首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
The single region of ongoing star formation in the galaxy IC 1613 has been observed in order to reveal the nature of compact emission-line objects at the edges of two shells in the complex, identified earlier in Hα line images. The continuum images show these compact objects to be stars. Detailed spectroscopic observations of these stars and the surrounding nebulae were carried out with an MPFS spectrograph mounted on the 6-m telescope of the Special Astrophysical Observatory. The resulting stellar spectra were used to determine the spectral types and luminosity classes of the objects. Of star we identified the only object of this spectral type in IC 1613. The results of optical observations of the multishell complex are compared to 21-cm radio observations. The shells harboring the stars at their boundaries constitute the most active part of the star-forming region. There is evidence that shocks have played an important role in the formation of the shells.  相似文献   

2.
We have used observations of the galaxy IC10 at the 6-m telescope of the Special Astrophysical Observatory with the SCORPIO focal reducer in the Fabry-Perot interferometer mode and with the MPFS spectrograph to study the structure and kinematics of ionized gas in the central region of current intense star formation. Archive VLA 21-cm observations are used to analyze the structure and kinematics of neutral gas in this region. High-velocity wings of the Hα and [SII] emission lines were revealed in the inner cavity of the nebula HL 111 and in other parts of the complex of violent star formation. We discovered local expanding neutral-gas shells around the nebulae HL 111 and HL 106.  相似文献   

3.
We present BVRI surface photometry of the late-type spiral galaxy NGC 3627. The distributions of the color indices and extinction-independent Q indices show that the observed photometric asymmetry in the inner part of the galaxy, including the bar, is due to an asymmetric distribution of absorbing material. The bluest regions of star formation are located in a ring surrounding the bar. The background-subtracted color indices of individual blue knots are used to estimate the ages of young stellar aggregates. In combination with previously published photometric data, our measurements indicate that the R-band profile of the disk is rather flat in its inner part (r<50″) and becomes steeper further from its center. We estimate the mass of the disk and dark halo by decomposing the rotation curve. The mass-to-light ratio M/L B for the stellar disk is ≈1.4. The galaxy possesses a massive dark halo; however, the mass of the disk exceeds that of the halo in the inner part of the galaxy, which displays a regular spiral structure.  相似文献   

4.
Seven early-type galaxies that are members of the massive X-ray group containing NGC 80 have been studied using two-dimensional spectroscopy with the 6-m telescope of the Special Astrophysical Observatory. We searched for evidence for the synchronous secular evolution of the galaxies in the group. The bulges of five of the seven galaxies appear to be old, with the average age of the bulge stars being 10–15 billion years. Signs of a relatively recent star-formation burst are observed in the small S0 galaxy IC 1548, whose average bulge age is 3 billion years and average core age is 1.5 billion years. A circumnuclear polar gas ring was also detected in this galaxy; in its outer regions, it makes a smooth transition to a gas disk that counter-rotates relative to the stars. IC 1548 probably underwent a close interaction, which resulted in its transformation from a spiral to a lenticular galaxy; the same interaction may also have induced the central burst of star formation. In the giant E0 galaxy NGC 83, a compact massive stellar-gas disk with a radius of about 2 kpc and very rapid rotation is observed, with ongoing star formation; the so-called “minor merger” is likely to have occurred there. We conclude that the NGC 80 group is in a state of formation, with the small NGC 83 subgroup “falling into” the large, old NGC 80 subgroup.  相似文献   

5.
We have developed a model for a spheroidal, ring-shaped galaxy. The stars move in a ring with an elliptical cross section at the 1: 1 frequency resonance. The shape of the cross section of the equilibrium ring depends on the oblateness of the galaxy itself, so that the ellipse of the ring cross section is radially extended when the oblateness of the galaxy is small. If the oblateness of galaxy exceeds some critical value, the ellipse cross section is extended along the Ox 3 axis. The shape of the ring cross section is circular for a galaxy with critical eccentricity. The stability of the ring over a wide range of perturbations is studied. A fundamental bicubic dispersion equation for the frequencies of small oscillations of a perturbed ring is derived. Application of the model to the ring galaxy NGC 7020 shows that its ring cross section should be approximately circular. Analysis of the dispersion equation demonstrates that stellar orbits in the arm are unstable (but the instability increment is small). We conclude that stars in the ring of this galaxy should drift from the 1: 1 resonance, and the ring itself should evolve.  相似文献   

