首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the prominent impacts of climate change induced glacier retreat in the Himalayas is the formation and expansion of glacial lakes. The newly formed glacial lakes are mostly located in higher altitudinal regions(4200-5800 m) of Himalaya,however, a new glacial lake(Kapuche, 28.446° N and 84.116° E) have been reported to be emerged in the relatively low elevation area of ~2450 m above sea level(masl) in the Nepal Himalaya. This short communication presents the remote sensing-based evolution a...  相似文献   

2.
Introduction High mountain ecosystems are comparatively thrilling and sensitive at least at the upper elevation levels, and are determined by abiotic climate related ecological factors. Therefore, the ecosystems at the low temperature limits of plant life are generally considered to be particularly sensitive to climate changes (Koerner 1999). As temperature is a key factor for high mountain plants (Koerner and Larcher 1988, Gottfried et al. 1998), an upward migration of species must be conse…  相似文献   

3.
Landsat satellite images were used to map and monitor the snow-covered areas of four glaciers with different aspects(Passu: 36.473°N, 74.766°E;Momhil: 36.394°N, 75.085°E; Trivor: 36.249°N,74.968°E; and Kunyang: 36.083°N, 75.288°E) in the upper Indus basin, northern Pakistan, from 1990-2014. The snow-covered areas of the selected glaciers were identified and classified using supervised and rule-based image analysis techniques in three different seasons. Accuracy assessment of the classified images indicated that the supervised classification technique performed slightly better than the rule-based technique. Snow-covered areas on the selected glaciers were generally reduced during the study period but at different rates. Glaciers reached maximum areal snow coverage in winter and premonsoon seasons and minimum areal snow coverage in monsoon seasons, with the lowest snow-covered area occurring in August and September. The snowcovered area on Passu glacier decreased by 24.50%,3.15% and 11.25% in the pre-monsoon, monsoon and post-monsoon seasons, respectively. Similarly, the other three glaciers showed notable decreases in snow-covered area during the pre-and post-monsoon seasons; however, no clear changes were observed during monsoon seasons. During pre-monsoon seasons, the eastward-facing glacier lost comparatively more snow-covered area than the westward-facing glacier. The average seasonal glacier surface temperature calculated from the Landsat thermal band showed negative correlations of-0.67,-0.89,-0.75 and-0.77 with the average seasonal snowcovered areas of the Passu, Momhil, Trivor and Kunyang glaciers, respectively, during pre-monsoon seasons. Similarly, the air temperature collected from a nearby meteorological station showed an increasing trend, indicating that the snow-covered area reduction in the region was largely due to climate warming.  相似文献   

4.
The relatively rapid recession of glaciers in the Himalayas and formation of moraine dammed glacial lakes(MDGLs) in the recent past have increased the risk of glacier lake outburst floods(GLOF) in the countries of Nepal and Bhutan and in the mountainous territory of Sikkim in India. As a product of climate change and global warming, such a risk has not only raised the level of threats to the habitation and infrastructure of the region, but has also contributed to the worsening of the balance of the unique ecosystem that exists in this domain that sustains several of the highest mountain peaks of the world. This study attempts to present an up to date mapping of the MDGLs in the central and eastern Himalayan regions using remote sensing data, with an objective to analyse their surface area variations with time from 1990 through 2015, disaggregated over six episodes. The study also includes the evaluation for susceptibility of MDGLs to GLOF with the least criteria decision analysis(LCDA). Forty two major MDGLs, each having a lake surface area greater than 0.2 km2, that were identified in the Himalayan ranges of Nepal, Bhutan, and Sikkim, have been categorized according to their surface area expansion rates in space and time. The lakes have been identified as located within the elevation range of 3800 m and6800 m above mean sea level(a msl). With a total surface area of 37.9 km2, these MDGLs as a whole were observed to have expanded by an astonishing 43.6% in area over the 25 year period of this study. A factor is introduced to numerically sort the lakes in terms of their relative yearly expansion rates, based on their interpretation of their surface area extents from satellite imageries. Verification of predicted GLOF events in the past using this factor with the limited field data as reported in literature indicates that the present analysis may be considered a sufficiently reliable and rapid technique for assessing the potential bursting susceptibility of the MDGLs. The analysis also indicates that, as of now, there are eight MDGLs in the region which appear to be in highly vulnerable states and have high chances in causing potential GLOF events anytime in the recent future.  相似文献   

