首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Copper speciation in a collection of Japanese geochemical reference materials (JSO‐1, JLk‐1, JSd‐1, ‐2, ‐3 and ‐4, JMs‐1 and JMs‐2) was achieved by sequential extraction and characterised using X‐ray absorption near‐edge structure spectroscopy. In the first step of the extraction, referred to as the acid fraction, between 1% and 20% total Cu within the reference materials was extracted. Such a result is typically accounted for by absorption of Cu onto clay minerals. However, the presence of Cu sulfate (an oxidation product of chalcopyrite) was observed in some of the stream sediments affected by mining activity (JSd‐2 and JSd‐3) instead. Copper was extracted in the reducible fraction (targeting Fe hydroxide and Mn oxide) (2–49% total Cu). Between 2% and 51% Cu was extracted in the oxidised fraction (targeting sulfides and organic matter). X‐ray absorption near‐edge structure spectroscopy clarified that the reducible fraction consisted of Cu bound to Fe hydroxide, whereas the oxidised fraction was a mixture of Cu bound to humic acid (HA) and Cu sulfide. In the oxidisable fraction, chalcopyrite was the predominant species identified in JSd‐2, and Cu bound to HA was the major species identified in JSO‐1 (a soil sample).  相似文献   

2.
张亭亭  李江山  王平  薛强 《岩土力学》2019,40(10):3928-3936
采用硫酸亚铁(FeSO4)对铬污染土进行稳定化处理。选用浸出试验、Cr(VI)残留值试验和形态提取试验,研究了粒径和有机质对铬污染土稳定特性的影响规律。试验结果表明,粒径和有机质对铬污染土稳定特性有较大影响。粒径的减小可显著降低稳定土中Cr(VI)和总Cr的浸出浓度及稳定土中Cr(VI)的含量;当污染土粒径小于2 mm时,Fe(II)/Cr(VI)摩尔比为3,稳定土中Cr(VI)和总Cr的浸出浓度分别为4.68、8.9 mg/L,均低于我国《危险废弃物鉴别标准 浸出毒性鉴别》(GB/T5085.3-2007)的限值。有机质添加量的增加可明显降低稳定土中Cr(VI)和总Cr的浸出浓度及Cr(VI)的含量。当Fe(II)/Cr(VI)摩尔比为3时,有机质的添加量为5%,稳定土中Cr(VI)的含量为28.3 mg/kg,低于我国《土壤环境质量标准》(GB15618-2008)中工业和商业用地限值(30 mg/kg);当有机质的添加量为10%时,稳定土中Cr(VI)的含量为4.8 mg/kg,低于居住用地限值(5 mg/kg)。形态提取试验结果表明:粒径的减小可降低弱酸提取态的铬含量,增加可还原态的铬含量,而对可氧化态和残渣态的铬含量影响不大;有机质可促使弱酸提取态、可还原态的铬转化为可氧化态的铬,而残渣态的铬变化不大。稳定土中铬从活性态向较稳定态转化,是铬稳定土稳定特性和环境风险变化的根本原因。  相似文献   

3.
张亭亭  李江山  薛强  王平  熊欢  梁仕华 《岩土力学》2019,40(12):4652-4658
采用硫酸亚铁(FeSO4)对Cr(VI)污染土进行稳定化处理。研究了Fe(II)/Cr(VI)摩尔比和养护龄期对污染土稳定过程中的铬赋存形态及浸出特性的影响规律。结果表明:随着Fe(II)/Cr(VI)摩尔比和养护龄期的增加,Cr(VI)和总Cr的浸出浓度降低,稳定土中Cr(VI)的含量降低,当摩尔比为3时,Cr(VI)和总Cr的浸出浓度均低于我国《危险废弃物鉴别标准 浸出毒性鉴别》(GB/T50853―2007)的限值;当摩尔比为10时,稳定土中Cr(VI)的含量低于我国《土壤环境质量标准》(GB15618―2008)中工业和商业用地的限值(30 mg/kg);当摩尔比为20时,低于居住用地限值(5 mg/kg)。形态提取试验结果表明:FeSO4改变稳定土中铬的赋存形态,可促使铬从弱酸态向可还原态和可氧化态转化,而对残渣态的铬影响不大。Cr(VI)的浸出浓度与稳定土中的Cr(VI)含量均存在指数函数关系,且浸出试验不能全面、客观地评价铬污染土稳定效果。  相似文献   

