-duration forecast. This information may then be provided to emergency managers to assist with response planning.  相似文献   

6.
2017年8月8日四川省九寨沟县发生MS7.0地震,成都地震基准台距此次地震震中约255km,震前该台地磁谐波振幅比出现趋势性异常。对成都台GM4磁通门磁力仪秒数据进行谐波振幅比计算,结果显示,谐波振幅比在九寨沟MS7.0地震前表现出下降—转折—恢复上升的异常变化形态,地震发生在异常恢复期,同时,异常表现出由长周期向短周期迁移、SN向与EW向变化不同步的特征,芦山MS7.0地震前成都台地磁谐波振幅比亦呈现了相似的异常变化特征。  相似文献   

7.
The 1994 Shikotan earthquake tsunamis   总被引:1,自引:0,他引:1  
The 1994 Shikotan earthquake was one of the greatest earthquakes in recent years with a magnitude ofM s 8.0. A tsunami survey was conducted by Russian and U.S. geophysicists from October 16–30, 1994, less than two weeks after the earthquake. The survey results and a numerical hindcast simulation are reported. Tsunami focusing effect at locations supposedly sheltered by the island chain is discussed. Based on the obtained data, tsunamis which attacked Shikotan Island are characterized as long waves (the order of 10–20 min wave period) with a positive leading wave. Possible consequences of the positive leading wave form are discussed in relation to the observed minimal destruction of beach vegetation and relatively small transport of marine sediment onto the shore. The high-quality tide-gage record in Malokurilskaya Bay indicates the occurrence of a 53 cm subsidence at the site.  相似文献   

8.
Based on the tsunami data in the Central American region, the regional characteristic of tsunami magnitude scales is discussed in relation to earthquake magnitudes during the period from 1900 to 1993. Tsunami magnitudes on the Imamura-Iida scale of the 1985 Mexico and 1992 Nicaragua tsunamis are determined to bem=2.5, judging from the tsunami height-distance diagram. The magnitude values of the Central American tsunamis are relatively small compared to earthquakes with similar size in other regions. However, there are a few large tsunamis generated by low-frequency earthquakes such as the 1992 Nicaragua earthquake. Inundation heights of these unusual tsunamis are about 10 times higher than those of normal tsunamis for the same earthquake magnitude (M s =6.9–7.2). The Central American tsunamis having magnitudem>1 have been observed by the Japanese tide stations, but the effect of directivity toward Japan is very small compared to that of the South American tsunamis.  相似文献   

9.
葡萄牙破坏性地震和海啸预警系统(DETWS)   总被引:3,自引:0,他引:3  
本文介绍了葡萄牙破坏性地震和海啸预警系统(Destructive Earthquakes and Tsunami Warning System)的构成、地震与海啸信息的检测、海啸预警信息的发布。  相似文献   

10.
The Mw = 9.3 megathrust earthquake of December 26, 2004 off the northwest coast of Sumatra in the Indian Ocean generated a catastrophic tsunami that was recorded by a large number of tide gauges throughout the World Ocean. Part 1 of our study of this event examines tide gauge measurements from the Indian Ocean region, at sites located from a few hundred to several thousand kilometers from the source area. Statistical characteristics of the tsunami waves, including wave height, duration, and arrival time, are determined, along with spectral properties of the tsunami records.  相似文献   

11.
On 15 July 2009, a Mw 7.8 earthquake occurred off the New Zealand coast, which by serendipitous coincidence occurred while the International Tsunami Symposium was in session in Novosibirsk, Russia. The earthquake generated a tsunami that propagated across the Tasman Sea and was detected in New Zealand, Australia and as far away as the US West coast. Small boats close to the epicenter were placed in jeopardy, but no significant damage was observed despite a measured run-up height of 2.3 m in one of the Sounds in close proximity to the source (Wilson in GNS Science Report 46:62 2009). Peak-to-trough tsunami heights of 55 cm were measured at Southport, Tasmania and a height of 1 m was measured in Jackson Bay, New Zealand. The International Tsunami Symposium provided an ideal venue for illustration of the value of immediate real-time assessment and provided an opportunity to further validate the real time forecasting capabilities with the scientific community in attendance. A number of agencies with responsibility for tsunami forecast and/or warning, such as the NOAA Center for Tsunami Research, the Pacific Tsunami Warning Center, GNS Science in New Zealand, the Australian Bureau of Meteorology and the European Commission Joint Research Centre were all represented at the meeting and were able to demonstrate the use of state of the art numerical models to assess the tsunami potential and provide warning as appropriate.  相似文献   

