首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
山东省短时极端强降水研究   总被引:2,自引:0,他引:2  
高留喜  李静  刘畅  刁秀广 《气象科技》2014,42(3):482-487
利用1999—2011年4—10月全省大监自动站逐时降水观测资料,采用排序法、正态变换法(Z指数法)、平方根变换法等3种计算阈值的方法,计算了山东短时极端强降水的阈值,采用不同方法会得出不同的阈值。传统排序法计算的结果更接近实际,最后采用此法计算结果确定山东省及5个分区短时极端强降水阈值。结果显示:鲁东南、鲁中、鲁西北地区阈值大,鲁西南和半岛地区阈值小,特别是鲁西南地区阈值最小。鲁西北、鲁西南、鲁东南、鲁中和半岛南部易出现短时极端强降水,半岛北部短时极端强降水较少。短时极端强降水出现的偶然性大,极端强降水出现次数与年平均降水量没有明确关系。7、8月是防范短时极端强降水的关键时期。  相似文献   

2.
利用青藏高原边坡临夏地区6个国家级自动气象站和66个乡镇区域自动气象站2010—2019年5—9月逐小时降水资料,详细分析了临夏地区短时强降水的时空分布及海拔地形特征,结果表明:近10 a短时强降水频次总体呈上升趋势,短时强降水频次与西太副高脊线位置和北界位置有密切关系。短时强降水主要发生在5—9月,集中时段为7月中旬到8月中旬,19:00~23:00为高发时段,属于傍晚型和夜雨型。近10 a临夏地区短时强降水的极端性逐年增大,单站年均频次在0.2~2.6次之间,平均为0.8次,短时强降水空间分布差异较大,总体呈西南多、东部和北部少,山区多、川区少的分布特征。临夏地区降水分布与海拔高度有明显关系,5—9月平均降水量随海拔高度升高而增大,不同海拔地形下短时强降水频次分布呈现两个极端:海拔较高的山地喇叭口地形区域和海拔较低的河谷地区,是临夏地区汛期短时强降水的重点关注区域。  相似文献   

3.
目的】为分析铜仁区域短时强降水极端阈值及分布特征。【方法】利用铜仁区域内10个国家级台站2006—2022年3—11月逐日逐时降水资料,分别挑选1 h、2 h、3 h降水极值和次极值进行升序排列,基于第95个百分位的基本方法综合判定阈值,通过常规统计结果判定其分布特征。【结果】1 h降水量≥25 mm、2 h降水量≥40 mm、3 h降水量≥50 mm均可作为铜仁区域短时强降水的阈值。松桃是铜仁市短时强降水的高值中心,江口为次中心。西部5县和东部的万山6月份为短时强降水高发月份;东部松桃、碧江、玉屏7月为高发月份,江口以8月为主。铜仁区域短时强降水主要集中在5—8月,占总日数的84.4%,且67.3%的短时强降水以单站形式出现,短时强降水的局地性明显。铜仁发生短时强降水以夜间为主,江口最为明显,短时强降水夜间频数与短时强降水总频数之比达到84.9%,夜间短时强降水量与短时强降水总量之比达到86.5%,短时强降水较降水总量的夜雨性更为明显。【结论】该研究对深入了解铜仁区域短时强降水作了有益的探索,对科学制定强降水“三个叫应”指标和防灾减灾具有一定的指导意义。  相似文献   

4.
为了解云南短时强降水发生前本地化中尺度WRF(Weather Research Forecast)模式输出结果的物理量特征及其对短时强降水预报的作用,使用WRF模式对2016年云南主汛期(6—8月)5次短时强降水过程进行模拟,利用模式输出的高时空分辨率资料计算5次过程中85个样本在短时强降水发生前6 h水汽类、动力类及不稳定条件类的部分物理量值,使用箱线图分析各物理量的分布特征及其与短时强降水的关系,应用经验累积分布函数图确定各物理量的阈值。研究表明,水汽类物理量样本数据值分布较为集中,随着短时强降水的临近数值逐渐增大;动力类的6 km垂直风切变中位数值及平均值随时间变化很小,所有时次的6 km垂直风切变阈值均低于12 m/s,表明短时强降水发生前有弱垂直风切变;不稳定条件类中对流有效位能样本数据的离散程度较大,对短时强降水无指示意义;LI指数、K指数和700 hPa假相当位温样本数据离散度较小,其中K指数中位数值、平均值及阈值的上下限在短时强降水发生前1 h有显著增大的特征,且数据集中度达到最高,大的K指数值与短时强降水有较好的对应关系。使用物理量阈值推算短时强降水落点的方法对云南本地化WRF模式短时强降水的预报性能有改进作用。  相似文献   