4.
The long-term impact of irrigation on a Mediterranean sandy soil irrigated with treated wastewater (TWW) since 1980 was evaluated. The main soil properties (CEC, pH, size distribution, exchangeable cations and chloride, hydraulic conductivity) as well as the organic matter and Cu, Cr and Pb speciation in an irrigated soil and a non-irrigated control soil at various soil depths were monitored and compared during a 2 year experiment. In this second part, we focused on Cu, Cr and Pb behaviour in relation with soil organic carbon (SOC). Soil samples were collected every 3 months during 2 years at the depths 0–20, 20–40 and 40–60 cm and were analysed for exchangeable and total metals, organic carbon content, metal sequential extraction and humic substances – Humic Acids (HA), Fulvic Acids (FA) and Non-Humified Fraction (NHF). Long-term irrigation with a domestic treated wastewater (TWW) may be considered safe with regard to trace metal accumulation in soil. Irrigation lowered the HA and NHF fractions of SOC and made the FA fraction more mobile. Cu bound preferentially to the SOC fraction, Cr was found mainly in the reducible fraction and Pb was bound to all fractions indiscriminately. Cu exhibited a high affinity for the HA fraction, while Pb and Cr had a high affinity for the FA fraction, which indicates a greater mobility of the organically-bound Pb and Cr than of the organically-bound Cu. Evaluation of the potential metal mobility has to take into account not only the usual speciation between labile, reducible and oxidisable fractions, but also the nature of the SOC responsible for the oxidisable fraction.  相似文献   

5.
One of the major routes of human exposure to toxic metals is the consumption of vegetables grown on contaminated soils. Radishes were grown in three different soils (kitchen garden, agricultural and industrial soils), presenting various contamination levels. A sequential extraction procedure was compared with EDTA and HCl simple extractions methods in order to predict the metals phytoavailabilty to radish. The analysis of the results shows that the simple HCl and sequential chemical extractions bring complementary results, since HCl is correlated in the phytoavailability of Cd, Mn and Zn, whereas the sequential extraction is correlated in the phytoavailability of Cr, Fe, Mn, Ni. EDTA simple extraction brings here less interesting results than the two other tested extractions.  相似文献   

6.
A precise, accurate and rapid method for the sequential determination of FeO and Fe2O3 in rocks, soils and some non‐refractory minerals by 1,10‐phenanthroline spectrophotometry is described. Fe(II) and Fe(III) were leached from the sample (?200 mesh) using a mixture of NH4HF2 and H2SO4 at 40–80 °C for 10 min on a hot plate. Both Fe(II) and Fe(III) could be conveniently estimated sequentially from the same reaction mixture at the μg g?1 to percentage level. The method is better than the existing wet chemical methods, including the commonly used Pratt's titrimetric redox method, for Fe(II) and Fe(III) determinations in rock and soil samples in terms of precision, accuracy and rapidity. The throughput of the method was very high; at least forty to fifty samples could be estimated easily in a day. The results obtained compare favourably with those obtained by Pratt's method, as well as for certified/recommended values of a set of eleven certified reference materials having FeO and Fe2O3 contents in the range 0.21–14.63% and 0.58–8.48%, respectively. The optimised 1,10 phenanthroline method was found to be accurate to within 0.21% m/m FeO and 0.30% m/m Fe2O3 compared with the literature values of the certified reference materials studied.  相似文献   

