首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Desertification, soil salinization and grassland degradation are the major environmental hazards faced by the Gannan Plateau, northeastern Tibetan Plateau. Ecological risk assessment plays an important role in formulating environmental management strategies yet little attention to this region. In this study, we established an ecological risk assessment index system based on 30 evaluation indices in the categories of hydrometeorology, ecological environment, ground surface disturbance, and society and economy for the Gannan Plateau. An entropy method was used to calculate an index weight, and subsequently the matter-element method was used together with extension theory to establish a matter-element extension model of ecological risk. We assessed the ecological risk in this region by calculating the degree of association between index layer, system layer and target layer, and the cumulative ecological risk index. The degrees of ecological risk for the counties of the region were determined by using ArcGIS which would represent a spatial heterogeneity of the risk grade in production. Our results showed that the areas of high ecological risk were in Zhouqu County and Zhuoni County, and others were of low risk (Hezuo City, Diebu County, Xiahe County and Lintan County) or intermediate risk (Maqu County). The results of the assessment were in accord with the actual observed situation. Thus, our ecological risk assessment index system is appropriate for this region and suggests that high risk counties need a priori ecological protection. Such research could provide a technological support which would potentially prevent or reduce disasters by establishing an ecological barrier to promote the sustainable development of Gannan Plateau.  相似文献   

2.
The work presents microparticle concentrations in snowpits from the East Rongbuk Glacier on Mt. Qomolangma (Everest) (ER) (28.02°N, 86.96°E, 6536 m a.s.l.), the Zhadang Glacier on Mt. Nyainqentanglha (NQ) (30.47°N, 90.65°E, 5800m a.s.l.), and the Guoqu Glacier on Mt. Geladaindong (GL) (33.95°N, 91.28°E, 5823m a.s.l.) over the Tibetan Plateau (TP). Variations of microparticle and major ions (e.g. Mg2+, Ca2+) concentrations in snowpits show that the values of the microparticles and ions in the non-monsoon seasons are much higher than those in the monsoon seasons. Annual flux of microparticle deposition at ER is lower than those at NQ and GL, which could be attributed to the long distance away from the possible dust source regions as well as the elevation for ER higher than the others. Compared with other remote areas, microparticle concentrations in the southern TP are much lower than those in the northern TP, but still much higher than those in Greenland and Antarctica. The seasonal and spatial microparticle variations are clearly related to the variations of atmospheric circulation according to the air mass 5-day backward trajectory analyses of HYSPLIT Model. Resultingly, the high microparticle values in snow are mainly attributed to the westerlies and the strong dust storm outbreaks on the TP, while the monsoon circulation brings great amount of precipitation from the Indian Ocean, thus reducing in the aerosol concentrations.  相似文献   

3.
Stable isotopes and chloride ion of precipitation are ideal environmental tracers to explain and reveal the formation and evolution mechanisms of water bodies. It is crucial to investigate the stable isotopes and chloride in precipitation events in the northeastern part of the Tibetan Plateau(NETP) due to the limitation of available data. This study sampled each event of precipitation during the period from July 2018 to June 2019 and the monthly dustfall in the NETP to investigate the temporal changes of stable isotopes and chloride in precipitation, and to reveal the moisture source of precipitation over the NETP using a back trajectory model. Results showed that the δ2 H values of precipitation ranged from-183.51‰ to 17.75‰, and the δ18 O values ranged from-25.18‰ to 0.48‰. The slope of the Local Meteoric Water Line was slightly lower than 8 due to the effect of belowcloud secondary evaporation on the precipitation process. Most d-excess values were higher than 10‰ because moisture recycled from the continent and Qinghai Lake surface mixed with precipitation. The chloride in precipitation accounted for 86.5% of the annual total deposition mass of chloride(1329.64 mg/m2), indicating that precipitation was the main source of chloride in the NETP. The temperature and amount effects of stable isotope in the precipitation were obvious in the NETP. The precipitation was predominantly derived from the Westerly Circulation from September through May and the East Asian Monsoon from June to August, with precipitation amounts of 246.5 mm and 178.0 mm, respectively, indicating that the precipitation over the NETP brought by the Westerly Circulation was more than that brought by the East Asian Monsoon. The air mass over the NETP transited in late May and early September, and a slight change in transition period would mainly be related to the intensity of the East Asian Monsoon, which is strongly influenced by El Ni?o-Southern Oscillation. These results provide not only baseline data for hydrological and climatological studies of the NETP but also valuable insights into the hydrological process in the inland arid area of Asia.  相似文献   