5.
基于物理量参数的江苏短时强降水预报模型的研究   总被引:2,自引:0,他引:2  
沈澄  孙燕  魏晓奕  尹东屏 《气象》2016,42(5):557-566
本文利用2004—2013年6—8月江苏省三个常规探空站(徐州、射阳、南京)的逐日高空探测资料,计算了51个物理量参数。在物理量参数与短时强降水事件(观测时刻后0~6 h内出现的短时强降水天气)相关系数的显著性检验基础上,根据物理量参数在短时强降水样本和非短时强降水样本中值域分布特征,最终选定了具有预报意义的16个物理量参数。通过分析不同类型物理量参数对短时强降水天气的指示作用,根据各物理量参数在各月短时强降水事件中的阈值,确定了江苏短时强降水预报的判定指标。采用隶属函数转换法,建立江苏夏季短时强降水预报模型,经实况拟合检验,效果良好。  相似文献   

6.
利用甘肃兰州地区144个区域自动站和国家站2010—2018年4—9月逐小时降水资料和地理信息数据,详细分析了兰州市短时强降水的时空分布特征,探讨短时强降水频次与地形因子的关系。结果表明:兰州市短时强降水的阈值为10 mm·h~(-1),短时强降水事件主要发生在7月下旬至8月,21:00—22:00是集中高发时段;短时强降水频次空间分布不均,总体呈南多北少的分布格局,各站虽有显著差异,但未发生明显离散,符合正态分布,且与海拔高度、迎风坡向及坡度等地形因子显著相关,短时强降水高发区主要集中在山谷喇叭口、南风迎风坡、城市热岛区、高寒山区。  相似文献   

7.
基于2018~2019年5~9月和2020年8月四川地面观测降水数据(含区域自动站),结合同时段西南区域模式08时起报的各要素场资料,开展了模式预报短时强降水开始时间的订正方法—最小偏差和订正法的本地化研究,并运用该方法对2020年8月强降水事件的开始时间进行了订正检验。结果表明:最小偏差和的订正法可以确定强降水开始时间相关物理因子订正阈值及最优阈值百分比;从2020年8月强降水的订正效果来看,该方法对短时强降水开始时间有一定的订正能力,强降水开始时间偏差减少2~8 h。  相似文献   

8.
利用临夏19802016年强降水实况资料及EC数值预报产品资料,分析了临夏地区强降水气候变化特征及其影响条件。结果表明:临夏强降水分布具有明显的地域特点,自北向南递增,北部旱区的少,西南部山区的多。临夏强降水年、月、日特征变化显著。2000s是强降水的高峰期,1980s强降水相对较少;7、8月份强降水发生概率占全年强降水的66.1%;强降水发生属于典型的夜雨型和午后傍晚型,夜间(20:0024:00)强降水发生概率最高,为30.8%~53.8%,其次为凌晨(01:0008:00),发生概率为14.3%~36.4%。临夏强降水发生主要有中高纬西风带冷槽或冷涡型、青藏高原低值系统型、副热带高压影响型。对西宁、兰州、合作三站累计频率阈值计算和检验结果表明,杰弗逊指数阈值为80,符合率为100%;沙氏指数阈值为4,符合率为79%;改进K指数阈值为10,符合率为79%。  相似文献   