7.
Although most of the world's uranium exists as pitchblende or uraninite, this mineral can be weathered to a great variety of secondary uranium minerals, most containing the uranyl cation. Anthropogenic uranium compounds can also react in the environment, leading to spatial–chemical alterations that could be useful for nuclear forensics analyses. Soft X‐ray absorption spectroscopy (XAS) has the advantages of being non‐destructive, element‐specific and sensitive to electronic and physical structure. The soft X‐ray probe can also be focused to a spot size on the order of tens of nanometres, providing chemical information with high spatial resolution. However, before XAS can be applied at high spatial resolution, it is necessary to find spectroscopic signatures for a variety of uranium compounds in the soft X‐ray spectral region. To that end, we collected the near edge X‐ray absorption fine structure (NEXAFS) spectra of a variety of common uranyl‐bearing minerals, including uranyl carbonates, oxyhydroxides, phosphates and silicates. We find that uranyl compounds can be distinguished by class (carbonate, oxyhydroxide, phosphate or silicate) based on their oxygen K‐edge absorption spectra. This work establishes a database of reference spectra for future spatially resolved analyses. We proceed to show scanning X‐ray transmission microscopy (STXM) data from a schoepite particle in the presence of an unknown contaminant.  相似文献   

8.
The oxidation states of chromium in GSJ JSO-2 (artificially contaminated soil) and three other geochemical reference materials (GSJ JSO-1, JLS-1 and JMS-1) were observed using X-ray near edge structure (XANES). For comparison, other artificially contaminated soil materials (mimic-JSO-2) were prepared by adding Cr(VI) into JSO-1. Their oxidation states of chromium were determined using XANES. The chromium contents were 1118 μg g-1 for JSO-2, 1352 μg g-1 for mimic-JSO-2 and 69-113 μg g-1 for the other reference materials. Most chromium was present as hexavalent in mimic-JSO-2. No hexavalent species were detected in other samples. These results for chromium oxidation state in JSO-2 and mimic-JSO-2 obtained with XANES resembled those obtained from a chemical extraction method. The present JSO-2 has no trace of Cr(VI), although Cr(VI) was added as a major species during preparation. On the other hand, the content of Cr(VI) obtained in mimic-JSO-2 agreed with the original Cr(VI) content. A time-elapse study showed that Cr(VI) contents in mimic-JSO-2 decreased gradually to 70% of the original abundance during 240-day preservation in dry conditions. Moreover, the abundance of Cr(VI) decreased markedly to 15% after 240 days in the wet mimic-JSO-2 containing 20% m/m of water. These experiments suggested that soil humidity enhanced the reduction of Cr(VI) and that Cr(VI) was reduced even in dry conditions. Consequently, it is reasonable to infer that Cr(VI) doped into JSO-2 was completely reduced to Cr(III) during the preservation period of 5 years. The certification of the long-term stability of the chemical form in reference materials will be much more important in future.  相似文献   

9.
The mobility and toxicity of Cr within surface and subsurface environments is diminished by the reduction of Cr(VI) to Cr(III). The reduction of hexavalent chromium can proceed via chemical or biological means. Coupled processes may also occur including reduction via the production of microbial metabolites, including aqueous Fe(II). The ultimate pathway of Cr(VI) reduction will dictate the reaction products and hence the solubility of Cr(III). Here, we investigate the fate of Cr following a coupled biotic-abiotic reduction pathway of chromate under iron-reducing conditions. Dissimilatory bacterial reduction of two-line ferrihydrite indirectly stimulates reduction of Cr(VI) by producing aqueous Fe(II). The product of this reaction is a mixed Fe(III)-Cr(III) hydroxide of the general formula Fe1−xCrx(OH)3 · nH2O, having an α/β-FeOOH local order. As the reaction proceeds, Fe within the system is cycled (i.e., Fe(III) within the hydroxide reaction product is further reduced by dissimilatory iron-reducing bacteria to Fe(II) and available for continued Cr reduction) and the hydroxide products become enriched in Cr relative to Fe, ultimately approaching a pure Cr(OH)3 · nH2O phase. This Cr purification process appreciably increases the solubility of the hydroxide phases, although even the pure-phase chromium hydroxide is relatively insoluble.  相似文献   

