首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
上海市大气颗粒物与能见度的关系   总被引:6,自引:0,他引:6       下载免费PDF全文
大气能见度成为当前区域大气环境研究的重要指标,不同粒径的颗粒物对能见度的影响有着显著的区别。本研究在线连续监测了上海市嘉定区2008年11月—2009年1月不同粒径大气颗粒物质量浓度和粒子数浓度的日变化,同步收集了相同区域空气水平能见度的数据。比较不同粒径大气颗粒物质量浓度与空气水平能见度和颗粒物消光系数的相关性,结果表明:中值粒径为0.4 μm和0.65 μm的大气颗粒物对上海嘉定空气水平能见度的影响最显著;中值粒径为0.17 μm、0.26 μm、0.40 μm和0.65 μm的大气颗粒物对颗粒物的消光系数影响较大。该相关系数的分布趋势与各种组分(SO42-、NO3-、NH4+、OC和EC)的粒径分布十分一致,证明了这五种组分是影响大气颗粒物消光系数的重要原因。  相似文献   

2.
南京霾天颗粒物数浓度特征及其受气象条件影响分析   总被引:5,自引:3,他引:2  
2013年12月,我国中东部地区爆发持续性霾污染过程。本研究利用空气动力学粒径谱仪和气溶胶粒径谱仪在线观测这次霾污染过程中13.6~20 000 nm颗粒物数浓度,结合气象参数和颗粒物化学组分对南京霾天颗粒物数浓度分布特征,及其与气象条件相关性进行分析。结果表明,霾天颗粒物主要分布在积聚模态,且500~1 000 nm和1 000~2 500 nm粒径段颗粒物数浓度的增多是造成霾天能见度低的主要原因;随着相对湿度的增大,13.6~100 nm粒径段颗粒物数浓度逐渐降低,而大于100 nm颗粒物数浓度升高;500~1 000 nm和1 000~2 500 nm粒径段颗粒物数浓度受相对湿度的影响尤为明显,并且这2个粒径段颗粒物受气态污染物(SO2,NOX)的二次转化影响较大。霾污染期间南京大气颗粒物主要来自南京东南和西北方向的污染源排放,颗粒物数浓度总体上与风速呈负相关关系;温度对颗粒物数浓度的影响主要集中在13.6~100 nm粒径段;边界层的高度与粒径100 nm颗粒物呈负相关性,边界层的抬升反而利于超细粒子的生成和增长;逆温层的强度对超细粒子的作用更为明显。  相似文献   

3.
保定市大气颗粒物中含碳组分粒径分布   总被引:5,自引:0,他引:5  
北京-天津-河北地区工业城市保定大气颗粒物(Particulate matter,PM)污染严重,保定大气颗粒物尤其是细粒子和超细粒子污染严重,其中含碳组分具有重大贡献,PM1.1、PM2.1和PM2.1-9.0中含碳气溶胶总量(total carbonaceous aerosols,TCA)分别占到(49±20)%、(45±19)%和(19±7)%。PM9.0中的含碳气溶胶主要富集在PM2.1乃至PM1.1中。颗粒物浓度谱分布及含碳气溶胶富集量呈显著季节变化,由于采暖过程秋冬季各粒径段有机碳(organic carbon,OC)和元素碳(elemental carbon,EC)的浓度均增加,秋、冬季节细颗粒物中OC浓度可高达44.0±38.3、78.5±30.2μg m-3,EC浓度分别为3.5±1.6、8.5±6.8μg m-3。各个季节OC和EC在总悬浮颗粒物(total suspended particulate,TSP)中的几何平均直径(geometric mean diameter,GMD)均集中在较小粒径段。粗颗粒物中OC的GMD在春夏季较高,秋季减少,而冬季最低。而粗颗粒物中EC的GMD则是冬季最高,夏季最低。保定0.4μm的颗粒物中OC/EC比值4个季节的水平较为稳定,春、夏、秋、冬季OC/EC比值分别为5.2、3.5、4.1和5.4,来源主要为交通和燃煤。其余几个粒径段的颗粒物的来源更为复杂,其来源主要为燃煤、木材和生物质。  相似文献   

