首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The preparation and characterisation of four chromium ore reference materials are described in this paper. The sample material for GCr‐1, GCr‐3 and GCr‐4 was collected from chromite deposits in Tibet, Qinghai province and Inner Mongolia. GCr‐2 is a composite sample from GCr‐1 and GCr‐4. Sample homogeneity was tested by WD‐XRF and the relative standard deviations were < 1.0%. An F‐test showed that all four materials were homogeneous. Thirteen laboratories involved in the inter‐laboratory programme provided 672 determinations (eighteen oxides and elements). Sixteen components were characterised as certified values, of which Cr2O3 ranged from 17.59 to 57.80% m/m. The contents of FeO and CO2 were taken as reference values.  相似文献   

2.
The preparation and characterisation of certified reference materials of four selenium‐rich rocks (GBW07397 to GBW07400) are described in this paper. The raw materials were derived from selenium‐rich rocks in two famous seleniferous regions, Enshi Prefecture, Hubei Province and Ziyang County, Shaanxi Province, China. Sample homogeneity and stability were tested by inductively coupled plasma‐mass spectrometry and atomic fluorescence spectrometry. The determined element mass fractions included selenium, arsenic, copper, zinc, molybdenum, cadmium, lead, vanadium and silver. Except for silver, the results of analysis of variance (ANOVA) and the relative standard deviations of the element mass fractions showed that the four materials exhibited good homogeneity and stability. Ten laboratories were involved in an interlaboratory comparison scheme for certification. Eight element mass fractions in the selenium‐rich rocks were assigned as certified values, while only indicative values were obtained for Ag mass fractions. The certified values and expanded uncertainties for the selenium mass fractions in GBW07397–GBW07400 are 0.96 ± 0.05, 1.03 ± 0.05, 49 ± 4 and 38.5 ± 1.9 μg g?1, respectively.  相似文献   

3.
Two Co‐rich seamount crust reference materials, MCPt‐1 and MCPt‐2, were prepared using ultra‐fine particle size milling technique and characterised for the platinum‐group elements (PGEs). The raw material for these two reference materials was collected separately from the Magellan seamounts of the western Pacific Ocean and the seamounts of the central Pacific Ocean by Russian and Chinese scientists. First, they were ground by ball mill to a ?200 mesh powder, then further processed by ultra‐fine jet mill and well‐mixed. The particle size distributions of the samples were tested by a laser particle analyser; the average particle size was 1.8 and 1.5 μm (equal to about 2000 mesh) respectively. The homogeneity of six major and minor elements in these two materials was tested at the milligram level of sampling mass by high‐precision wavelength dispersive X‐ray fluorescence (XRF) spectrometry and at the microgram level of sampling mass by electron probe microanalyser. The homogeneity of more than forty trace elements, including Pt, was tested at the microgram level of sampling mass by LA‐ICP‐MS. Except for Rh, all PGEs were determined by isotope dilution‐ICP‐MS. Platinum in MCPt‐1 and MCPt‐2 was characterised as certified values, whereas the other five PGEs in MCPt‐1 and MCPt‐2 were reported as reference values. In addition, the information values of sixty‐two major, minor and trace elements were obtained by XRF, ICP‐AES and ICP‐MS. The minimum sampling mass for the determination of PGEs was 1 g, while the minimum sampling mass for the determination of the other elements was 2–5 mg.  相似文献   

4.
Trace element concentrations in gold grains from various geological units in South Africa were measured in situ by field emission‐electron probe microanalysis (FE‐EPMA), laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) and synchrotron micro X‐ray fluorescence spectroscopy (SR‐μ‐XRF). This study assesses the accuracy, precision and detection limits of these mostly non‐destructive analytical methods using certified reference materials and discusses their application in natural sample measurement. FE‐EPMA point analyses yielded reproducible and discernible concentrations for Au and trace concentrations of S, Cu, Ti, Hg, Fe and Ni, with detection limits well below the actual concentrations in the gold. LA‐ICP‐MS analyses required larger gold particles (> 60 μm) to avoid contamination during measurement. Elements that measured above detection limits included Ag, Cu, Ti, Fe, Pt, Pd, Mn, Cr, Ni, Sn, Hg, Pb, As and Te, which can be used for geochemical characterisation and gold fingerprinting. Although LA‐ICP‐MS measurements had lower detection limits, precision was lower than FE‐EPMA and SR‐μ‐XRF. The higher variability in absolute values measured by LA‐ICP‐MS, possibly due to micro‐inclusions, had to be critically assessed. Non‐destructive point analyses of gold alloys by SR‐μ‐XRF revealed Ag, Fe, Cu, Ni, Pb, Ti, Sb, U, Cr, Co, As, Y and Zr in the various gold samples. Detection limits were mostly lower than those for elements measured by FE‐EPMA, but higher than those for elements measured by LA‐ICP‐MS.  相似文献   