9.
大连地区短时强降水天气特征及预报指标研究   总被引:1,自引:0,他引:1  
利用2004—2013年4—10月大连地区7个气象站和249个自动气象站逐小时降水观测数据及常规气象观测数据,对大连地区短时强降水的时空分布特征及气候特征、演变趋势和环流背景进行了分析,并建立了强降水天气预报指标。结果表明:2004—2013年大连地区各气象站短时强降水年平均发生次数为2.2—2.8次,南部和东部地区短时强降水年平均发生次数呈略增多的趋势,中部和西北部地区短时强降水年平均发生次数变化较小,中北部地区短时强降水年平均发生次数呈略下降的趋势。大连地区短时强降水最早出现在4月,最晚出现在10月,7—8月为短时强降水集中出现的月份,强降水多出现在02—10时。短时强降水发生次数具有明显的区域分布特征,由东部向中部和西部呈递减的趋势,大连东北部地区短时强降水发生次数最多,南部地区次之,西北部瓦房店地区短时强降水发生次数最少;其中7月北部地区短时强降水发生次数最多,8月东部地区短时强降水发生次数最多,其他月份短时强降水发生次数较少,说明大连地区短时强降水发生分散性较强。925hPa与850hPa平均比湿、700hPa温度露点差、850hPa与500hPa温度差平均值、K指数平均值、0℃层平均高度及暖云层平均厚度等参数阈值可用于短时强降水实际预报业务中,可为大连地区强降水预报提供参考。  相似文献   

10.
利用2008—2018年地面自动站逐小时降水资料,统计分析重庆短时强降水的时空分布特征,结果表明:1)重庆短时强降水高频中心在西部合川,东北部开州、巫溪和云阳,东南部酉阳、秀山地区,均毗邻陡峭山脉,地形抬升和特殊地形对降水有增幅作用;2)短时强降水主要集中在6—8月,7月为峰值期,20~30 mm/h和30~50 mm...  相似文献   

11.
利用东营2011—2018年自动气象站逐小时降水量资料,分析东营地区短时强降水的发生规律,包括短时强降水的空间分布和年、月、日以及强度变化特征。结果表明:东营地区短时强降水呈现西北部多南部少的分布特征;短时强降水年变化无明显规律,降水范围越大,出现次数越少;月分布呈单峰状,7—8月是多发月份,4—10月均有短时强降水发生;日变化呈波浪型,出现高峰时段在傍晚前后。东营地区产生短时强降水的天气系统可分为西风槽型、副高边缘型、切变线型、高空冷涡型、台风型等5种类型,其中切变线型出现次数最多,并给出了这5 种类型的天气学概念模型,同时得出不同范围和不同类型短时强降水过程关键环境参量的阈值。  相似文献   

12.
运用2010—2018年夏季阿勒泰地区区域自动站逐时降水量及阿勒泰站探空资料,统计分析短时强降水过程的T-logP形态及关键环境参数特征,以集合预报箱形图确定关键环境参数阈值。结果表明,阿勒泰地区短时强降水T-logP图形态可分为整层湿和上干下湿2种类型;主要出现在沿山、山麓、山区地带和乌伦古湖南部附近;6月下旬至7月下旬多发,午后至傍晚较易发生;造成该地区夏季短时强降水的环境参数多表现为7月最大,6月最小,说明7月更有利于短时强降水的发生;该地区夏季短时强降水的发生表现为一定的不稳定层结、露点温度维持在10℃左右,垂直风切变为中等偏弱,CAPE值较小;通过对各环境参数箱形图分析,总结归纳出该区短时强降水总体阈值。从而为阿勒泰地区夏季短时强降水潜势预报提供参考依据。  相似文献   

13.
选用山东 123 个国家级地面气象观测站 2007—2019 年地面逐小时降水资料,分析短时强降水分布特征,主要结论如下:1)其间共有 695 个短时强降水日、3 337 个短时强降水时次和 6 257 个短时强降水样本,基于排序法确定山东省极端短时强降水间值为 71.2 mm ? h-1,鲁东南地区间值最高,鲁中地区间值最低。2)各站年均发生 3.9 次短时强降水天气,鲁东南地区短时强降水和极端短时强降水发生频次最多,半岛地区短时强降水发生最少,鲁西南地区极端短时强降水发生最少。3)短时强降水集中出现在 6 月中旬至 8 月下旬,又以 8 月上旬最多。4)日变化显著,呈现典型 “双峰” 特征,主要集中在午后至傍晚,其次是后半夜;6 月中旬至 8 月下旬傍晚和后半夜发生短时强降水的可能性大,需重点关注。  相似文献   