4.
李星敏  陈闯  董自鹏  董妍  杜川利  彭艳 《气象》2018,44(7):929-935
利用西安泾河和长安的气象观测资料、陕西秦岭大气科学试验基地气溶胶粒子谱观测资料及西安市环境保护局颗粒物质量浓度观测资料,分析了气象条件对关中颗粒物粒径谱的影响,结果表明:关中特殊的地形影响和严重的颗粒物污染是霾易发的主要原因;混合层高度与PM_(2.5)质量浓度具有较明显的负相关关系,秋、冬季混合层高度高有利于颗粒物污染的扩散。不同方向上风速变化对颗粒物浓度的影响体现了西北气流对关中颗粒物污染的扩散作用和偏东气流对颗粒物污染的输送。高相对湿度有利于稳定层结的维持和污染物集聚,当相对湿度≤80%时,粒径在150nm~1.0μm的粒子的数浓度,随着相对湿度的增大明显增加,对降低能见度、形成雾-霾有重要作用。不同粒径段粒子的数浓度随相对湿度的变化不同,对能见度的影响也不同;相对湿度越大,湿度对降低能见度的贡献越大。  相似文献   

5.
采用电迁移率粒径谱仪SMPS 3936对颗粒物数浓度及其谱分布进行了实时监测,对2013年兰州市国际马拉松赛交通管制期间细颗粒物浓度及其谱分布特征开展研究,并通过多元对数正态分布拟合和主成分分析方法分别对数浓度谱特征及其影响因素进行了分析,以阐明2013年兰州国际马拉松赛期间交通管制对细颗粒物浓度及其谱特征的影响。气象条件相似的交通限行期间,交通限行日50~100 nm,100~200 nm和200~500 nm粒径段颗粒物数浓度均较正常周六有所降低,特别是50~200nm粒径段颗粒物表现最为显著,在此期间,交通限行日50~100 nm和100~200 nm粒径段平均颗粒物数浓度分别为2567.5±807.4 cm-3和1567.8±193.8 cm-3,分别较正常周六相应时段低60.2%和67.2%。交通限行对颗粒物数浓度的影响主要集中在107 nm为峰值粒径的积聚模态附近,而气象条件对10~300 nm粒径段颗粒物数浓度均有较显著的影响,最大影响在80 nm附近。  相似文献   

6.
北京大气气溶胶中碱性成分的研究   总被引:3,自引:0,他引:3  
采用7级冲击式分级采样器采集北京春秋季大气气溶胶样品,研究不同粒径颗粒物的可溶碱性成分,详细分析了钙盐和镁盐作为碱性组分的作用,表明可以采用可溶碱性钙盐代表颗粒物的可溶碱性组分即颗粒物对降水的酸中和能力。比较春、秋两季的结果,春秋季各级颗粒物中碱性钙盐占酸溶钙盐的比例基本恒定,1~7级粒径由大至小该比例分别为0.84、0.76、0.71、0.59、0.53、0.57、0.28,随着粒径增大而增大。这表明碱性钙盐及酸溶钙盐的粒径分布不随季节变化,且碱性钙盐主要分布于粗粒子中。最后,计算了北京春秋季各级颗粒物中的碱性钙盐量。  相似文献   

7.
丁净  姚青  郝囝  刘敬乐  蔡子颖  韩素芹 《气象》2023,(1):99-109
大气颗粒物粒径谱分布不仅受到温度、湿度和风等气象因素影响,也与湍流等边界层特征密切相关。基于2018年11月同步观测的14.6~660.0 nm颗粒物粒径谱和相关气象数据,探讨不同气象因子,特别是湍流对颗粒物粒径谱分布的影响。研究结果表明:气温升高有利于促进核模态颗粒物总数浓度的增加,相对湿度升高可减少核模态和爱根模态颗粒物的总数浓度,同时增加积聚模态的颗粒物总数浓度。风速、湍流动能、摩擦速度、湍流强度等增加,对爱根模态和积聚模态的颗粒物起稀释、清除作用,但可促进核模态颗粒物总数浓度的增长。与湍流日变化相反,爱根模态和积聚模态的颗粒物总总数浓度的日变化呈现昼低夜高的变化趋势,清洁日核模态颗粒物总数浓度在午后持续增加,并在傍晚前达到峰值。核模态颗粒物总数浓度的增加相对于湍流的发展存在时间上的滞后性,当湍流发展3~5 h后,核模态颗粒物总数浓度开始明显增加。  相似文献   