5.
LA‐ICP‐MS is one of the most promising techniques for in situ analysis of geological and environmental samples. However, there are some limitations with respect to measurement accuracy, in particular for volatile and siderophile/chalcophile elements, when using non‐matrix‐matched calibration. We therefore investigated matrix‐related effects with a new 200 nm femtosecond (fs) laser ablation system (NWRFemto200) using reference materials with different matrices and spot sizes from 10 to 55 μm. We also performed similar experiments with two nanosecond (ns) lasers, a 193 nm excimer (ESI NWR 193) and a 213 nm Nd:YAG (NWR UP‐213) laser. The ion intensity of the 200 nm fs laser ablation was much lower than that of the 213 nm Nd:YAG laser, because the ablation rate was a factor of about 30 lower. Our experiments did not show significant matrix dependency with the 200 nm fs laser. Therefore, a non‐matrix‐matched calibration for the multi‐element analysis of quite different matrices could be performed. This is demonstrated with analytical results from twenty‐two international synthetic silicate glass, geological glass, mineral, phosphate and carbonate reference materials. Calibration was performed with the certified NIST SRM 610 glass, exclusively. Within overall analytical uncertainties, the 200 nm fs LA‐ICP‐MS data agreed with available reference values.  相似文献   

6.
Isotope dilution (ID) mass spectrometry is a primary method of analysis suited for the accurate and precise measurement of several trace elements in geological matrices. Here we present mass fractions and respective uncertainties for Cr, Cu, Ni, Sn, Sr and Zn in 10 silicate rock reference materials (BCR‐2, BRP‐1, BIR‐1, OU‐6, GSP‐2, GSR‐1, AGV‐1, RGM‐1, RGM‐2 and G‐3) obtained by the double ID technique and measuring the isotope ratios with an inductively coupled plasma‐mass spectrometer equipped with collision cell. Test portions of the samples were dissolved by validated procedures, and no further matrix separation was applied. Addition of spikes was designed to achieve isotope ratios close to unity to minimise error magnification factors, according to the ID theory. Radiogenic ingrowth of 87Sr from the decay of 87Rb was considered in the calculation of Sr mass fractions. The mean values of our results mostly agree with reference values, considering both uncertainties at the 95% confidence level, and also with ID data published for AGV‐1. Considering all results, the means of the combined uncertainties were < 1% for Sr, approximately 2% for Sn and Cu, 4% for Cr and Ni and almost 6% for Zn.  相似文献   

7.
Assigned values derived from the GeoPT proficiency testing programme were compared with certified values for six certified reference materials that have been used as test materials in the GeoPT programme. Statistical analysis showed that there were few significant differences between these sets of data and that these differences had no significant impact on the GeoPT assessment when fitness‐for‐purpose criteria were taken into account.  相似文献   

8.
This work presents data for the radiogenic Pb isotopic ratios (206Pb/207Pb and 208Pb/206Pb) in nine biogenic certified reference materials (NIST SRM 1515, 1566b, 1570a, 1573a, 1575a; BCR 100, BCR 101, BCR 670 and IAEA 359), which are suitable for analytical quality control in environmental research. The results were obtained using three different types of ICP‐based mass spectrometer (quadrupole‐based/magnetic sector field single‐collector ICP‐MS instruments and a multi‐collector ICP‐MS) and applying different mass bias correction procedures (calibrator‐sample bracketing and external Tl normalisation) with and without Pb separation from the matrix using ion exchange chromatography. In the majority of the samples, the measurements from all three of the ICP‐MS instruments were in agreement within ± 0.1%, despite the lower analytical precision of the single‐collector ICP‐MS instruments. We demonstrate that the presence of the sample matrix did not significantly influence the Pb isotopic ratios measured by magnetic sector field ICP‐MS, whereas the use of the two different mass bias corrections resulted in a systematic difference of 0.09% for the 208Pb/206Pb ratio.  相似文献   