10.
The speciation of metals in environmental samples is a critical factor in assessing the potential environmental impacts, before their disposal. The distribution and speciation of toxic heavy metals in plating wastewater residues and sludge was investigated for four samples using sequential extraction method. Tessier method was used to fractionate the metal content into exchangeable, acid extractable, reducible and oxidizable fractions. Residual and total metal contents were determined in aqua regia digest. The extracts were analysed for metals using inductively coupled plasma -atomic emission spectrometry. The bioavailable fraction (exchangeable and acid extractable fractions) is comprised less than the other forms. The oxidisable and reducible forms are dominants for all the four samples studied. The major metal constitute in the samples is iron, the wastewater residue contains (12.3 and 7.4 g/Kg respectively on dry basis) and the sludge contains (31.5 and 41.6 g /Kg) respectively. Cr concentration is higher in wastewater residue of second electroplating industry. The descending order of the average total metal contents for these four samples were Fe > Cr > Sn > Zn >Cu > Ni > Mn > Pb > Cd > Ag. Based on the average of absolute values for the four samples the highest bioavailability order of metals is Cr (39 %) in wastewater residues and Zn (32 %) in sludge samples. Metal recovery was good, with < 10 % difference between the total metal recovered through the extractant steps and the total metal determined using aqua regia extract.  相似文献   

11.
Radioactive core samples containing elevated concentrations of Cr from a high level nuclear waste plume in the Hanford vadose zone were studied to asses the future mobility of Cr. Cr(VI) is an important subsurface contaminant at the Hanford Site. The plume originated in 1969 by leakage of self-boiling supernate from a tank containing REDOX process waste. The supernate contained high concentrations of alkali (NaOH ≈ 5.25 mol/L), salt (NaNO3/NaNO2 >10 mol/L), aluminate [Al(OH)4 = 3.36 mol/L], Cr(VI) (0.413 mol/L), and 137Cs+ (6.51 × 10−5 mol/L). Water and acid extraction of the oxidized subsurface sediments indicated that a significant portion of the total Cr was associated with the solid phase. Mineralogic analyses, Cr valence speciation measurements by X-ray adsorption near edge structure (XANES) spectroscopy, and small column leaching studies were performed to identify the chemical retardation mechanism and leachability of Cr. While X-ray diffraction detected little mineralogic change to the sediments from waste reaction, scanning electron microscopy (SEM) showed that mineral particles within 5 m of the point of tank failure were coated with secondary, sodium aluminosilicate precipitates. The density of these precipitates decreased with distance from the source (e.g., beyond 10 m). The XANES and column studies demonstrated the reduction of 29-75% of the total Cr to insoluble Cr(III), and the apparent precipitation of up to 43% of the Cr(VI) as an unidentified, non-leachable phase. Both Cr(VI) reduction and Cr(VI) precipitation were greater in sediments closer to the leak source where significant mineral alteration was noted by SEM. These and other observations imply that basic mineral hydrolysis driven by large concentrations of OH in the waste stream liberated Fe(II) from the otherwise oxidizing sediments that served as a reductant for CrO42−. The coarse-textured Hanford sediments contain silt-sized mineral phases (biotite, clinochlore, magnetite, and ilmenite) that are sources of Fe(II). Other dissolution products (e.g., Ba2+) or Al(OH)4 present in the waste stream may have induced Cr(VI) precipitation as pH moderated through mineral reaction. The results demonstrate that a minimum of 42% of the total Cr inventory in all of the samples was immobilized as Cr(III) and Cr(VI) precipitates that are unlikely to dissolve and migrate to groundwater under the low recharge conditions of the Hanford vadose zone.  相似文献   