12.
Twin Tsunamis Triggered by the 12 January 2010 Haiti Earthquake   总被引:2,自引:0,他引:2  
On 12 January 2010, a magnitude M w 7.0 earthquake occurred 25 km west–southwest of Haiti’s capital Port-au-Prince causing an estimated 316,000 fatalities, thereby exceeding any previous loss of life from a similar size earthquake. In addition, tsunami waves triggered by the earthquake caused at least three fatalities at Petit Paradis due to a complete lack of tsunami awareness. The International Tsunami Survey Team (ITST) was deployed within weeks of the event and covered the greater Bay of Port-au-Prince and more than 100 km of Hispaniola’s southern coastline. The collected survey data include more than 21 tsunami heights along with observations of coastal land level change. Maximum tsunami heights of 3 m have been measured for two independently triggered tsunamis.  相似文献   

13.
简要介绍了南中国海区域海啸预警与减灾系统的建设和发展历程,同时重点阐述了地震监测系统构成及其基本功能。作为重要组成部分,地震监测系统通过地震数据的实时汇集、存储、自动处理和分析,并结合人机交互方式实现了地震定位、震源机制解和有限断层模型反演。实际应用表明,地震监测系统对全球6.0级以上地震定位时间不超过8 min,在震后10—15 min内完成W震相方法快速反演海底强震震源机制解,在震后短时间内完成有限断层模型反演,为海啸预警提供快速、准确、可靠的地震基本参数和震源特征参数。   相似文献   

14.
A numerical model of the wave dynamics in Chenega Cove, Alaska during the historic M w 9.2 megathrust earthquake is presented. During the earthquake, locally generated waves of unknown origin were identified at the village of Chenega, located in the western part of Prince William Sound. The waves appeared shortly after the shaking began and swept away most of the buildings while the shaking continued. We model the tectonic tsunami in Chenega Cove assuming different tsunami generation processes. Modeled results are compared with eyewitness reports and an observed runup. Results of the numerical experiments let us claim the importance of including both vertical and horizontal displacement into the 1964 tsunami generation process. We also present an explanation for the fact that arrivals of later waves in Chenega were unnoticed.  相似文献   

15.
The Hokkaido-Nansei-Oki earthquake (M w 7.7) of July 12, 1993, is one of the largest tsunamigenic events in the Sea of Japan. The tsunami magnitudeM t is determined to be 8.1 from the maximum amplitudes of the tsunami recorded on tide gauges. This value is larger thanM w by 0.4 units. It is suggested that the tsunami potential of the Nansei-Oki earthquake is large forM w . A number of tsunami runup data are accumulated for a total range of about 1000 km along the coast, and the data are averaged to obtain the local mean heightsH n for 23 segments in intervals of about 40 km each. The geographic variation ofH n is approximately explained in terms of the empirical relationship proposed byAbe (1989, 1993). The height prediction from the available earthquake magnitudes ranges from 5.0–8.4 m, which brackets the observed maximum ofH n , 7.7 m, at Okushiri Island.  相似文献   

16.
We studied the long-period ground motions in the Osaka sedimentary basin, Japan, which contains a 1- to 3-km thickness of sediments and is the site of many buildings or construction structures with long-natural period. We simulated the broadband ground motions likely to be produced by the hypothetical Nankai earthquake: the earthquake expected to give rise to the most severe long-period ground motion within the basin. For the simulation, we constructed multiscale heterogeneous source models based on the Central Disaster Management Council of Japan (CDMC) source model and adopted a hybrid computation method in which long-period motion and short-period motion are computed using a 3-D finite difference method and the stochastic Green’s function method, respectively. In computing long-period motions, we used a 3-D structure model of the crust and the Osaka sedimentary basin. The ground motions are estimated to have peak velocities of 50–90 cm/s, prolonged durations exceeding 300 s, and long predominant periods of 5–10 s in the area with great thickness of sediments. The predominant periods are in agreement with an approximate evaluation by 4 H/V s where H and V s are the thickness of the sediment and the average S wave velocity, respectively.  相似文献   