9.
Magnesium isotopic compositions are reported for twenty‐four international geological reference materials including igneous, metamorphic and sedimentary rocks, as well as phlogopite and serpentine minerals. The long‐term reproducibility of Mg isotopic determination, based on 4‐year analyses of olivine and seawater samples, was ≤ 0.07‰ (2s) for δ26Mg and ≤ 0.05‰ (2s) for δ25Mg. Accuracy was tested by analysis of synthetic reference materials down to the quoted long‐term reproducibility. This comprehensive dataset, plus seawater data produced in the same laboratory, serves as a reference for quality assurance and inter‐laboratory comparison of high‐precision Mg isotopic data.  相似文献   

10.
With implications for the origin of ore deposits, redox state of the atmosphere, and effects of volcanic outgassing, understanding the sulfur cycle is vital to our investigation of Earth processes. However, the paucity of sulfur concentration measurements in silicate rocks and the lack of well‐calibrated reference materials with concentrations relevant to the rocks of interest have hindered such investigations. To aid in this endeavour, this study details a new method to determine sulfur concentration via high mass resolution solution inductively coupled plasma‐mass spectrometry (ICP‐MS). The method is based on an aqua regia leach, involving relatively rapid sample preparation and analysis, and uses small test portion masses (< 50 mg). We utilised two independently prepared standard solutions to calibrate the analyses, resulting in 4% accuracy, and applied the method to eight geochemical reference materials. Measurements were reproducible to within ~ 10%. Sulfur concentrations and isotopes of six reference materials were measured additionally by elemental analyser‐combustion‐isotope ratio mass spectrometry to independently evaluate the accuracy of the ICP‐MS method. Reference materials that yielded reproducible measurements identical to published values from other laboratories (JGb‐1, JGb‐2 and MAG‐1) are considered useful materials for the measurement of sulfur. Reference materials that varied between studies but were reproducible for a given test portion perhaps suffer from sample heterogeneity and are not recommended as sulfur reference materials.  相似文献   

11.
Due to intensive research into selenium isotopes in recent years, the increasing requirement for reliable and comparable measurement results has created a strong demand for selenium isotopic certified reference materials (iCRM) that were previously not available. To address this, eleven selenium iCRMs were developed, including ten synthetic iCRMs (GBW 04447–GBW 04456) and one natural iCRM (GBW 04457). The synthetic iCRMs were prepared with 76Se, 78Se, 80Se and 82Se solutions and a natural selenium solution; the natural iCRM was prepared with highly pure selenium material. The property values of isotope ratios in these iCRMs were certified by calibrated mass spectrometry with a collision cell multi‐collector ICP‐MS. The mass discrimination effect of the instrument was corrected with corresponding 78Se/76Se isotope mixtures and 82Se/76Se isotope mixtures, which were gravimetrically prepared with purified, isotopically enriched selenium materials. Homogeneity and stability tests were performed, and no significant influences were found. The uncertainty of the property values of the iCRMs was evaluated according to the Guide to the Expression of Uncertainty in Measurement (GUM) of ISO/BIPM and ISO Guide 35. The δ82/76Se value of GBW 04457 relative to NIST SRM 3149 was also calculated. These iCRMs are intended for use in calibration of instruments and evaluation of methods for the determination of selenium isotope ratios.  相似文献   

12.
In this study the homogeneity of the zinc isotopic composition in the NIST SRM 683 reference material was examined by measuring the Zn isotopic signature in microdrilled sample powders from two metal nuggets. Zinc was purified using AG MP‐1M resin and then measured by MC‐ICP‐MS. Instrumental mass bias was corrected using the “sample‐standard bracketing” method and empirical external normalisation with Cu doping. After evaluating the potential effects of varying acid mass fractions and different matrices, high‐precision Zn isotope data were obtained with an intermediate measurement precision better than ± 0.05‰ (δ66Zn, 2s) over a period of 5 months. The δ66ZnJMC‐Lyon mean values of eighty‐four and fourteen drilled powders from two nuggets were 0.11 ± 0.02‰ and 0.12 ± 0.02‰, respectively, indicating that NIST SRM 683 is a good isotopic reference material with homogeneous Zn isotopes. The Zn isotopic compositions of seventeen rock reference materials were also determined, and their δ66Zn values were in agreement with most previously published data within 2s. The δ66Zn values of most of the rock reference materials analysed were in the range 0.22–0.36‰, except for GSP‐2 (1.07 ± 0.06‰, n = 12), NOD‐A‐1 (0.96 ± 0.03‰, = 6) and NOD‐P‐1 (0.78 ± 0.03‰, = 6). These comprehensive data should serve as reference values for quality assurance and interlaboratory calibration exercises.  相似文献   