4.
A good understanding of giant landslide-prone areas could greatly enhance the understanding of the formation and failure mechanisms of giant landslides.In this study,a classic giant landslide-prone area named the Diexi area located along the upstream stretch of the Minjiang River on the eastern Tibetan Plateau is adopted to analyze the failure mechanism and evolution process by detailed field investigations,Unmanned Aerial Vehicle(UAV)images and a digital surface model(DSM).The results show that among the 37 giant landslides located in the Diexi area,18 landslides are transverse landslides(wedge failure),and the others are consequent landslides(buckling failure).All landslides blocked rivers,and some barrier lakes still remain.The Diexi area features special geological structural conditions related to the hinge section of the Jiaochang arc tectonic belt,the intersection of two active fault zones(the Songpinggou and Minjiang fault zones)and high levels of geostress.The numerous radial fissures induced by the Jiaochang arcuate belt provided lateral sliding boundaries for buckling deformation(consequent landslides)and head scarps for wedge failure(transverse landslides).The rapid incision(1.88 mm/yr)since the middle Pleistocene formed a deep gorge with steep slopes and strong lateral unloading.Frequent earthquakes and rainfall further reduced the rock mass integrity,and strong earthquakes or other factors triggered the landslides.  相似文献   

5.
Accurate prediction on geological hazards can prevent disaster events in advance and greatly reduce property losses and life casualties.Glacial debris flows are the most serious hazards in southeastern Tibet in China due to their complexity in formation mechanism and the difficulty in prediction.Data collected from 102 glacier debris flow events from 31 gullies since 1970 and regional meteorological data from 1970 to 2019 in ParlungZangbo River Basin in southeastern Tibet were used for Artificial Neural Network(ANN)-based prediction of glacial debris flows.The formation mechanism of glacial debris flows in the ParlungZangbo Basin was systematically analyzed,and the calculations involving the meteorological data and disaster events were conducted by using the statistical methods and two layers fully connected neural networks.The occurrence probabilities and scales of glacial debris flows(small,medium,and large)were predicted,and promising results have been achieved.Through the proposed model calculations,a prediction accuracy of 78.33%was achieved for the scale of glacial debris flows in the study area.The prediction accuracy for both large-and medium-scale debris flows are higher than that for small-scale debris flows.The debris flow scale and the probability of occurrence increase with increasing rainfall and temperature.In addition,the K-fold cross-validation method was used to verify the reliability of the model.The average accuracy of the model calculated under this method is about 93.3%,which validates the proposed model.Practices have proved that the combination of ANN and disaster events can provide sound prediction on geological hazards under complex conditions.  相似文献   

6.
The species-area relationship(SAR) is one of the most fundamental concepts in community ecology and is helpful for biodiversity conservation.However,few studies have systematically addressed this topic for different alpine grassland types on the Tibetan Plateau,China.We explored whether the plant composition of different functional groups affects the manner in which species richness increases with increasing area at scales ≤ 1.0 m~2.We also compared species richness(S) within and across forbs,legumes,sedges and grasses,with sampling subplot area(A) increasing from 0.0625 m~2 to 1.0 m~2 between alpine meadow and steppe communities.We applied a logarithmic function(S = b_0 + b_1 ln A) to determine the slope and intercept of SAR curves within and across functional groups.The results showed that the logarithmic relationship holds true between species richness and sampling area at these small scales.Both the intercept and slope of the logarithmic forbs-area curves are significantly higher than those for the three other functional groups(P 0.05).Forb accounts for about 91.9 % of the variation in the intercept and 75.0% of the variation in the slope of the SAR curve when allfunctional groups' data were pooled together.Our results indicated that the different SAR patterns should be linked with species dispersal capabilities,environmental filtering,and life form composition within alpine grassland communities.Further studies on the relationship between species diversity and ecosystem functions should specify the differential responses of different functional groups to variations in climate and anthropogenic disturbances.  相似文献   

