首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用欧洲数值预报中心(ECMWF)发布的第一代全球分辨率ERA-Interim再分析数据,分析了1979~2014年天山山区水汽含量和云水含量的空间分布特征。结果显示:(1)水汽含量的高值中心出现在伊犁河谷地区,中心值域在10—11kg m-2之间,低值区位于天山中部的巴音布鲁克附近,中心值域在5—6kg m-2之间;夏季水汽含量最丰富,在8—11kg m-2之间。(2)云液水含量的高值区出现在博格达山北坡,而云冰水含量的高值区在西天山海拔较高的托木尔峰地区,低值区均在伊犁河谷等海拔低的地区;夏季云液水含量、云冰水含量均呈减少趋势,云冰水含量较云液水减少的更为明显,下降速率为0.28kg kg-1/10a;(3)垂直分布上,云液水含量在600hpa左右的高空出现高值区,中心最大值为10kg kg-1;云冰水含量的高值区则出现在500hpa左右的高空,为11kg kg-1;在对流层大气中云冰水含量值远大于云液水,且云冰水发展的高度较云液水更高。  相似文献   

2.
利用NASA/CERES发布的2001~2015年云参数资料,选取高层云、雨层云、层积云的云水含量和云粒子有效半径,统计分析了西南地区云参数的时空分布特征和变化趋势。结果表明:从年均空间分布来看,西南地区液水和冰水含量均东部高于西部,海拔低的地区高于海拔高的地区;高层云和雨层云液相和冰相云粒子有效半径在川西高原最大。从数值大小来看,雨层云液水和冰水含量最多,分别介于90~230 g/m2和100~300 g/m2,层积云最少,分别介于0~80 g/m2和0~60 g/m2;冰相云粒子有效半径高于液相2~6 μm。从季节分布来看,雨层云液水和冰水含量秋季和冬季偏高,夏季和春季偏少,高层云和层积云季节差异较小;液相云粒子有效半径均夏季最大。从变化趋势来看,西南地区各地液水和冰水含量均呈减少趋势,液相和冰相云粒子有效半径有呈减少或增加趋势。  相似文献   

3.
利用欧洲数值预报中心(ECMWF)发布的第一代全球分辨率ERA-Interim再分析数据,分析了1979—2014年天山山区水汽含量和云水含量的空间分布特征。结果显示:(1)水汽含量的高值中心出现博罗科努山迎风坡,中心值域在10~11 mm之间,低值区位于天山中部的巴音布鲁克附近,中心值域在5~6 mm之间;夏季水汽含量最丰富,在8~11 mm之间。(2)云液水含量的高值区出现在博格达山北坡,而云冰水含量的高值区在西天山海拔较高的托木尔峰地区,低值区均在伊犁河谷等海拔低的地区;夏季云液水含量、云冰水含量均呈减少趋势,云冰水含量较云液水减少得更为明显,下降速率为0.28×10-3 g·kg~(-1)/10 a;(3)垂直分布上,云液水含量在600 h Pa左右的高空出现高值区,中心最大值为10×10~(-3) g·kg~(-1);云冰水含量的高值区则出现在500 h Pa左右的高空,为11×10~(-3) g·kg~(-1);在对流层大气中云冰水含量值远大于云液水,且云冰水发展的高度较云液水更高。  相似文献   

4.
基于WRF数值模式,采用Lin微物理方案,对中国南方地区一次冷锋降水过程进行模拟试验,并用CloudSat观测数据对模式模拟的云量、云液态水和云冰水含量的垂直分布特征进行检验。结果表明:模式模拟云量的垂直分布范围小于CloudSat观测到的分布范围,模拟的云量在低空往往出现缺失,模式可以较好地模拟出CloudSat探测到的深对流云的分布,但对零散分布的小尺度云团模拟效果较差;模式模拟的云液态水分布范围也小于CloudSat观测到的分布范围,云液态水含量值略低于CloudSat观测值,对CloudSat观测的云液态水含量值较低的区域,模式往往不能模拟出云液态水的存在;模式模拟的云冰水垂直分布特征与CloudSat观测结果较为一致,特别是对冰水含量大值中心的位置模拟效果较好,但模式模拟的云冰水含量值远低于CloudSat观测值。整体来看,模式对云冰水垂直分布的模拟效果优于对云液态水的模拟,但Lin微物理方案对云液态水和云冰水的模拟还需进一步改进与完善。  相似文献   