13.
Development of new techniques, enabling simultaneous determination of large numbers of elements in environmental samples, can force analysts to use certified reference materials that do not contain all the elements of interest. In this paper, the mass fractions of forty‐six major and trace elements, including rare earth elements (REE), are presented in one soil (NCS DC 77302 also known as GBW 07410) and five sediment (Metranal‐1, IAEA 405, MESS‐3, NCS DC 73309 also known as GBW 07311 and NCS DC 75301 also known as GBW 07314) certified reference materials determined by high resolution inductively coupled plasma‐mass spectrometry. The selected certified materials represent a spectrum of geological matrices often analysed in environmental studies. Measured elements include certified elements, elements listed with information values as well as new elements absent from certificates, including REEs and some other elements. REE + Y mass fractions in the river sediment reference material Metranal‐1 are reported for the first time. The results obtained are in agreement with available certified or information values.  相似文献   

14.
We present new reference values for nineteen USGS, GSJ and GIT‐IWG rock reference materials that belong to the most accessed samples of the GeoReM database. The determination of the reference values and their uncertainties at the 95% confidence level follows as closely as possible ISO guidelines and the Certification Protocol of the International Association of Geoanalysts. We used analytical data obtained by the state‐of‐the‐art techniques published mainly in the last 20 years and available in GeoReM. The data are grouped into four categories of different levels of metrological confidence, starting with isotope dilution mass spectrometry as a primary method. Data quality was checked by careful investigation of analytical procedures and by the application of the Horwitz function. As a result, we assign a new and more reliable set of reference values and respective uncertainties for major, minor and a large group of trace elements of the nineteen investigated rock reference materials.  相似文献   

15.
Isotopic reference materials are essential to enable reliable and comparable isotope data. In the case of boron only a very limited number of such materials is available, thus preventing adequate quality control of measurement results and validation of analytical procedures. To address this situation a unique set of two boron isotope reference materials (ERM‐AE102a and ‐AE104a) and three offset δ11B reference materials (ERM‐AE120, ‐AE121 and ‐AE122) were produced and certified. The present article describes the production and certification procedure in detail. The isotopic composition of all the materials was adjusted by mixing boron parent solutions enriched in 10B or 11B with a boron parent solution having a natural isotopic composition under full gravimetric control. All parent solutions were analysed for their boron concentration as well as their boron isotopic composition by thermal ionisation mass spectrometry (TIMS) using isotope dilution as the calibration technique. For all five reference materials the isotopic composition obtained on the basis of the gravimetric data agreed very well with the isotopic composition obtained from different TIMS techniques. Stability and homogeneity studies that were performed showed no significant influence on the isotopic composition or on the related uncertainties. The three reference materials ERM‐AE120, ERM‐AE121 and ERM‐AE122 are the first reference materials with natural δ11B values not equal to 0‰. The certified δ11B values are ?20.2‰ for ERM‐AE120, 19.9‰ for ERM‐AE121 and 39.7‰ for ERM‐AE122, each with an expanded uncertainty (k = 2) of 0.6‰. These materials were produced to cover about three‐quarters of the known natural boron isotope variation. The 10B enriched isotope reference materials ERM‐AE102a and ERM‐AE104a were produced for industrial applications utilising 10B for neutron shielding purposes. The certified 10B isotope abundances are 0.29995 for ERM‐AE102a and 0.31488 for ERM‐AE104a with expanded uncertainties (k = 2) of 0.00027 and 0.00028, respectively. Together with the formerly certified ERM‐AE101 and ERM‐AE103 a unique set of four isotope reference materials and three offset δ11B reference materials for boron isotope determination are now available from European Reference Materials.  相似文献   

16.
The double‐spike method with multi‐collector inductively coupled plasma‐mass spectrometry was used to measure the Mo mass fractions and isotopic compositions of a set of geological reference materials including the mineral molybdenite, seawater, coral, as well as igneous and sedimentary rocks. The long‐term reproducibility of the Mo isotopic measurements, based on two‐year analyses of NIST SRM 3134 reference solutions and seawater samples, was ≤ 0.07‰ (two standard deviations, 2s, n = 167) for δ98/95Mo. Accuracy was evaluated by analyses of Atlantic seawater, which yielded a mean δ98/95Mo of 2.03 ± 0.06‰ (2s, n = 30, relative to NIST SRM 3134 = 0‰) and mass fraction of 0.0104 ± 0.0006 μg g?1 (2s, n = 30), which is indistinguishable from seawater samples taken world‐wide and measured in other laboratories. The comprehensive data set presented in this study serves as a reference for quality assurance and interlaboratory comparison of high‐precision Mo mass fractions and isotopic compositions.  相似文献   