7.
The distribution of trace metals in remote alpine region is an effective way to understand the impacts of regional human activity and vegetation on the alpine ecosystem. In this study, the concentrations of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in the soils of Gongga Mountain, Eastern Tibetan Plateau, were investigated to reveal their seasonal and spatial distribution and enrichment state, and to decipher the effects of atmospheric deposition and vegetation on their distributions among five vegetation zones. The results showed that the concentrations of Cd, Pb, and Zn were higher in the O horizon than in other horizons despite the seasonal changes, whereas Cu was enriched in the C horizon. The enrichment states of the metals studied in the soils decreased in the order of Cd > Pb > Zn > Cu. Cd and Pb were mainly sourced from atmospheric deposition; Zn was from both atmospheric deposition and parent materials, whereas Cu was mainly from parent materials. Seasonally, the trace metals were generally higher in May and December but lower in September, implying the impact of vegetation on the distribution of trace metals under the plant uptake and the litter decomposition. Spatially, the higher enrichment of Cu, Pb, and Zn in the soils existed in the mixed broadleaf-coniferous forests and coniferous forests (approximately 3000 m above sea level). The results suggested that atmospheric deposition and biological processes are main factors controlling the seasonal and spatial distribution of trace metals in the soils of the remote alpine ecosystem.  相似文献   

8.
The implementation of pasture contracting policies in the Tibetan Plateau has been of widespread concern in the scientific community and related government departments. Studying the effects of the implementation of pasture contracting policies will help us understand herders' attitudes toward those policies and to amend existing policies effectively. This paper analyzes 135 herder families' grazing management behavior using participatory rural appraisal (PRA), quantitative analysis and a Logistic regression model in three townships of Nagqu County in remote areas of the Tibetan Plateau, China. The results show that the herders have become settled and are no longer nomadic, so the settlement project has basically been completed and the policy of contracting for grazing rights is being gradually implemented in Nagqu County. Since the grazing rights and pastures were under contract, group-based management has been widely accepted in this area, which helps the herders deal with constraints, such as limited pasture area, a small grazing radius, controlled family animal husbandry and an uneven distribution of water. The herders that have more family members available for labor, higher proportion of family members with good health, and higher income from animal husbandry tend to choose household-based management. Herders tend to choose group-based management when higher quality winter pastures are available.  相似文献   

9.
青藏高原向北东方向扩展的方式及最新扩展边界的位置,是目前青藏高原东北缘构造变形研究的热点.基于近年来对阿拉善地块南缘及邻区活动构造运动特征调查和定量研究结果,重点总结了阿拉善地块南缘活动断裂几何图像及运动特征,指出以前普遍认为的稳定阿拉善地块内部在新生代晚期发育了一系列规模不等、运动性质各异的活动断裂,这些活动断裂是青...  相似文献   

10.
11.
青藏高原东南缘位于印度板块与欧亚板块侧向汇聚部位,是检验碰撞造山动力学模型的理想场所。尽可能全面收集该区已有地球物理和新生代岩浆岩数据,探讨这些资料对碰撞造山带结构和物质组成的指示。结果表明:青藏高原东南缘不同部位的壳幔结构和组成存在较大差异。兰坪—思茅地块、保山地块和腾冲地块等的中地壳(15~30 km深度)普遍发育低速层,表明富水层或者部分熔融物质的存在,为青藏高原物质向东南流动提供了可能。部分熔融产物以大型剪切带内具有高Sr、低Nd同位素特征的淡色花岗岩脉为代表。但是,扬子板块同等深度下却发育高速层,其组成很可能是峨眉山玄武岩,它的存在阻隔了碰撞带物质向东流动。扬子板块和兰坪—思茅地块下地壳底部均出现呈条带状展布的高速体。根据新生代具有高Sr、低Y的岩石显示的下地壳源区特征,结合该区地质演化历史,将上述两套呈条带状展布的高速体分别解释为新元古代铁镁质弧岩浆岩和二叠纪—三叠纪铁镁质弧岩浆岩。青藏高原东南缘地幔各向异性存在明显南、北分区特征,在26°N以北表现为SN向,在26°N以南表现为近EW向。这一差异跟俯冲的印度板片撕裂有密切关系。该撕裂在综合地球物理剖面上显示为突变的印度板片俯冲角度,在地表表现为苦橄岩、煌斑岩、埃达克岩以及淡色花岗岩等的集中出露。这一新模型明显区别于前人的岩石圈拆沉和对流减薄等作用。  相似文献   