8.
空气中颗粒物的危害及其防治   总被引:1,自引:0,他引:1  
颗粒物是大气中危害最大的污染物,按粒径大小它又分为降尘、TSP(总悬浮颗粒物)、PM10(可吸入颗粒物)、粗颗粒物和细颗粒物。总悬浮颗粒物是直径小于100μm的颗粒物,按粒径大小,它可分为好多种。我们在电视上每日见到的空气质量公报中的颗粒物这一项,是以对人体健康有显著危害的PM10来计算的,因为它可以通过呼吸进入人体的上、下呼吸道,所以名为PM10。  相似文献   

9.
城市降水酸度分布与气溶胶水冲刷   总被引:2,自引:0,他引:2  
黄世鸿  张国君 《气象科学》1989,9(2):177-183
在湖南省邵阳市工业区测量表明,该区颗粒物含量处于相当高的水平,颗粒物的主要水溶性成分为Ca~(2 )、SO_4~(-)、NO_3~-、NH_4~ 和Na~ 。Ca~(2 )在大颗粒(dp>9.0um)富集度最高,而SO_4~(2-)在小颗粒(dp<2.0um)中最丰富。所有尺度的颗粒都具有中和酸的能力,随粒径增大而提高。讨论表明,颗粒物水冲刷对雨滴化学成分和酸度的影响对直径小于2000um的雨滴是相当灵敏的,这种影响主要由大颗粒提供。讨论结果与降水成分的监测资料相一致。气溶胶水冲刷机制有效地解释了城市酸雨频率的规律分布。  相似文献   

10.
利用2014年5—7月西安南郊地区电称低压冲击器(ELPI)30 s分辨率的连续在线大气可吸入颗粒物数浓度的观测资料,并结合同期移动式自动气象站的降雨量、风向和风速等气象观测数据,研究西安南郊地区夏季降雨和风对可吸入颗粒物的去除作用。结果表明:2014年5—7月西安南郊地区持续性中雨对各粒径段可吸入颗粒物的去除效果均较好,短时持续性中雨可造成粗粒子模态颗粒物数浓度增加,持续性小雨对核模态和爱根核模态中粒径较小的组分去除效果不明显,间断性小雨对可吸入颗粒物无去除效果。西安南郊地区夏季主导风向为偏东风,但可吸入颗粒物主要来源于偏西方向,2014年5—7月西安南郊地区风速小于3.0 m·s-1以下的低风速出现频率较高,不利于污染物扩散;风速小于5.4 m·s~(-1)时,核膜态颗粒物数浓度随风速增加而增大,其他模态颗粒物数浓度随风速增加而减小;5.5—7.9 m·s~(-1)风速对各模态颗粒物均具有较好的去除效果.  相似文献   

11.
使用差分淌度粒径分析仪(TDMPS)和空气动力学粒径分析仪(APS)对上甸子区域本底站气溶胶(直径3nm~10μm)数谱分布特征进行观测。利用2008年的观测结果,分析了不同天气(包括沙尘天气、干洁天气和雾霾天气)条件下大气气溶胶数谱分布及其与气象要素和气团来源的关系。结果表明,沙尘天气条件下,上甸子站受西北方向的气团控制,风速较大,粗粒子数浓度明显增加,PM10的质量浓度可以迅速增加到毫克每立方米(mg·m-3)的量级。典型的"香蕉型"新粒子生成事件通常发生在比较干洁晴朗的天气条件下,西北气团主导,大气中背景气溶胶数浓度较低,核模态气溶胶数浓度迅速增长,气溶胶的粒径呈现明显的增长过程,核模态可以平稳地增长到约80nm,达到成为云凝结核的尺度。雾霾天气通常是在西南气团影响下,细颗粒物(1μm以下)不断累积、相对湿度不断升高的条件下发生的。雾霾天气条件下数谱分布的几何中值粒径出现在积聚模态,积聚模态数浓度也高于非雾霾天。个例研究表明,雾霾天气条件下,PM2.5质量浓度可以达到非雾霾天的10倍左右,其中以细颗粒物的贡献为主。在雾霾天气条件下,上甸子站数浓度较高的积聚模态颗粒物主要来自城区的传输,因此对背景地区气溶胶数谱的研究可以为解析城区气溶胶复杂来源提供依据。  相似文献   