17.
Over 1400 electron probe and 700 ion probe microanalyses were performed on eleven mineral separates to evaluate their potential as reference materials for in situ Li isotopic determination. Our results suggest the homogenous distributions of major elements, Li and its isotopes for each sample. Hence, these samples are suitable to be used as reference materials for in situ measurements of Li abundance and Li isotopes by secondary ion mass spectrometry (SIMS) or laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS). These samples have the advantage of mitigating probable matrix effects during calibration owing to the wide range of compositions. The effect of composition on the δ7Li of olivine measured by SIMS is a linear function of composition, with δ7Li increasing by 1.0‰ for each mole per cent decrease in forsterite component.  相似文献   

18.
高钙碳酸盐地质样品中铜镍的测定   总被引:2,自引:1,他引:1  
赵志飞  李丹  李策  汪慧萍 《岩矿测试》2010,29(2):187-189
用电感耦合等离子体质谱法和电感耦合等离子体发射光谱法测定高钙碳酸盐样品中的铜和镍。通过试验分析了高钙碳酸盐样品中钙对铜、镍测定的影响,并确定其影响因子,提出两套检测高钙碳酸盐样品中铜、镍的方案。方法经国家标准物质验证,测定值与标准值相符;相对标准偏差(RSD,n=10)两元素均小于2%。  相似文献   

19.
A comprehensive method for the precise determination of Re, Os, Ir, Ru, Pt and Pd concentrations as well as Os isotopic compositions in geological samples is presented. Samples were digested by the Carius tube method, and the Os was extracted by conventional CCl4 method. The Re, Ir, Ru, Pt and Pd were first subgroup separated from the matrix elements into Re‐Ru, Ir‐Pt and Pd by a 2‐ml anion exchange column. Subsequently, the Re‐Ru was further purified by a secondary 0.25 ml anion exchange column or by microdistillation of Ru using CrO3‐H2SO4 as an oxidant followed by a secondary 0.25 ml anion exchange separation of Re. The Pd and Ir‐Pt were further successively purified by an Eichrom‐LN column to completely remove Zr and Hf, respectively. Rhenium, Ir, Ru, Pt and Pd were individually measured by multi‐collector inductively coupled plasma‐mass spectrometry (MC‐ICP‐MS), except for Ru after microdistillation purification was analysed by negative‐thermal ionisation mass spectrometry (N‐TIMS). The analytical results for peridotite reference material WPR‐1 agree well with the previously published data. Finally, several mafic rock reference materials including TDB‐1, WGB‐1, BHVO‐2, BCR‐2, BIR‐1a and DNC‐1a were analysed for Re‐Os isotopes and platinum‐group element concentrations to test their suitability for certification.  相似文献   

20.
Geochemical reference materials (RMs) for microbeam techniques are typically characterised by averages and dispersion statistics (e.g., standard deviation, variance) that are calculated for a number of measurements (beam shots). It is proposed that the mapping of RMs will add spatial information that better characterises the grouping and magnitudes of the heterogeneities and provides the information necessary to define a minimum analytical mass. A simple mathematical solution is proposed, which can be easily computed and understood. The analogous notions to sill and range from geostatistics are applied to the minimum analytical mass versus the relative standard deviation. To assess grouping and magnitudes of the heterogeneities, a ‘proximity number’ is computed for each average value ± ‘n’ standard deviations (magnitude). Different chemical anomalies have been simulated to demonstrate the behaviour of the proximity number. To further test the proposed spatial geochemistry concept, sulfide‐ and oxide‐bearing RMs have been selected because many are crippled with nugget effect. They have been mapped with a micro‐XRF apparatus, and results are presented for CHR‐Bkg, CHR‐Pt+, MASS‐1, MASS‐3, WMS‐1 and WMS‐1a. MASS‐1 and MASS‐3 are the most suitable RMs for microbeam techniques. Spatial geochemistry offers a new approach to better characterise reference materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号