6.
A number of features are detected outside the nebula NGC 6888, within 1.2° (30 pc) of the star WR 136, which can be explained in a two-phase stellar-wind model. These include regions with fine filamentary gas structure that do not contain sources of stellar wind, extended radial “streams,” ultra-compact HII regions with high-velocity gas motions, and high-velocity gas motions outside the envelope of NGC 6888. The two-phase wind consists of a rarefied component and dense compact condensations, or “bullets.” The bullets generate cylindrical shocks in the interstellar gas, resulting in the presence of high-velocity gas up 20–30 pc from the star, outside the cavity formed by the rarified component of the wind.  相似文献   

7.
The influence of close passages of galaxies on the shapes of disk galaxies and the distribution of stars in them is studied for several types of interactions in the framework of the restricted N-body problem. Depending on the conditions adopted, either two spiral density waves or ring structures are formed in the stellar disk of the galaxy. These structures can generate star formation fronts with the corresponding shape, as are observed in disk galaxies. Our calculations can also be applied to study the influence of the passage of a nearby star on a protoplanetary disk. The formation of ring structures there could specify the type of planet formation in the outer regions of the planetary system and the distribution of semimajor axes for the planetary orbits. We use the same model to study the generation and evolution of spiral density waves in the stellar disks of galaxies as a result of the recently found asymmetry of the gravitational potential in the massive dark haloes in disk galaxies. The dipole component of the gravitational field of the halo can continuously permanently generate the spiral structure in disk galaxies.  相似文献   

8.
Two-color photometric data obtained on the 6-m telescope of the Special Astrophysical Observatory are used to analyze the structure of 13 large disk galaxies in the NGC 80 group. Nine of the 13 studied galaxies are classified as lenticular galaxies. The stellar populations in the galaxies are very diverse, from old stars with ages of T > 10 billion years (IC 1541) to relatively young stars with ages of T ∼ 1–3 billion years (IC 1548, NGC 85); in one case, star formation is ongoing (UCM 0018+2216). In most of the studied galaxies, more precisely in all of them brighter than M B ∼ −18, two-tiered stellar disks are detected, whose radial surface-brightness profiles can be described by two exponential segments with different characteristic scales—shorter near the center and longer at the periphery. All of the dwarf S0 galaxies with single-tiered disks are close companions to larger galaxies. Except for this fact, no dependence of the properties of S0 galaxies on distance from the center of the group is found. Morphological signs of a “minor merger” are found in the lenticular galaxy NGC 85. Based on these last two results, it is concluded that the most probable mechanism for their transformation of spiral into lenticular galaxies in groups is gravitational (minor mergers and tidal interactions).  相似文献   

9.
The dynamics of the dust and gas in the tidal region of the M81 galaxy group have been analyzed, and the drift of the dust relative to the gas has been estimated, including the drift due to the action of radiation pressure from stars in M81. It is concluded that a large fraction of the gas in the tidal region is in the form of ionized hydrogen HII that shields the observedHI gas from the extragalactic Lyman continuum: the observed atomic gas could be only 10% of the total mass of gas. Only then it is possible to satisfactorily explain the excess dust abundance, which exceeds the Galactic value by a factor of six. By analogy, extended HI disks in galaxies with sizes appreciably larger than the stellar disks could be surrounded by HII envelopes with a comparable or greater mass. Such disks could play an important role in supporting prolonged star formation in galaxies with extended HI disks. Associated observational manifestations are discussed. Such HII envelopes outside HI disks could be detectable in absorption in Ly α and lines of ions of heavy elements.  相似文献   

10.
The paper reports the results of BV RI surface photometry of the giant galaxy NGC 5351 based on CCD observations obtained on the 1-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. Analysis of the structure and radial brightness distribution in the galaxy shows that NGC 5351 has a complex and, in some places, asymmetric structure. The galaxy possesses a large quantity of dust. The average internal extinction due to dust is AV=1.2m±0.4m. After correcting for the effect of this dust, the parameters of the galaxy are typical of late-type spirals. The compositions of the stellar population in various parts of the galaxy are estimated using two-color diagrams. Star-forming regions in NGC 5351 are identified and studied. Most of the star-forming regions are located in the ring of the galaxy. Evolutionary modeling is used to estimate the ages of regions of violent star formation. An elliptical companion galaxy to NGC 5351 was found. The rotation curve of the galaxy is modeled and its mass estimated. The disk of NGC 5351 is self-gravitating within its optical radius.  相似文献   