5.
中国地区夏季6~8月云水含量的垂直分布特征   总被引:2,自引:4,他引:2  
杨大生  王普才 《大气科学》2012,36(1):89-101
基于观测资料的夏季云水含量时空分布情况对于数值天气预报、气候预测以及人工影响天气试验都十分重要。本文利用CloudSat卫星资料, 分析了2006~2008年中国地区夏季月平均云水含量的垂直和区域变化特征。结果显示, 青藏高原地形以及东亚夏季风对月平均云含水量分布具有明显影响。中国中部纬度上对流层中层的月平均液态水含量比南部及北部的量值大。各月平均云液水含量垂直廓线存在两个不同高度上的峰值区, 原因可能主要是受大尺度参数的控制, 以及受到青藏高原和东亚季风环流的影响。平均冰水含量纬向垂直分布的高值区主要在对流层中上部。本文中所揭示的云水含量特征为天气和气候模式改进、人工影响天气及云—辐射相互作用提供了重要的基础信息。  相似文献   

6.
利用欧洲中期数值预报中心(ECMWF)发布的第5代全球大气再分析资料(ERA5),结合中国气象局人工影响天气中心发布的CWR-MEM方案云水资源监测评估方法,对广西区域2009—2018年云水资源进行评估研究,结果表明:广西年均云水资源总量约5107.8×10^(8)t,其中年均空中留存云水总量约1422.2×10^(8)t,云水以区域内生成为主,年均约净输出197.1×10^(8)t云水资源。广西云水资源存在明显的季节变化特征,呈单峰分布,夏季6月最高,冬季2月最低,空中留存云水无明显季节变化。广西云水水平分布总体呈东北部高,向西和向南逐渐降低的分布特征。广西秋、冬和春季云水主要分布在低层925~600hPa,是以液相水滴构成的暖性层状云云水为主,夏季云水则主要分布在中层600~400hPa,是以过冷液水滴和冰相粒子构成的混合态云水为主,低层云水显著减少。  相似文献   

7.
利用欧洲中期天气预报中心(ECMWF)发布的新一代全球分辨率ERA-Interim再分析数据,用九点平滑、一元线性回归法分析了1979-2016年中国云水量时空分布特征和变化趋势。结果表明:(1)中国云水含量和云液水含量大值区主要位于四川东部-湖南850~500 h Pa,量值达0. 015~0. 045 g·kg~(-1),这一分布与该地区层状云的富集有关。云冰水含量大值区主要位于中东部地区(27°N-35°N,97°E-110°E) 500~250 hPa,量值达0. 006~0. 025 g·kg~(-1)。三者小值区均位于西北地区西部。(2)中国多年平均整层云水量无明显线性趋势。春季云水量呈略减少,秋、冬季呈略增加趋势,夏季无明显趋势。云水量有明显年际变化,夏季年际变化远小于其他季节;干旱区、半干旱区整层云液态水含量的年际变化大于湿润区,云冰水含量相反。云水量空间变化呈西增东减趋势。(3)云水量大值区对应水汽输送辐合和低层上升运动,且对流层中低层水汽通量散度可在一定程度上表征云水含量。从而为认识和理解气候变化对中国水资源的影响提供一定依据。  相似文献   

8.
毫米波雷达测云个例研究   总被引:7,自引:2,他引:7  
云参数是影响降水和大气辐射过程的重要因子,但对云参数的遥感探测存在许多困难。利用35GHz的毫米波雷达进行云探测,并进行云参数反演研究,反演了云水含量、冰水含量和云滴有效直径的垂直廓线,得到了6类云况的垂直分布。结果表明:1)不同类型的云具有不同的云参数分布;2)在低于-15dBz的非降水云情况下,反演的云水含量及云滴有效直径较可靠;3)雷达探测的线性退偏振比因子,可以用于判别云中的过冷却水和冰晶,有助于更好了解云的宏微观特征。  相似文献   

9.
观测分析表明对流云中水云重要,而层状云中冰云重要。因此,提出了一个基于液水路径和冰水路径阈值划分对流-层状降水的新方案。液水路径和冰水路径的值可以通过线性回归方程由不同AMSU微波通道(23.8、31.4、89、150 GHz)的亮温计算得出。通过对由TOGA COARE试验资料作为强迫场的二维云分辨模式的模拟结果的分析,对该划分方案进行讨论。若液水路径大于1.91 mm或冰水路径大于1.70 mm,则划分为对流降水;相反,则划分为层状降水。通过对地面降水收支的分析表明,该划分方案是具有物理意义的。   相似文献   