12.
Axial surveys were performed in the two river tributaries of the Cochin estuary, SW India during November 1988. Surficial sediments were subjected to sequential chemical extractions to delineate five metal fractions, namely, exchangeable, carbonate bound, easily reducible, organic/sulfide bound, and residual. The results indicated selective accumulation of Mn and Ni in carbonate bound and organic/sulfide forms, along with marginal amounts of Co in the exchangeable fraction. Large portions of Fe and Cr occurred in the residual fraction, whereas composite fractionation of Zn species was noticed. The exchangeable fractions of Fe and Cr as well as of easily reducible cobalt were below detection limits. The levels of Cr and Zn indicate anthropogenic inputs in this estuary, whereas Co and Ni show regional contamination exceeding natural levels. The analytical speciation procedure helps to deduce the sedimental diagenetic processes in the estuarine environment.  相似文献   

13.
The toxicity and mobility of the redox-active metalloid As strongly depends on its oxidation state, with As(III) (arsenite) being more toxic and mobile than As(V) (arsenate). It is, therefore, necessary to know the biogeochemical processes potentially influencing As redox state to understand and predict its environmental behavior. The first part of this presentation will discuss the quantification of As redox changes by pH-neutral mineral suspensions of goethite [α-FeIIIOOH] amended with Fe(II) using wet-chemical and synchrotron X-ray absorption (XANES) analysis (Amstaetter et al., 2010). First, it was found that goethite itself did not oxidize As(III). Second, in contrast to thermodynamic predictions, Fe(II)–goethite systems did not reduce As(V). However, surprisingly, rapid oxidation of As(III) to As(V) was observed in Fe(II)–goethite systems. Iron speciation and mineral analysis by Mössbauer spectroscopy showed rapid formation of 57Fe–goethite after 57Fe(II) addition and the formation of a so far unidentified additional Fe(II) phase. No other Fe(III) phase could be detected by Mössbauer spectroscopy, EXAFS, scanning electron microscopy, X-ray diffraction or high-resolution transmission electron microscopy. This suggests that reactive Fe(III) species form as an intermediate Fe(III) phase upon Fe(II) addition and electron transfer into bulk goethite but before crystallization of the newly formed Fe(III) as goethite.The second part of the presentation will show that semiquinone radicals produced during microbial or chemical reduction of a humic substance model quinone (AQDS, 9,10-anthraquinone-2,6-disulfonic acid) can react with As and change its redox state (Jiang et al., 2009). The results of these experiments showed that these semiquinone radicals are strong oxidants and oxidize arsenite to arsenate, thus decreasing As toxicity and mobility. The oxidation of As(III) depended strongly on pH. More arsenite (up to 67.3%) was oxidized at pH 11 compared to pH 7 (12.6% oxidation) and pH 3 (0.5% oxidation). In addition to As(III) oxidation by semiquinone radicals, hydroquinones that were also produced during quinone reduction, reduced As(V) to As(III) at neutral and acidic pH values (less than 12%) but not at alkaline pH. In an attempt to understand the observed redox reactions between As and reduced/oxidized quinones present in humic substances, the radical content in reduced AQDS solutions was quantified and Eh-pH diagrams were constructed. Both the radical quantification and the Eh-pH diagram allowed explaining the observed redox reactions between the reduced AQDS solutions and the As.In summary these studies indicate that in the simultaneous presence of Fe(III) oxyhydroxides, Fe(II), and humic substances as commonly observed in environments inhabited by Fe-reducing microorganisms, As(III) oxidation can occur. This potentially explains the presence of As(V) in reduced groundwater aquifers.  相似文献   