5.
以1972、1989、1996、2006、2017年5个不同时段的Landsat MSS/TM/ETM+/OLI遥感影像数据、数字高程模型(DEM)数据和气象数据为数据源,通过计算机自动提取与人工目视解译相结合的方法获取南阿尔泰山中部地区各时段的冰湖信息,利用GIS空间分析方法对该地区的冰湖面积进行统计,并分析研究区冰湖在不同规模、不同坡度、不同海拔状态下的时空变化特征。结果表明:①近45年来南阿尔泰山中部地区的冰湖面积呈"先减后增"趋势。1972-1996年研究区的冰湖面积从411.14 km2减少至400.83 km2,共减少了10.31 km2,减少速率为0.43 km2/a。从1996-2017年冰湖面积增加了15.42 km2;增长率为0.514 km2/a。②研究区冰湖分布主要集中在海拔低于2 200 m、坡度小于25°的区域,不同海拔区间和不同坡度区间的冰湖面积均呈"先减后增"趋势。③结合气温、降水、冰川面积以及冰储量变化数据分析发现,南阿尔泰山中部地区冰湖对气候变化具有明显的响应。温度、降水量及冰川融水是影响冰湖面积变化的主要因素;且这三者之间存在一种平衡关系,即温度升高冰川消融速度加快,从而对冰湖的收支平衡产生直接影响。当冰湖的补给量(即冰川融水和降水量之和)大于由温度升高引起的蒸发量时,冰湖面积会呈增长趋势;反之亦然。1970-1980年整个阿勒泰地区年代际降水量减少了19.28 mm,温度上升了0.25℃,因此1972-1989年研究区冰湖的蒸发水量大于补给水量,导致该时段冰湖面积呈退缩态势。1989-1996年该区降水量增加了19.67%,温度升高了0.62℃,但是增加的降水量却无法弥补由温度升高引起的冰湖蒸发量,因此1989-1996年研究区冰湖面积仍处于退缩状态。1996-2017年由于温度和降水量大幅增加导致冰湖面积呈不断增长趋势。   相似文献   

6.
冰湖溃决灾害是指冰湖坝体突然破坏引发溃决洪水或溃决泥石流的现象,对下游人类活动和自然环境造成严重影响。近年来,藏东南地区冰川快速退缩,冰湖数量和规模显著增加,冰湖溃决事件广泛发生。基于1995-2021年多时相Landsat系列遥感影像、Sentinel-2A遥感影像,结合RAMMS水文动力学模型方法,对藏东南地区多依弄巴流域内冰湖、冰川进行动态变化分析,模拟冰崩危险体触发冰湖溃决和冰湖溃决泥石流的演进过程,根据泥石流模拟中的流速和流深对冰湖溃决可能影响的区域进行危险性分区。结果表明:流域内冰川面积由1995年的14.05 km2退缩为2021年的9.43 km2,年均退缩率约为0.15 km2/a。流域内共发育3处冰崩危险体,均可能触发冰湖溃决。潜在危险冰湖在全溃情况下,溃决泥石流会冲出沟口堵塞然乌湖湖口和帕隆藏布主河道,对下游居民和道路造成影响,影响范围约4.05 km2,其中高危险性区域约2.55 km2。危险性评价结果可为多依弄巴流域未来土地利用规划和防灾减灾提供依据,也能为藏东南地区冰湖溃决型泥石流危险评估提供参考。   相似文献   

7.
Introduction In the Alakananda Basin, undulating terrain constitutes the most fragile elements of the ecosystem. Traditional economy rests on the terraced cultivation with extremely limited viability to expansion and modernization. Consequently, low economic return remains the characteristic feature of the agrarian landscape. It is the common experience that the ecological conditions of the basin are more suited to fruit cultivation rather than cereal farming (Atkinson 1889). Along with frui…  相似文献   

8.
Process of sea surface diurnal warming has drawn a lot of attention in recent years, but that occurs in shelf seas was rarely addressed. In the present work, surface diurnal warming strength in the East China Sea was calculated by the sea surface temperature(SST) data derived from the MODIS sensors carried by the satellites Aqua and Terra. Due to transit time difference, both the number of valid data and the surface diurnal warming strength computed by the MODIS-Aqua data are relatively larger than Terra. Therefore, the 10-year MODIS-Aqua data from 2005 to 2014 were used to analyze the monthly variability of the surface diurnal warming. Generally, the surface diurnal warming in the East China sea is stronger in summer and autumn but weaker in winter and spring, while it shows different peaks in different regions. Large events with ΔT≥5 K have also been discussed. They were found mainly in coastal area, especially near the Changjiang(Yangtze) River estuary. And there exists a high-incidence period from April to July. Furthermore, the relationship between surface diurnal warming and wind speed was discussed. Larger diurnal warming mainly lies in areas with low wind speed. And its possibility decreases with the increase of wind speed. Events with ΔT ≥2.5 K rarely occur when wind speed is over 12 m/s. Study on surface diurnal warming in the East China Sea may help to understand the daily scale air-sea interaction in the shelf seas. A potential application might be in the marine weather forecasts by numerical models. Its impact on the coastal eco-system and the activities of marine organisms can also be pursued.  相似文献   