14.
基于1991-2013年呼伦贝尔市汛期(6-8月)16站逐小时降水资料,分别定义各站点小时降水量的短时强降水阈值,同时利用经验正交函数(EOF)分析方法揭示呼伦贝尔市短时强降水变化特征。分析结果表明:短时强降水阈值、强降水事件以及汛期年平均总降水量和强降水雨强均呈现自西向东部偏南方向递增的空间分布,最强中心位于东南部阿荣旗,其形成与地形关系密切。短时强降水占汛期总降水量百分比低于1/5,短时强降水发生频率最低的地区出现84.2mm/h的强降水事件。短时强降水事件具有明显年代际变化, 21世纪以来,短时强降水事件发生频率表现增加趋势,空间分布表现为自东北向西南方向传播。7月下旬是短时强降水事件频发的时段。短时强降水有明显日变化特征,主峰出现在17时。EOF分析结果显示短时强降水事件在空间上表现出全市强降水具有同步性以及南部和北部地区反相位的特征。  相似文献   

15.
利用2012—2021年海南岛323个地面气象观测站逐小时降水资料及ERA5高分辨率资料,统计分析了海南岛近10 a的极端短时强降水时空分布特征,利用合成分析法探讨了产生极端短时强降水的环流背景。结果表明:海南岛极端短时强降水每年约为422.3次,占短时强降水的8%。极端短时强降水的季节和日变化明显,多发生在4—10月的午后(14:00—19:00),8月站次最多,近10 a发生极端短时强降水的站次最多为11次,出现在海南岛西北部。极端短时强降水日变化呈单峰型,峰值出现在17:00,为每年62.1次。午后发生极端短时强降水的平均降水强度较大,均值为67.8 mm·h-1,峰值为111.5 mm·h-1。海南岛极端短时强降水年、暖季(4—9月)的空间分布有两个高发地区,为海南岛西北部和东部沿海地区,暖季的天气系统是影响海南岛极端短时强降水的主要天气系统。海南岛极端短时强降水逐月空间分布差异与海陆风、地形均有密切关系,各月触发条件不同,7—8月极端短时强降水相对较多。  相似文献   

16.
基于2016—2019年防城港市自动气象站小时雨量,结合地形分析短时强降水时空分布特征,结果表明:十万大山南北两侧短时强降水次数从北到南递增,大值区位于十万大山南侧的迎风坡及喇叭口地形;各月的短时强降水的分布有差异,短时强降水主要发生在4—9月,6月短时强降水分布不均匀,7—8月短时强降水最强盛;受对流日变化、低空急流、海陆风等影响,短时强降水日变化特征明显,前汛期市南部短时强降水高峰期出现在清晨、市北部出现在凌晨和午后,后汛期市南部出现在清晨和午后、市北部出现在午后到傍晚,非汛期短时强降水出现的时段呈多峰值态势。  相似文献   