14.
In this study, Re and Os isotopes were systematically determined in six geological reference materials (RMs; covering a wide range of lithologies) using the Carius tube (CT) digestion technique with and without hydrofluoric acid desilicification. Our results show that the HF desilicification increased the Re extraction efficiency (by 9–15%) evidenced from basaltic and andesitic rocks (e.g., BHVO‐2, TDB‐1 and AGV‐2). This implies that a small proportion of Re resides in silicate phases. For mafic–ultramafic rocks (e.g., BCR‐2, WGB‐1 and WPR‐1), Re extraction efficiencies obtained by the CT digestion with and without HF desilicification were similar. This may indicate that Re in these rocks may dominantly reside in some phases (e.g., magnetite and sulfides) that could be completely dissolved in aqua regia solutions without the aid of HF desilicification. Our results also show that the HF desilicification increased Os extraction efficiency (by 13–99%) in some RMs (e.g., BHVO‐2, WGB‐1 and AGV‐2). This observation suggests that a portion of Os‐rich trace phases may occur as inclusions in the silicate phases that act as isolators at ~ 200 mesh sizes. This study demonstrates that the HF desilicification step prior to CT digestion is important for complete extraction of Re and Os in geological samples.  相似文献   

15.
The sequential extraction procedure was proposed and used to study of mercury speciation in real samples of soil. Samples of soil profiles together with bedrock and coal were taken from sampling spots in the vicinity of surficial coal beds in an area with natural coal outcrops. The proposed sequential extraction procedure involves the following fractionation: organic mercury compounds, extractable mercury in an acidic medium, mercury bound to humic substances, elemental Hg and mercury bound to complexes, HgS and residual mercury. The significant distribution of mercury between the two portions—mercury bound to humic substance and HgS was determined in the majority of samples. The mercury bound to humic substances created a significant contribution, especially to the top layer of soil. On the other hand, HgS was the dominant form in the samples from lower layers of the soil profile. The mercury content in the samples did not show a distinct mobility. The influence of soil parameters on the mercury distribution in the studied samples was investigated and discussed.  相似文献   

16.
Soil profiles developed on serpentinites from several localities in the Czech Republic were investigated by a combination of geochemical and mineralogical methods (selective extractions, XRD, SEM/EDS) to determine the partitioning and mobility of chromium (Cr) and nickel (Ni). Whereas Cr is released from pyroxenes, amphiboles and Cr-spinels present in the bedrock, Ni is primarily mobilized from olivines and small Fe-Ni sulphide inclusions. The results of extraction methods indicated significant differences in the availability and mobility of Cr and Ni in soils. Chromium is almost not phytoavailable, as indicated by the DTPA extractions. The selective extractions showed that Cr is tightly bound to well-crystallised Fe-oxides and primary rock-derived phases. In contrast, Ni is substantially more mobile in soil, being mainly controlled by Mn-oxides and amorphous/less crystallised Fe-oxides. The DTPA extraction indicated that up to 10% of total Ni might be phytoavailable.  相似文献   

17.
Structural Fe(II) has been shown to reduce several oxidized environmental contaminants, including NO3, chlorinated solvents, Cr(VI), and U(VI). Studies investigating reduction of U(VI) by soils and sediments, however, suggest that abiotic reduction of U(VI) by Fe(II) is not significant, and that direct enzymatic reduction of U(VI) by metal-reducing bacteria is required for U(VI) immobilization as U(IV). Here evidence is presented for abiotic reduction and immobilization of U(VI) by structural Fe(II) in a redoximorphic soil collected from a hillside spring in Iowa. Oxidation of Fe(II) in the soil after reaction with U(VI) was demonstrated by Mössbauer spectroscopy and reduction of U(VI) by the pasteurized soil using U LIII-edge X-ray absorption spectroscopy (XAS). XAS indicates that both reduced U(IV) and oxidized U(VI) or U(V) are present after U(VI) interaction with the Fe(II) containing soil. The EXAFS data show the presence of a non-uraninite U(IV) phase and evidence of the oxidized U(V) or U(VI) fraction being present as a non-uranyl species. Little U(VI) reduction is observed by soil that has been exposed to air and oxidation of Fe(II) to goethite has occurred. Soil characterization based on chemical extractions, Mössbauer spectroscopy, and Fe K-edge XAS indicate that the majority of Fe(II) in the soil is structural in nature, existing in clay minerals and possibly a green rust-like phase. These data provide compelling evidence for abiotic reduction of U(VI) by structural Fe(II) from soil near Fe-rich oxic–anoxic boundaries in natural environments. The work highlights the potential for abiotic reduction of U(VI) by Fe(II) in reduced, Fe-rich environments.  相似文献   