9.
10.
In lacustrine sediments, aragonite is a widespread mineral, whereas monohydrocalcite is a rare carbonate mineral. In the cold and high-attitude Xizang (Tibetan) Plateau, where aragonite has been commonly found in lacustrine sediments, there is no aragonite, but low-Mg calcite, monohydrocalcite and trace dolomite. The lake receives solutes primarily from surface runoffs and remains fairly constant water chemistry for a long time. The total CaCO3 percentage in sediments could be controlled by evaporation and inflow of detrital materials. The absence of aragonite is unusual when compared to other lacustrine sediments from the Tibetan Plateau. This could be due to low Ca/Mg ratio, low salinity, low Mg and Ca concentration. Monohydrocalcite might precipitate from the lake water mediated by biological activities. Low-Mg calcite originated from minor ostracoda shell and the precipitation of lake water with biological activities.  相似文献   

11.
12.
High-altitude Himalayan lakes act as natural storage for environmental evidence related to climate change and environmental factors.A great number of lakes are distributed in the southern slope area of the central Himalayas;however,research concerning the hydrochemical processes of these lakes is still insufficient.Herein,we present a comprehensive study on the water chemistry of the lake waters and the inlet stream waters from Rara Lake in western Nepal based upon samples collected in November 2018.The p H,dissolved oxygen,chlorophyll-aconcentration(chl-a),water temperature,electric conductivity(EC)and total dissolved solids(TDS)were measured in situ,and the concentrations of major ions(Ca2+,Mg2+,K+,Na+,Cl-,SO42-,and NO3-)were analyzed in the laboratory.The results revealed that the water in Rara Lake is slightly alkaline,with p H values ranging from 7.6-7.98.The cations,in decreasing order of concentration in the lake water,are Ca2+>Mg2+>K+>Na+with average concentrations of20.64 mg·L-1,11.78 mg·L-1,1.48 mg·L-1 and 0.72 mg·L-1,respectively;the order and concentrations for the anions is HCO3->SO42->Cl->NO3-,with average concentrations of 122.15 mg·L-1,2.15 mg·L-1,0.46mg·L-1 and 0.55 mg·L-1,respectively.The dominant cation and anion in the lake water are Ca2+and HCO3-and they account for 48.14%and 71.8%of the totals,respectively.The range of lake water TDS is from 95mg·L-1 to 98 mg·L-1,with an average of 96.85 mg·L-1.The high ratio of(Ca2++Mg2+)to total cations and the low ratio of(Na++K+)to total cations indicate that Rara Lake receives ions from rock weathering,especially from carbonate rocks.Similarly,Gibbs boomerang diagrams and Piper diagrams also support the hydrochemistry of Rara Lake as being dominated by rock-weathering patterns.Likewise,other statistical analysis tools,such as Principal Component Analysis(PCA)and correlation strongly suggest the dominance of weathering of calcium and magnesium bicarbonate rocks as the major source of ions in Rara Lake.However,several traces of anthropogenic inputs into the lake were noticed,and the hypolimnion in the lake appears to be oxygen deficient,which may not be an issue at present but cannot be ignored in the future.  相似文献   