11.
Supernovae and gamma-ray bursts (GRBs) are among the brightest events in the universe. Excluding Type Ia supernovae and short GRBs, they are the result of the core collapse of a massive star with material being ejectedwith speeds of several 1000 km/s to nearly the speed of light, and with a neutron star or a black hole left over as the compact remnant of the explosion. Synchrotron radiation in the radio is generated in a shell when the ejecta interact with the surrounding medium and possibly also in the central region near the compact remnant itself. VLBI has allowed resolving some of these sources and monitoring their expansion in detail, thereby revealing characteristics of the dying star, the explosion, the expanding shock front, and the expected compact remnant. We report on updates of some of the most interesting results that have been obtained with VLBI so far. Movies of supernovae are available from our website. They show the evolution from shortly after the explosion to decades thereafter, in one case revealing an emerging compact central source, which may be associated with shock interaction near the explosion center or with the stellar corpse itself, a neutron star or a black hole.  相似文献   

12.
Ashimbaeva  N. T.  Colom  P.  Krasnov  V. V.  Lekht  E. E.  Pashchenko  M. I.  Rudnitskii  G. M.  Tolmachev  A. M. 《Astronomy Reports》2020,64(10):839-854
Astronomy Reports - We present the results of our observations of the star-forming region located in the Perseus arm and associated with the Sharpless nebula S231 in the lines of H2O at a...  相似文献   

13.
We examine the star-forming region in a molecular cloud with the coordinates l = 33.30°, b = 0.25° at a distance of 1.7 kpc, in which the nebula GM 2–30 is embedded. Apart from the previously known Herbig—Haro object HH 172, several new HH objects have been found, comprising at least two HH flows. The internal structure of these objects is studied. The relationship between the line emission and kinematic data obtained through multi-pupil spectroscopy suggest the presence of bipolar outflow associated with the nebula GM 2–30 and HH 172/HH 721, which show mirror symmetry according to a number of characteristics. No optical source of this flow is observed, although the source of energy of the second flow may be a weak star associated with HH 723. The linear dimensions of the flows (more than one parsec) suggest that they are the giant outflows.  相似文献   

14.
We have calculated a model for the dust envelope of the protoplanetary nebula IRAS 18062+2410 using observations from the ultraviolet to the far infrared. We assume that the envelope is spherically symmetrical and consists of identical silicate grains with a radius of 0.10 micron, and with the number density of the grains inversely proportional to the square of the distance. The optical depth of the envelope, whose inner boundary is 1.40×10?3 pc from the center of the star, is 0.050 at 10 microns. At the inner envelope boundary, the temperature of the dust grains is 410 K and their density is 2.7×10?7 cm?3. Using calculations of stellar evolution at the stage following the exit from the asymptotic giant branch, we estimate the dust envelope’s expansion velocity to be 12 km/s. The mass-loss rate of the star preceding the ejection of the envelope was about 4.5×10?6 M /yr. The observed excess of far-IR flux is not associated with the continuum radiation of the nebula, and may provide evidence for the presence of dust ejected by the star in earlier stages of its evolution.  相似文献   

15.
We have computed the dynamical evolution of homogeneous, spherical gaseous condensations in the atmosphere of a Wolf-Rayet star. The physical conditions in the condensations vary substantially in the course of their motion in the stellar wind, which should result in variations in the observed spectrum of the star. The condensations also move at velocities of up to 1000 km/s relative to the surrounding stellar wind. Variations of the physical conditions in these condensations should be taken into account in models of the stellar winds of Wolf-Rayet stars.  相似文献   

16.
Archival infrared Spitzer Space Telescope observations are used to study the dust component of the ISM in the irregular galaxy IC 10. The dust distribution in the galaxy is compared to the distributions of the Hα and [S II] emission, neutral gas and CO clouds, and ionizing radiation sources. The distribution of polycyclic aromatic hydrocarbons (PAHs) in the galaxy is shown to be highly non-uniform, with the fraction of these particles in total dust mass reaching 4%. On the whole, PAHs avoid bright H II regions and correlate with the atomic and molecular gas. This pattern suggests that they form in the dense interstellar gas. It is suggested that the observed metallicity dependence of the PAH abundance shows up not only globally (at the level of the entire galaxy), but also locally (at least, at the level of individual H II regions). No conclusive evidence for shock destruction of PAHs in the IC 10 galaxy has been found.  相似文献   