18.
Heavy metal distribution in karst soils from Croatia and Slovakia   总被引:1,自引:1,他引:0  
With the use of the optimised three-step BCR sequential-extraction procedure it was possible to assess the mobility of selected elements in soil profiles from Croatian and Slovakian karst terrains. The soils in the Croatian karst were enriched in Cr, Ni, V, Mn, Cu, Cd and Mo, while soils from the Slovak Karst had high Pb and Zn concentrations. It was determined that the elements were most readily mobilised from the topsoil and the degree of mobility decreased with depth. Cr and Ni were mainly bound to the residual fraction, and Pb in the oxidisable fraction. Cu mobility was high in samples treated with agrochemicals throughout the soil profile.  相似文献   

19.
The chemical forms of Fe, Mn, Zn, Cu, Cr, Pb and Cd in the Huanghe River sediments have been studied by sequential extraction techniques and the comparison with data from the Rhine River sediments has been made. In the Huanghe River sediments the average contents of metals, without exception, are below their respective contents in average shales and very close to their levels in Ca-poor granites. The major portion of metals is combined with the detrital and moderately reducible phases. Both in the Huanghe River and in the Rhine River sediments the distribution ratios of metals between the moderately reducible and the easily reducible phases are generally more than unity. However, the distribution ratios of Mn, Zn and Cd are obviously lower than those of Fe, Cr, Cu and Pb. As a result of contamination, the ratios of Fe, Cr, Cu and Pb show an apparent increase, but no remarkable ratio variation is observed for Mn, Zn and Cd. Metals in the Huanghe River sediments, especially Cu and Zn, show a tendency to be associated with the organic phase. The effect of carbonate on metal association preference seems to be less important than that in the Rhine River although there is higher content of carbonate in the Huanghe River sediments. Cd has a greater percentage of the exchangeable phase, which is similar to the result from the Rhine River sediments.  相似文献   

20.
Total concentrations of chemical elements in soils may not be enough to understand the mobility and bioavailability of the elements. It is important to characterise the degree of association of chemical elements in different physical and chemical phases of soil. Another geochemical characterisation methodology is to apply sequential selective chemical extraction techniques. A seven-step sequential extraction procedure was used to investigate the mobility and retention behaviour of Al, Fe, Mn, Cu, Zn, Pb, Cr, Co, Ni, Mo, Cd, Bi, Sn, W, Ag, As and U in specific physical–chemical and mineral phases in mine tailings and soils in the surroundings of the abandoned Ervedosa mine. The soil geochemical data show anomalies associated with mineralised veins or influenced by mining. Beyond the tailings, the highest recorded concentrations for most elements are in soils situated in mineralised areas or under the influence of tailings. The application of principal components analysis allowed recognition of (a) element associations according to their geochemical behaviour and (b) distinction between samples representing local geochemical background and samples representing contamination. Some metal cations (Mn, Cd, Cu, Zn, Co, Cr, Ni) showed important enrichment in the most mobilisable and bioavailable (i.e., water-soluble and exchangeable) fractions due likely to the acidic conditions in the area. In contrast, oxy-anions such as Mo and As showed lower mobility because of adsorption to Fe oxy-hydroxides. The residual fraction comprised largest proportions of Sn and Al and to a lesser extent Zn, Pb, Ni, Cr, Bi, W, and Ag, which are also present at low concentrations in the bioavailable fractions. The elements in secondary mineral phases (mainly Fe, Mn, Cu, Zn, Cd, Pb, W, Bi, Mo, Cr, Ni, Co, As and U) as well as in organic matter and sulphides are temporarily withheld, suggesting that they may be released to the environment by changes in physico-chemical conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号