12.
PM2.5是指悬浮于空气中粒径小于等于2.5μm的颗粒物,由于对大气环境质量和人体健康的影响而备受关注。但是PM2.5是字母词,一直没有统一的中文名称,媒体和学界使用的名称较混乱,大多直接用“PM2.5”,也有用“细颗粒物”“可入肺颗粒物”“空气细颗粒物”等。  相似文献   

13.
2002年北京风沙季节颗粒物测值分析   总被引:1,自引:2,他引:1  
为了了解风沙季节的颗粒物浓度特征,特别是在风沙天气来临前后颗粒物浓度的变化,2002年春季分别在北京的延庆和观象台进行了连续的颗粒物观测,并对观测资料进行了较为详细的统计分析。结果表明:在风沙季节,沙尘天气出现前后的颗粒物浓度变化幅度非常显著,对环境质量的影响明显增大;TSP与PM10,PM10与PM2.5的相关性非常显著,线性关系好。沙尘天气对不同粒径颗粒物浓度贡献的增加在33%~86%之间。  相似文献   

14.
南京北郊冬季大气气溶胶及其湿清除特征研究   总被引:18,自引:0,他引:18  
利用WPS(宽范围颗粒粒径谱仪)、雨滴潜仪和雾滴谱仪测量了2007~2008年冬季南京北郊大气气溶胶数浓度谱分布和降水强度,分析了气溶胶粒子的分布特征以及气溶胶粒径与湿清除系数的关系.结果表明:气溶胶粒子具有明显的双峰型R变化特征,数浓度主要集中在0.02~O.2μm粒径范围内,受汽车尾气排放、混合层高度变化以及颗粒物水平输送的影响较大.降雨、降雪和雾过程都对气溶胶粒子有不同程度的清除,降雨和浓雾对核模态和粗模态的气溶胶粒子的清除能力显著,降雪对粒径小于0.03μm的气溶胶粒子的清除能力较强.  相似文献   

15.
Unification is both necessary and challenging for studying atmospheric particle systems, which are polydisperse systems containing particles of different sizes and shapes. A general framework is proposed to realize the first order generalization. Within this generalized framework, (1) atmospheric particle shapes are unified into self-similar fractals; (2) a self-similar particle is characterized by various power-law relationships; (3) by combining these power-law relationships for a single particle with Shannon’s maximum entropy principle and some concepts in statis-tical mechanics, unified maximum likelihoood number size distributions are of the Weibull form for atmospheric particle systems. Frontier disciplines (e. g., scaling, fractal, chaos and hierarchy) are argued to provide potential “tools” for such unification. Several new topics are raised for future research.  相似文献   

16.
灰尘自然沉降量(简称降尘量)是衡量大气环境质量的重要指标之一,是指大气中粒径在10μm以上、由于重力作用能迅速下沉的颗粒物,它直接影响人类的生活环境和身体健康。所以了解一个地区降尘量的特点和产生的原因,采取适当的措施减少降尘量,改善大气环境质量,具有重要的实际意义。  相似文献   