10.
本文选用2007年1月—2010年2月的Cloud Sat卫星94 GHz探测资料(2B-GEOPROF)对淮河流域混合云出现频率、云高以及含水量分布规律进行了研究。研究结果表明:(1)混合云出现频率和云高具有显著的季节性变化特征,均表现为夏季值高、冬季低;(2)Cloud Sat 2B-CWC-RO反演产品在假设混合云冰水混合比与云内温度(-20~0℃)成线性关系条件下反演的液态水含量(LWP)与地面观测值相差较大,本文利用冰水混合比与云内温度成指数函数关系反演的LWP更接近地面观测值;(3)反演的LWP具有明显的季节分布特征,其季节平均值夏秋季高、春冬季低。混合云随着LWP值的增加,其对应的雷达反照率因子范围和出现的高度层越来越集中,混合云在对流层中下层的出现频率随LWP的增加而增多,出现频率高值区及其分布的高度层也具有明显的季节性特征,并与混合云零度层高度有密切关系。  相似文献   

11.
使用WRF模式中的Morrison,WSM6,SBM,P3四种微物理方案的集合,模拟中尺度对流系统降水过程.研究发现不同的微物理方案模拟的对流云区液态含水量,冰水含量的垂直分布各不相同,而模拟的层状云区液态含水量,冰水含量的垂直分布结果相似.总的来说与其他方案相比,Morrison方案和集合平均的结果最接近观测值.我们...  相似文献   

12.
河北省层状云降水系统微物理结构的飞机观测研究   总被引:15,自引:10,他引:15  
对4架次飞行个例的PMS资料进行综合分析,发现河北省春季层状云降水系统存在不均匀性,表现之一为较强降水云带。1991年5月25日的个例在飞机上升和下降过程中两次在2000m左右探测到较强的云内逆温,逆温层顶下方存在云水含量的峰值。对1992年6月20日两次个例的冷云的冰晶尺度、冰水含量(IWC)、冰晶浓度和液水含量(IWC)的垂直分布进行了分析。对两次个例的云中可播性进行判别,发现潜力区占云区的1/2左右,有时存在大片强可播区。  相似文献   

13.
利用2007~2010年北半球夏季(6~8月)CloudSat卫星搭载的云廓线雷达(Cloud Profile Radar,CPR)探测结果对0°~60°N区域单层、双层和三层云系的水平分布、垂直结构特征及各云层云类组成、云水路径等物理量分布进行分析。云量的统计结果表明CPR探测的单层、双层和三层云系的云量分别为36.63%、8.26%和1.40%,云量的水平分布表明其高值区主要位于对流旺盛区域,且高值区的云层云顶高、厚度大,而低值区则多位于副热带高压区域。对不同云类的出现频率统计分析结果表明,单层云系中各云类的出现频率相近;多层云系的上层以卷云为主,下层以层积云为主。对比海陆差异发现洋面卷云和层积云的出现频率显著高于陆面,但高层云和高积云的出现频率低于陆面。云水路径分析表明,单层云系的冰水路径和液水路径均最大,而在多层云系中云层越高、厚度越大、冰水路径越大,液水路径则随着云层的降低增大。  相似文献   

14.
二维粒子形状分类技术在云微物理特征分析中的应用   总被引:2,自引:0,他引:2  
本文介绍了一种针对飞机粒子探测系统中云二维图像探头开发的二维粒子形状分类技术。该技术利用粒子形状几何参数特征把云粒子分为8种类型,分别为微小状、线形状、聚合状、霰状、球状、六角形状、不规则状和枝状。同时结合冰水质量关系,给出了探头液水含量和冰水含量的计算方法。最后应用该技术对2006年4月6日一次飞机探测获取的数据进行了云微物理结构分析,聚合状、霰状、六角形状、不规则状的总出现频率为78%,其中霰状粒子的出现频率随着温度的降低而增加。非降水云中的液水含量、液滴粒子浓度、冰晶浓度明显小于降水云,非降水云中液水含量的平均值为0.01 g m-3,冰水含量的平均值0.007 g m-3,冰晶粒子浓度的平均值为11.9 L-1。  相似文献   

15.
回流天气系统层状云的非均匀性   总被引:5,自引:1,他引:4  
利用一次回流天气过程的PMS资料,从微物理结构上对回流天气系统层状云的不均匀性进行了分析,发现飞机在进入较强降水云带时,云物理量(液水含量、云滴浓度、云滴平均直径,温度)等会产生剧烈变化,表现为液水含量跃增、云滴浓度快速增大、云滴谱谱宽拓宽、温度下降等,在同一较强云带中,温度变化不大并且比周围低,较强降水云带冰晶含量丰富,自然催化较好。  相似文献   

16.
根据果洛地区玛沁、玛多、甘德、达日、久治和班玛六县历年3—10月平均降水量的分布规律以及受地形抬升等因素的影响分析,表明果洛地区云水资源丰富,适宜大规模开发利用,并得出人工催化的最佳时段和开发空中云水资源的有利条件。  相似文献   