12.
This paper presents an assessment of the Soil and Water Assessment Tool(SWAT) on a glaciated(Qugaqie) and a non-glaciated(Niyaqu) subbasin of the Nam Co Lake. The Nam Co Lake is located in the southern Tibetan Plateau, two subbasins having catchment areas of 59 km~2 and 388 km~2, respectively. The scores of examined evaluation indices(i.e., R~2, NSE, and PBIAS) established that the performance of the SWAT model was better on the monthly scale compared to the daily scale. The respective monthly values of R~2, NSE, and PBIAS were 0.94, 0.97, and 0.50 for the calibration period while 0.92, 0.88, and -8.80 for the validation period. Glacier melt contribution in the study domain was simulated by using the SWAT model in conjunction with the Degree Day Melt(DDM) approach. The conjunction of DDM with the SWAT Model ensued improved results during both calibration(R~2=0.96, NSE=0.95, and PBIAS=-13.49) and validation (R~2=0.97, NSE=0.96, and PBIAS=-2.87) periods on the monthly time scale. Average contribution(in percentage) of water balance components to the total streamflow of Niyaqu and Qugaqie subbasins was evaluated. We found that the major portion(99.45%) of the streamflow in the Niyaqu subbasin was generated by snowmelt or rainfall surface runoff(SURF_Q), followed by groundwater(GW_Q, 0.47%), and lateral(LAT_Q, 0.06%) flows. Conversely, in the Qugaqie subbasin, major contributor to the streamflow(79.63%) was glacier melt(GLC_Q), followed by SURF_Q(20.14%), GW_Q(0.13%), and LAT_Q(0.089%). The contribution of GLC_Q was the highest(86.79%) in July and lowest(69.95%) in September. This study concludes that the performance of the SWAT model in glaciated catchment is weak without considering glacier component in modeling; however, it performs reasonably well in non-glaciated catchment. Furthermore, the temperature index approach with elevation bands is viable in those catchments where streamflows are driven by snowmelt. Therefore, it is recommended to use the SWAT Model in conjunction with DDM or energy base model to simulate the glacier melt contribution to the total streamflow. This study might be helpful in quantification and better management of water resources in data scarce glaciated regions.  相似文献   

13.
To improve our knowledge of glacier change in the Tanggula Mountains located in the northeast of the Tibetan Plateau, we delineated outlines of the glaciers in 1991 and 2015 using Landsat TM/OLI images and compared them with the reported glacier data in the First Chinese Glacier Inventory in 1969 and the Second Chinese Glacier Inventory in 2007. These comparisons showed that the glacier area and ice volume decreased by 524.8 km~2 and 37 km~3, respectively. The majority of the glacier area loss was concentrated in the area class of 1-5 km~2, between 5300 m and 5500 m in elevation, on north and east facing slopes and in the Dam Qu River basin. These glacier changes exhibited spatial and temporal differences. The glacier retreat rategradually increased from 1969 to 2015, and the rate in the east was higher than that in the west. From 1969 to 2015, the warming rate in the Tanggula Mountains was 0.38°C/10 a, while the annual precipitation only increased by 0.4%. The slight increase in the amount of precipitation made a limited contribution to glacier change, while the change in temperature led to noticeable shrinkage of the glaciers. Contrary to the retreat or stagnation of most glaciers in the study area,there were 10 glaciers that experienced clear advance in 1986-2015 with noticeable increases in both area and length. Whether or not these 10 glaciers are surge glaciers requires further study.  相似文献   

14.
Itisoneofthefrontierfocusesinthefieldofglobleenvironmentalchangestoextractquantitativelypastclimaticsignalsfromlakesedimentrecords.Inthere-centdecadciousyearsaseriesofachievementsonre-buildingthesequencesofclimaticandenvironmentalevolutionsatvariouss…  相似文献   