17.
基于2015、2016年河南省环境监测中心站获取的郑州市9个监测点颗粒物浓度和逐日气象数据,对气象因素和颗粒物浓度相关性进行了研究。结果表明:郑州市大气颗粒物浓度受季节影响较强,总体呈现冬季高、夏季低的趋势。降水量与大气颗粒物浓度呈现明显的负相关。相对湿度的增高不利于PM_(2. 5)浓度的降低,而PM_(10)的浓度则随着相对湿度的增高有所降低。春夏秋三季的主要风向为东北偏东,当春季风为东南风和西风时,颗粒物浓度最低;当夏季风为东北偏东风时,颗粒物浓度最低;秋季吹东北风时,颗粒物浓度最低。冬季吹西北风(郑州冬季盛行风向)时,大气颗粒物质量浓度最低。  相似文献   

18.
利用2014年本溪市大气颗粒物质量浓度监测资料和风速、气温、相对湿度、气压等常规地面气象要素观测资料,分析了本溪地区大气颗粒物质量浓度的月、季变化特征及其与气象要素的相关性。结果表明:2014年7月和10月本溪市大气颗粒物质量浓度较高,5月和9月大气颗粒物质量浓度较低,6月和11月大气颗粒物质量浓度比值较高。夏季PM10质量浓度较低,平均浓度为115.1μg·m~(-3);冬季PM_(2.5)和PM_(1.0)质量浓度较高,平均浓度分别为99.5μg·m~(-3)和86.1μg·m~(-3)。春季和冬季平均风速与大气颗粒物质量浓度的相关性最好,夏季和冬季相对湿度与大气颗粒物质量浓度的相关性最好。当ρ(PM_(2.5))≥200.0μg·m~(-3)时,ρ(PM_(2.5))与平均气温呈显著的正相关关系,相关系数为0.5288,ρ(PM_(2.5))与相对湿度的相关系数也高达0.6981,高温、高湿和小风等气象条件是本溪地区大气颗粒物高质量浓度事件发生的有利气象条件。  相似文献   

19.
基于2015年秋末冬初华北地区频繁出现的大范围重污染天气过程,利用无人直升机搭载的气溶胶采样装置和激光粒子计数器对北京顺义及房山地区近地面大气颗粒物进行探测,分析了重雾霾天气大气颗粒物的质量浓度和数浓度廓线及其分布特征。结果表明:北京地区重雾霾天气过程粒径小于1.0μm的气溶胶数浓度随高度变化不明显,粒径大于1.0μm的气溶胶数浓度随高度呈弱的减小趋势,说明重污染天气条件下近地面层大气颗粒物的粒子数相对稳定,亚微米级气溶胶数浓度较高,而粗粒子气溶胶数浓度较低。基于无人直升机搭载的气溶胶采样装置采集的气溶胶样品的质量浓度廓线表明,50 m高度大气颗粒物质量浓度较高,最大浓度达700μg·m-3。  相似文献   

20.
太湖及与湖岸城市间大气颗粒物分布特征分析   总被引:1,自引:0,他引:1  
汤天然  袁马强  曹芳 《气象科学》2016,36(6):819-825
利用冬季连续2 d在两种气象条件下分别环绕太湖对湖泊近无锡区域、湖心区域、近西山岛区域和近苏州区域近湖层的PM0.5、PM2.5和PM10进行质量浓度观测,并通过分析同期相应气象资料(包括高空和地面风场、流场以及湖面站点的水平垂直风向风速等气象数据),探讨湖泊区域内外颗粒物浓度变化的时空特征以及受气象条件变化的影响。研究表明:第1天当天气为晴转阴且无雾时,由于湖面本身缺乏密集强排放源,以及因湖面大气上升运动较强使颗粒物容易被扩散稀释,且受偏东转东南气流所带来的气团较干净影响,湖面湖心区域和离岛区域颗粒物浓度明显低于上游城市;而在第2天当天气为雾时情况则相反,由于湖面大气较弱的上升运动使得大气颗粒物不容易被扩散稀释,且湖泊强大的水汽源影响有助于气溶胶和颗粒物的生成进而使得湖面颗粒物浓度大于周围城市。此外还发现在两种天气下,颗粒物浓度都存在无锡区域最高,湖心区域次之,苏州区域较低的特征。并且,在雾天不同粒径颗粒物间变化的相关系数更高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号