17.
利用中国气象局人工影响天气中心研发的云参数卫星反演系统反演得到的产品,结合地面自动站观测资料,对2009年9月19—20日降水过程的云参数及地面雨量进行对比分析。结果发现:云顶高度、云顶温度、过冷层厚度和云光学厚度对本次降水过程指示性不强,而云粒子有效半径及云液水路径对降水有较好的指示作用,且云液水路径指示作用更强,二者的变化超前于地面降水30min到1h;云液水路径及云粒子有效半径大值区与地面雨量的大小呈正相关,云液水路径值大于400g.m-2及云粒子有效半径大于27μm区域与地面雨强中心位置基本一致。掌握云参数的演变规律,有助于监测、识别大范围人工影响天气作业条件和分析可播区。  相似文献   

18.
1997年7—11月,用单点双波长地基微波辐射计对西安上空的降水云作汽态水、液态水的连续探测,分析发现云中水汽和液水含量在降水开始前有明显变化。将变化的时间轴转化成空间轴,得到:在云的降水区前有一较宽的液水含量高值区,在高值区和降水区连接处存在一液水含量低值区。云的总降水量与高值区的水汽和液水含量值有一定关系,参数Rk代表云的可降水潜力,当Rk大于2.7时,云才有被人工催化增雨作业的潜力;Rk大于3.5时,人工增雨效率最高。  相似文献   

19.
台风眼壁及周围螺旋云带云属性垂直分布研究   总被引:1,自引:0,他引:1  
选取2006—2010年间CloudSat监测到热带气旋中心的7个案例,利用CloudSat和其它A-Train卫星的反演数据,主要分析了台风眼壁及周围螺旋云带的云微物理属性的垂直分布并给出了初步的概念模型。结果表明,云中冰水分布在5 km以上高度。冰粒子等效半径随云高度增加呈减小趋势,大值区主要分布在5~10 km高度,7个热带气旋的最大值为171.7~226.6 μm;冰粒子数浓度随云高度增加呈增大趋势,大值区分布在13 km以上高度,7个热带气旋的最大值为550~2 148 个/l;冰水含量随云高度增加呈先增后减的趋势,大值区分布在8~15 km高度,7个热带气旋的最大值为986.0~4 009.0 mg/m3。云中液态水分布在0.5~9.0 km高度。液态水粒子等效半径大值区分布在3~9 km高度,7个热带气旋的最大值为19.1~29.4 μm;液态水粒子数浓度大值区分布在6 km以下高度,7个热带气旋的最大值为93~117 个/l;液态水含量大值区分布在5 km左右高度,7个热带气旋的最大值为659.0~2 029.0 mg/m3。台风或超强台风阶段,云体最大高度存在于台风眼壁,眼壁云高可达17~18 km;近地表降水率、冰水柱含量的高峰值大多存在于台风眼壁区域,其中眼壁区域的近地表降水率可超过20.0 mm/h,冰水柱含量可超过9.1 kg/m2。7个热带气旋的垂直降水率和液态水柱含量值分别小于11.3 mm/h和2.7 kg/m2。   相似文献   

20.
"催化-供给"云降水形成机理的数值模拟研究   总被引:12,自引:9,他引:12  
洪延超  周非非 《大气科学》2005,29(6):885-896
利用含有详细微物理过程的一维层状云模式模拟,研究了2002年4月5日冷锋降水性层状云云系中"催化-供给"云的微物理结构、降水粒子形成的环节和微物理过程,并从降水形成的环节和云的结构分析人工增雨的条件.结果说明,"催化-供给"云具有显著的分层结构:云内高层是冰晶,下层是雪,接下来是霰和过冷云水组成的冰水混合层,最下方是云中暖区的液水层.作为催化云层的冰水层对降水的贡献约25.5%,冰水混合层为31.3%,液水层为43.1%,亦即供给云对降水的贡献约74.4%.具有"催化-供给"云结构的层状云降水形成的主要环节是:冰晶通过凝华增长转化成雪,雪撞冻过冷云水、收集冰晶和凝华增长转化形成霰,霰靠撞冻过程、收集雪过程长大,从而形成可以降落到云的暖区融化形成雨水的粒子,它对降水的贡献较大.凝华和撞冻增长过程是冰粒子增长的主要物理过程,也是雨水产生的重要过程."催化-供给"云体系是重要的人工增雨条件,云中水汽对雨水形成的贡献与过冷云水几乎相当,与过冷云水一样,水汽也是人工增雨的重要条件.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号