15.
Soil microbial communities are primarily regulated by environmental temperature. Our study investigated the effects of global warming on soil microbial community composition as measured via phospholipid fatty acid (PLFA) analysis and soil chemical characteristics in relation to soil depth in a dragon spruce plantation and a spruce-fir-dominated natural forestin the Eastern Tibetan Plateau. Open-top chambers were utilized to increase the soil and air temperature. Soil samples were collected from the 0-10 cm, 10-20 cm, and 20-30 cm layers after a 4-year warming. Our results showed that the soil microbial community and the contents of TC (Total carbon), TN (Total nitrogen), NO 3 - , and NH 4 + responded differently to warming in the two contrasting forests, especially at the 0-10 cm soil depth. Warming increased soil microbial biomass at the 0-20 cm depth of soil in natural forest but reduced it at the 0-10 cm depth ofsoil in the plantation. In contrast, the TC and TN contents were reduced in most soil layers of a natural forest but increased in all of the soil layers of the plantation under warming conditions. This result suggested that the effects of warming on soil microbial community and soil C and N pools would differ according to soil depth and forest types; thus, the two contrasting forests would under go differing changes following the future climate warming in this region.  相似文献   

16.
It is over 110 years since the term Mass Elevation Effect(MEE) was proposed by A. D. Quervain in 1904. The quantitative study of MEE has been explored in the Tibetan Plateau in recent years; however, the spatial distribution of MEE and its impact on the ecological pattern of the plateau are seldom known. In this study, we used a new method to estimate MEE in different regions of the plateau, and, then analyzed the distribution pattern of MEE, and the relationships among MEE, climate, and the altitudinal distribution of timberlines and snowlines in the Plateau. The main results are as follows:(1) The spatial distribution of MEE in the Tibetan Plateau roughly takes on an eccentric ellipse in northwestsoutheast trend. The Chang Tang Plateau and the middle part of the Kunlun Mountains are the core area of MEE, where occurs the highest MEE of above 11℃; and MEE tends to decreases from this core area northwestward, northeastward and southward;(2) The distance away from the core zone of the plateau is also a very important factor for MEE magnitude, because MEE is obviously higher in the interior than in the exterior of the plateau even with similar mountain base elevation(MBE).(3) The impacts of MEE on the altitudinal distribution of timberlines and snowlines are similar, i.e., the higher the MEE, the higher timberlines and snowlines. The highest timberline(4600–4800 m) appears in the lakes and basins north of the Himalayas and in the upper and middle reach valleys of the Yarlung Zangbo River, where the estimated MEE is 10.2822℃–10.6904℃. The highest snowline(6000–6200 m) occurs in the southwest of the Chang Tang Plateau, where the estimated MEE is 11.2059°C–11.5488℃.  相似文献   

17.
青藏高原城镇体系的时空演变   总被引:1,自引:0,他引:1  
城镇体系的形成和发育对区域城镇化进程及社会经济发展起着至关重要的作用,并对生态环境产生重要影响。青藏高原特殊的地理环境与相对落后的社会经济基础,导致城镇体系不甚健全。目前国内外相关研究薄弱,不利于国家生态安全屏障建设及青藏高原可持续发展。为此,本文以建制镇以上的镇区和城市市区为研究对象,结合统计数据与遥感数据,借助GIS空间分析方法对青藏高原1990-2015年城镇体系的空间结构和规模结构进行时空演变格局分析,并采用重心移动模型揭示了青藏高原城镇人口规模和用地规模重心的迁移规律。结果表明:青藏高原城镇空间分布总体呈现出“东南密集、西北稀疏”、“大分散、小集聚”的格局;城镇分布在时间上具有阶段性增长特征且总体趋于集聚,在空间上不均衡程度呈上升趋势但2005年后明显减缓;虽然建制镇数量大幅增长,但96.88%的城镇规模在5万人以下,大中小城市发育不足;城镇人口规模重心呈现“先向西南,再向东北,又向西南”的移动轨迹;城镇用地规模重心呈现“先向东南,再向西北,再向东北”的迁移趋势。本文研究了青藏高原城镇体系的规模结构及其时空演变特征,为青藏高原新型城镇化及城镇空间格局优化提供基础依据;提出了资料缺乏和统计口径不一致的条件下城镇规模的合理估算方法,对我国城镇化相关研究具有一定的参考价值。  相似文献   