13.
Agrarian system is well adapted in Himalayan eco-system. Hence, the people have adopted the traditional subsistence cereal farming and it becomes the main stay of Himalayan people. About 80 percent of the workable force is attached with agriculture and its allied practices, according to the census of 1991. Although, horticultural farming runs parallel with agriculture, its proportion in terms of land is quite less, resulted in a negligible place in the economy of the region. Human resources, mainly men are attached with national security after recruitment in Army. While, women play a vital and integrated role in maintaining the workable potential in the field of agriculture and are known as backbone of economy. An animal resource implies foremost and wider part in agricultural system and economy as well Water resources are unutilized yet, while almost all the major rivers of our country are originated from and flowing through this region. Increasing population causes forest resources depletion. The economy of the region is rested either on ‘traditional cereal farming‘ or ‘money order based‘ development, which could not take place due to its remoteness from the main streams of the country. The impactof modern technology with innovation in agricultural system remains impracticable due to unwillingness of people in one hand and on the other hand, adversege ographical conditions like topography, climate etc. which could not permit the uses of modern innovation in the field of agriculture. As for infra-structurally, this region is lacked behind, due to its inaccessibility. While, this region is bestowed with numerous rivers, many places for tourists and pilgrims, and huge forest resources. They might be used evenly in thedevelopment processes. The practice of tourism will help for the further development, particularly, in the wake of the newly born state, Uttaranchal. The present paper aims to evaluate the present potentiality of resources and their balanced utilization in the Pindar Basin. A precise study has been done on resource utilization, ecology and environment with keeping view in mind that more or less exploitation of resources could not influence the environment and the economy of the region.  相似文献   

14.
This paper presents finite element modeling (FEM) to simulate the present-day stress field and crustal deformation using NE-SW structural section in the central Seismic Gap region of the Garhwal Himalaya. Our study deals with the effect of geometrical characteristics and rock layer parameters on the upper crust. Modeling results show that two types of tectonic regimes developed in the central Seismic Gap region: the geotectonics of the northern part has been controlled by regional compression, whereas southern part is characterized by regional extension. Correspondingly, thrust faults are induced in the northern part and normal faults are extensively developed in the southern front. Those evidences noticeably indicate that the compressive tectonic environment of the Himalaya becomes change into the extensional tectonic regime in its front. The computed shear stress accumulation along the northern fiat of Main Himalayan Thrust (MHT) implies that considerable amount of interseismic stress is building up along the MHT system in the Himalaya, which ultimately release through the possible future great Himalayan earthquake (M 〉 8). The comparison between our modeled stress field, faulting pattern and horizontal shortening rate with the distribution of the microseismic events, focal mechanism solutions, active faulting and GPS data in the central Seismic Gap region shows good agreement.  相似文献   

15.
Land cover is recognized as one of the fundamental terrestrial datasets required in land system change and other ecosystem related researches across the globe. The regional differentiation and spatial-temporal variation of land cover has significant impact on regional natural environment and socio-economic sustainable development. Under this context, we reconstructed the history land cover data in Siberia to provide a comparable datasets to the land cover datasets in China and abroad. In this paper, the European Space Agency(ESA) Global Land Cover Map(GlobCover), Landsat Thematic Mapper(TM), Enhanced Thematic Mapper(ETM), Multispectral Scanner(MSS) images, Google Earth images and other additional data were used to produce the land cover datasets in 1975 and 2010 in Siberia. Data evaluation show that the total user′s accuracy of land cover data in 2010 was 86.96%, which was higher than ESA GlobCover data in Siberia. The analysis on the land cover changes found that there were no big land cover changes in Siberia from 1975 to 2010 with only a few conversions between different natural forest types. The mainly changes are the conversion from deciduous needleleaf forest to deciduous broadleaf forest, deciduous needleleaf forest to mixed forest, savannas to deciduous needleleaf forest etc., indicating that the dominant driving factor of land cover changes in Siberia was natural element rather than human activities at some extent, which was very different from China. However, our purpose was not just to produce the land cover datasets at two time period or explore the driving factors of land cover changes in Siberia, we also paid attention on the significance and application of the datasets in various fields such as global climate change, geopolitics, cross-border cooperation and so on.  相似文献   

16.
Land use and land cover changes that occurred during the period from 1991 to 2001 in the Jahlma watershed of the Lahaul valley, a cold desert region of the northwestern Himalaya, were evaluated using land use data and visual interpretation of IRS Satellite imageries. The results revealed that out of the six major land use forms within the watershed, land areas under agriculture, kitchen garden and settlement land were found increased, whereas a declining trend was recorded in areas under grassland, barren land and Salix plantation. The cultivated land within the watershed increased from 54.87 % (total of agriculture land, kitchen garden, grassland, barren land, Salix plantation and residential area) in 1991 to 56.89 % in 2OOl, corresponding to an expansion of 4.41 ha. On the other hand, the areas of grassland decreased from 31.41% in 1991 to 29.81% in 2001. Such a dramatic land use and land cover changes taking place within the 33 km^2 watershed area in a single decade deafly indicates the prevailing danger of land degradation and environmental deterioration in the region.  相似文献   