17.
侯淑梅  孙敬文  孙鹏程  谷山青  邱粲  刘程 《气象》2020,46(2):200-211
利用2008—2017年4一10月山东省加密自动气象观测站(简称全部站)和国家气象观测站(简称国家站)逐小时1 mm以上降水量资料,通过对比分析,探究不同分辨率数据对极端短时强降水时空分布特征的刻画效果。结果表明如下:全部站小时降水量的偏态特征比国家站明显,若分析小时降水量的平均状态,两者均具有代表性,若分析短时强降水的极端性,全部站数据更具有优越性。将各站第99.5%分位数作为极端短时强降水的阈值最合理,全部站和国家站对于30~45 mm阈值的空间分布特征相似,45 mm以上的阈值,全部站的数值和范围均大于国家站。山东省大部地区的极端短时强降水强度集中在40~60 mm·h~(-1),全部站和国家站在此区间的空间分布特征相似。国家站数据不能刻画40 mm·h~(-1)以下和60 mm·h~(-1)以上的极端短时强降水的空间分布特征。极端短时强降水强度的空间分布特征与地理位置及地形特征密切相关。鲁东南地区的极端短时强降水强度、日最大降水量及夏季降水量、年降水量均居山东省之首,鲁西北地区虽然强降水频次高、强度大,但与年降水量和夏季降水量没有正相关关系。全部站与国家站极端短时强降水频次的月变化和日变化特征一致,但国家站不能完全代表山东省极端短时强降水强度的月变化和日变化平均状况,全部站数据能更准确地反映山东省的时间变化特征。  相似文献   

18.
选取2010~2019年4~9月成都市气象观测站逐小时降水资料和欧洲中心ERA-5逐小时再分析资料,采用统计分析和统计预报方法,研究了近十年成都市短时强降水时空分布特征,并依据短时强降水发生发展的基本条件,基于“配料法”思想,探讨了成都市短时强降水概率预报方法。结果表明:成都市短时强降水事件集中于暖季(4~9月),其中又以7月为最多,并呈明显夜间多发的态势。降水量与降水强度空间分布表现出西多东少特征。筛选出的短时强降水潜势预报因子包括850 hPa比湿、850 hPa假相当位温、K指数、对流有效位能、700 hPa经向风以及700 hPa垂直速度,基本涵盖了短时强降水发生所需的水汽条件、稳定度条件以及抬升条件。基于上述短时强降水潜势预报因子的权重系数,采用二分法建立短时强降水概率预报方程,利用TS评分对2019年夏季的短时强降水日潜势预报效果进行检验,发现概率阈值设定为0.98既能保证漏报次数不会太多,又不至于使预报正确次数明显降低,同时可以保持较高的预报准确率。  相似文献   

19.
利用内蒙古119个国家气象站逐小时降水量及常规的日降水量资料对2012—2015年内蒙古出现的短时强降水及大雨以上天气情况从时空分布、出现概率、降水比率等多方面进行了比较全面的统计。分析了内蒙古短时强降水的时空分布特征,特别是得出了内蒙古短时强降水发生时段,以及短时强降水在整个大到暴雨过程中所占比例等方面的特点,为预报员认识内蒙古短时强降水活动情况提供有利的参考。分析得出:短时强降水在时间、空间以及降水量级上的分布极不均匀,主要发生在6—8月,7月最多;短时强降水主要出现在午后到傍晚时段,集中在15—17时,尤其17时最多;短时强降水多出现在日降水在6h之内(含6h),占短时强降水发生总数的57%;短时强降水的降水比率相当高,有84%的短时强降水过程中短时强降水雨量占当日降水总量的50%以上,39%的占当日降水总量的80%以上;短时强降水受地形增幅影响极大,内蒙古东部偏东的大兴安岭东侧和西中部阴山山脉南侧均为短时强降水多发区。  相似文献   

20.
基于2019—2021年4—9月北京快速更新数值预报系统(CMA-BJ)产品以及北京地区地面气象站逐时降水实况,从表征水汽条件、热力和能量条件以及动力条件的多个物理量中筛选出在有无降水、是否强降水情形中有显著差异的物理量作为因子,采用配料法和模糊逻辑算法构建北京地区0~12 h时效逐小时短时强降水概率预报模型。以2019—2021年4—9月最优TS评分和偏差评分的概率值和组合反射率因子为确定性预报的概率阈值和消空处理阈值,运用该预报模型对2022年4—9月每日4次0~12 h预报时效北京地区短时强降水产品进行预报和检验。结果表明:北京地区短时强降水TS评分和偏差评分分别为0.104和1.341,预报效果明显优于CMA-BJ预报产品。概率预报模型能够有效提升强降水高发地区,即山前及平原地区的短时强降水预报技巧,获得较为平衡的命中率和空报率,但对山区预报技巧的提升有限。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号