18.
Variations in the fractions of biomass allocated to functional components are widely considered as plant responses to resource availability for grassland plants. Observations indicated shoots isometrically relates to roots at the community level but allometrically at the species level in Tibetan alpine grasslands. These differences may result from the specific complementarity of functional groups between functional components, such as leaf, root, stem and reproductive organ. To test the component complementary responses to regional moisture variation, we conducted a multi-site transect survey to measure plant individual size and component biomass fractions of common species belonging to the functional groups: forbs, grasses, legumes and sedges on the Northern Tibetan Plateau in peak growing season in 2010. Along the mean annual precipitation (MAP) gradient, we sampled 7o species, in which 2o are in alpine meadows, 20 in alpine steppes, 15 in alpine desert-steppes and 15 in alpine deserts, respectively. Our results showed that the size of alpine plants is small with individual biomass mostly lower than 1.0 g. Plants keep relative conservative component individual responses moisture functional fractions across alpine grasslands at the level. However, the complementary between functional components to variations specifically differ among groups. These results indicate that functional group diversity may be an effective tool for scaling biomass allocation patterns from individual up to community level. Therefore, it is necessary andvaluable to perform intensive and systematic studies on identification and differentiation the influences of compositional changes in functional groups on ecosystem primary services and processes.  相似文献   

19.
Stream temperatures are sensitive to climate change and runoff regime variations. A comprehensive understanding on the effects of glacial melting on the stream temperatures are important in the Tibetan Plateau, of which contains the largest ice volume outside Polar Regions. This study documented the high-resolution stream temperature thermal regimes from glacier-fed and non-glacial rivers at four sites, versus a high-resolution glacier mass balance monitoring at Zhadang glacier, during summer melt seasons from 2007-2009 in the Nam Co basin of southern Tibetan Plateau. The results showed mean summer stream temperature and magnitude of daily thermal variation were lower at all sites when compared with alpine glacierized environments at lower latitudes. Mean stream temperatures for glacier-fed rivers(4.0℃ to 6.5℃)were minimum and least variable near the glacier terminus with increasing toward downstream(+0.13℃ km~(–1) to +0.28℃ km~(–1)). Meanwhile, stream temperature in 2008 was similar to that in 2007 and2009. For the non-glacial rivers, mean stream temperatures was about 9.0℃ with significantly warmer in summer months in 2009 and 2007 than that in 2008. These differences indicated that stream temperature was strongly influenced by discharge and precipitation. Particularly, the glacier mass balance played a large role on the stream temperature directly when the glacier melt contributed more than 50% of the glacial river runoff. Our results demonstrated the stream thermal variability from southern Tibetan rivers and provided new insight into the influence of glacier mass balance on stream thermal variability in high-altitude river system.  相似文献   

20.
冰湖溃决灾害是指冰湖坝体突然破坏引发溃决洪水或溃决泥石流的现象,对下游人类活动和自然环境造成严重影响。近年来,藏东南地区冰川快速退缩,冰湖数量和规模显著增加,冰湖溃决事件广泛发生。基于1995-2021年多时相Landsat系列遥感影像、Sentinel-2A遥感影像,结合RAMMS水文动力学模型方法,对藏东南地区多依弄巴流域内冰湖、冰川进行动态变化分析,模拟冰崩危险体触发冰湖溃决和冰湖溃决泥石流的演进过程,根据泥石流模拟中的流速和流深对冰湖溃决可能影响的区域进行危险性分区。结果表明:流域内冰川面积由1995年的14.05 km2退缩为2021年的9.43 km2,年均退缩率约为0.15 km2/a。流域内共发育3处冰崩危险体,均可能触发冰湖溃决。潜在危险冰湖在全溃情况下,溃决泥石流会冲出沟口堵塞然乌湖湖口和帕隆藏布主河道,对下游居民和道路造成影响,影响范围约4.05 km2,其中高危险性区域约2.55 km2。危险性评价结果可为多依弄巴流域未来土地利用规划和防灾减灾提供依据,也能为藏东南地区冰湖溃决型泥石流危险评估提供参考。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号