17.
By combining Argos drifter buoys and TOPEX/POSEIDON altimeter data, the time series of sea-surface velocity fields in the Kuroshio Current (KC) and adjacent regions are established. And the variability of the KC from the Luzon Strait to the Tokara Strait is studied based on the velocity fields. The results show that the dominant variability period varies in different segments of the KC: The primary period near the Luzon Strait and to the east of Taiwan Island is the intra-seasonal time scale; the KC on the continental shelf of the ECS is the steadiest segment without obvious periodicity, while the Tokara Strait shows the period of seasonal variability. The diverse periods are caused by the Rossby waves propagating from the interior ocean, with adjustments in topography of island chain and local wind stress. Supported by the National Basic Research Program of China (973 Program, Nos. 2007CB411804, 2005CB422303), the NSFC (No. 40706006), the Key Project of International Science and Technology Cooperation Program of China (No. 2006DFB21250) and the “111 Project” (B07036), the Program for New Century Excellent Talents in University (NECT-07-0781)  相似文献   

18.
The rate of regional sea level rise(SLR) provides important information about the impact of human activities on climate change.However,accurate estimation of regional SLR can be severely affected by sea surface height(SSH) change caused by the Pacific Decadal Oscillation(PDO-SSH).Here,the PDOSSH signal is extracted from satellite altimeter data by multi-variable linear regression,and regional SLR in the altimeter era is calculated,before and after removing that signal.The results show that PDO-SSH trends are rising in the western Pacific and falling in the eastern Pacific,with the strongest signal confined to the tropical and North Pacific.Over the past 20 years,the PDO-SSH accounts for about 30%-40%of altimeter-observed SLR in the regions 8°-15°N,130°-160°E and 30°-40°N,170°-220°E.Along the coast of North America,the PDO-SSH signal dramatically offsets the coastal SLR,as the sea level trends change sign from falling to rising.  相似文献   

19.
For the reconstruction of past climate variations,investigations on the history of glaciers are necessary.In the Himalaya,investigations like these have a rather short tradition in comparison with other mountains on earth.At the same time,this area on the southern margin of Tibet is of special interest because of the question as to the monsoon-influence that is connected with the climate-development.Anyhow,the climate of High Asia is of global importance.Here for the further and regionally intensifying answer to this question,a glacial glacier reconstruction is submitted from the CentralHimalaya,more exactly from the Manaslu-massif.Going on down-valley from the glacial-historical investigations of 1977 in the upper Marsyandi Khola(Nadi) and the partly already published results of field campaigns in the middle Marsyandi Khola and the Damodar- and Manaslu Himal in the years 1995,2000,2004 and 2007,new geomorphological and geological field- and laboratory data are introduced here from the Ngadi(Nadi) Khola and the lower Marsyandi Nadi from the inflow of the Ngadi(Nadi) Khola down to the southern mountain foreland.There has existed a connected ice-stream-network drained down to the south by a 2,100-2,200 m thick and 120 km long Marsyandi Nadi main valley glacier.At a height of the valley bottom of c.1,000 m a.s.l.the Ngadi Khola glacier joined the still c.1,300 m thick Marsyandi parent glacier from the Himalchuli-massif(Nadi(Ngadi) Chuli) – the south spur of the Manaslu Himal.From here the united glacier tongue flowed down about a further 44 km to the south up to c.400 m a.s.l.(27°57'38 "N/84°24'56" E) into the Himalaya fore-chains and thus reached one of or the lowest past ice margin position of the Himalayas.The glacial(LGP(Last glacial period),LGM(Last glacial maximum) Würm,Stage 0,MIS 3-2) climatic snowline(ELA = equilibrium line altitude) has run at 3,900 to 4,000 m a.s.l.and thus c.1,500 altitude meters below the current ELA(Stage XII) at 5,400-5,500 m a.s.l.The reconstructed,maximum lowering of the climatic snowline(ΔELA = depression of the equilibrium line altitude) about 1,500 m corresponds at a gradient of 0.6°C per 100 altitude meters to a High Glacial decrease in temperature of 9°C(0.6 × 15 = 9).At that time the Tibetan inland ice has caused a stable cold high,so that no summer monsoon can have existed there.Accordingly,during the LGP the precipitation was reduced,so that the cooling must have come to more than only 9°C.  相似文献   

20.
Wang  Tao  Wang  Qing  Xia  Shuang  Yan  Chunlan  Pei  Guofeng 《中国海洋湖沼学报》2020,38(1):93-101
Journal of Oceanology and Limnology - Benthic algae communities dominate the primary production in littoral zone of shallow lake. To understand the long-term effect of alteration in the composition...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号