17.
M TSU : Recovering Seismic Moments from Tsunameter Records   总被引:1,自引:0,他引:1  
We define a new magnitude scale, MTSU, allowing the quantification of the seismic moment M0 of an earthquake based on recordings of its tsunami in the far field by ocean-bottom pressure sensors (``tsunameters') deployed in ocean basins, far from continental or island shores which are known to affect profoundly and in a nonlinear fashion the amplitude of the tsunami wave. The formula for MTSU, MTSU = log10 M0 − 20 = log10 X (ω) + CDTSU + CSTSU + C0, where X (ω) is the spectral amplitude of the tsunami, CDTSU a distance correction and CSTSU a source correction, is directly adapted from the mantle magnitude Mm introduced for seismic surface waves by Okal and Talandier. Like Mm, its corrections are fully justified theoretically based on the representation of a tsunami wave as a branch of the Earth's normal modes. Even the locking constant C0, which may depend on the nature of the recording (surface amplitude of the tsunami or overpressure at the ocean floor) and its units, is predicted theoretically. MTSU combines the power of a theoretically developed algorithm, with the robustness of a magnitude measurement that does not take into account such parameters as focal geometry and exact depth, which may not be available under operational conditions in the framework of tsunami warning. We verify the performance of the concept on simulations of the great 1946 Aleutian tsunami at two virtual gauges, and then apply the algorithm to 24 records of 7 tsunamis at DART tsunameters during the years 1994–2003. We find that MTSU generally recovers the seismic moment M0 within 0.2 logarithmic units, even under unfavorable conditions such as excessive focal depth and refraction of the tsunami wave around continental masses. Finally, we apply the algorithm to the JASON satellite trace obtained over the Bay of Bengal during the 2004 Sumatra tsunami, after transforming the trace into a time series through a simple ad hoc procedure. Results are surprisingly good, with most estimates of the moment being over 1029 dyn-cm, and thus identifying the source as an exceptionally large earthquake.  相似文献   

18.
Anomalous earthquakes such as creep events, tsunami earthquakes and silent earthquakes have been reported in the recent literature. In this paper we discuss an anomalous “slow earthquake” that occurred on June 6, 1960 in southern Chile. Although the surface-wave magnitude of this event is only 6.9, it excited anomalously large long-period multiple surface waves with a seismic moment of 5.6 · 1027 dyn cm. The Benioff long-period seismogram of this earthquake recorded at Pasadena shows an extremely long, about 1.5–2 h coda of Rayleigh waves, with a period of 10–25 s. The coda length for other events with a comparable magnitude which occurred in the same region is about 10 min. This observation suggests that the long coda length is due to a long source rupture process which lasted at least 1 h. Although at least 15 distinct events can be identified in the coda, no short-period body waves were recorded corresponding to these, except for the first one. These results suggest that a relatively small (Ms ? 6.9) earthquake triggered a series of slow events; the duration of the whole sequence being longer than 1 h. This event probably occurred on a transform fault on the extension of the Chile Rise and provides important information regarding the nature of the transform fault.  相似文献   

19.
The M w=9.3 megathrust earthquake of December 26, 2004 off the coast of Sumatra in the Indian Ocean generated a catastrophic tsunami that caused widespread damage in coastal areas and left more than 226,000 people dead or missing. The Sumatra tsunami was accurately recorded by a large number of tide gauges throughout the world's oceans. This paper examines the amplitudes, frequencies and wave train structure of tsunami waves recorded by tide gauges located more than 20,000 km from the source area along the Pacific and Atlantic coasts of North America.  相似文献   

20.
We use a viscous slide model of Jiang and LeBlond (1994) coupled with nonlinear shallow water equations to study tsunami waves in Resurrection Bay, in south-central Alaska. The town of Seward, located at the head of Resurrection Bay, was hit hard by both tectonic and local landslide-generated tsunami waves during the M W 9.2 1964 earthquake with an epicenter located about 150 km northeast of Seward. Recent studies have estimated the total volume of underwater slide material that moved in Resurrection Bay during the earthquake to be about 211 million m3. Resurrection Bay is a glacial fjord with large tidal ranges and sediments accumulating on steep underwater slopes at a high rate. Also, it is located in a seismically active region above the Aleutian megathrust. All these factors make the town vulnerable to locally generated waves produced by underwater slope failures. Therefore it is crucial to assess the tsunami hazard related to local landslide-generated tsunamis in Resurrection Bay in order to conduct comprehensive tsunami inundation mapping at Seward. We use numerical modeling to recreate the landslides and tsunami waves of the 1964 earthquake to test the hypothesis that the local tsunami in Resurrection Bay has been produced by a number of different slope failures. We find that numerical results are in good agreement with the observational data, and the model could be employed to evaluate landslide tsunami hazard in Alaska fjords for the purposes of tsunami hazard mitigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号