17.
Based on long-term spectral monitoring with high spectral resolution, the optical spectrum of the weak central star of the IR source RAFGL 5081 has been studied for the first time. The spectral type of the star is close to G5–8 II, and its effective temperature is Teff ≈ 5400 K. An unusual spectral phenomenon was discovered: splitting of the profiles of broad, stationary absorption lines of medium and low intensity. The heliocentric radial velocities V r of all components of metal absorption lines, the Na I D lines, and the Hα line were measured for all the observation epochs. The constancy of the absorption lines rules out the possibility that the line splitting is due to binarity. The radial velocities of the wind components in the profiles of the Na I D and Hα lines reach ?250 and ?600 km/s, respectively. These profiles have narrow components, whose number, depth, and position vary with time. The time variability and multicomponent structure of the profiles of the Na I D and Hα lines indicates inhomogeneity and instability of the circumstellar envelope of RAFGL 5081. The presence of components with velocity V r (IS) = ?65 km/s in the Na I (1) lines provides evidence that RAFGL 5081 is located behind the Perseus arm, i.e, no closer than 2 kpc. It is noted that RAFGL 5081 is associated with the reflection nebula GN 02.44.7.  相似文献   

18.
The giant lenticular galaxy NGC 80, which is the brightest member of a rich group, possesses a central evolutionarily-distinct region: the stars in the nucleus and in a circumnuclear ring of radius 5″t–7″ have a mean age of only 7 Gyr, whereas the stellar population of the bulge is older than 10 Gyr. The nucleus of NGC 80 is also chemically distinct: it is a factor of 2–2.5 richer in metals than its immediate neighborhood and is characterized by a high magnesium-to-iron abundance ratio [Mg/Fe]≈+0.3. The global stellar disk of NGC 80 has a two-tiered structure: its outer part has an exponential scale length of 11 kpc and normal surface density, while the inner disk, which is also exponential and axisymmetric, is more compact and brighter. Although the two-tiered structure and the chemically distinct nucleus obviously have a common origin and owe their existence to some catastrophic restructuring of the protogalactic gaseous disk, the origin of this remains unclear, since the galaxy lacks any manifestations of perturbed morphology or triaxiality.  相似文献   

19.
The spatial motion of a star in the vicinity of a globular cluster located in an inhomogeneous, rotating elliptical galaxy (EG) is considered. Perturbations due to the gravitation of the galaxy are taken into account, taking it to be a two-layer system together with its halo: an inner ellipsoid, representing the lumious part of the galaxy, and a homeoid, representing space filled with dark matter between inner and outer ellipsoidal boundaries. The ellipsoids are taken to be homothetic and to have a common center, with the boundary of the outer ellipsoid coincident with the boundary of the galactic halo. The luminous part of the EG and the homeoid have different densities. The motion of the star near a globular cluster occurs outside the luminous part of the EG, but inside the homeoid. The concept of the “vicinity of the globular cluster” is concretized using the concept of a “sphere of influence” (and the gravitational sphere and Hill gravitational sphere). Stellar motions inside and outside the sphere of influence of the globular cluster are considered, and the region of possible motions is determined. A quasi-integral and surfaces of minimum energy are found, which under certain conditions can be transformed into an analog of the Jacobi integral and surfaces of zero velocity. The Lyapunov stability of the stationary solutions obtained is established. The results are applied to model EGs whose parameters coincide with those of NGC 4472 (M49), NGC 4636, and NGC 4374, which contain a large number of globular clusters, and are presented in the form of figures and tables. Using these galaxies as examples, it is shown that studying stellar motions, and also determining the libration points and establishing their stability, requires use of an exact, rather than an approximate, expression for the potential of the luminous part of the elliptical galaxy.  相似文献   

20.
The results of many-year uniform spectroscopic observations of the Herbig Ae/Be star IL Cep A are presented. Its Hα line has either a single or a barely resolved two-component emission profile. The Hβ emission line is clearly divided into two components with a deep central absorption. Smooth variations of the observed parameters of individual spectral lines over nine years are observed. The He I λ5876 Å line has a complex absorption profile, probably with superposed emission components. The NaI D1, D2 doublet exhibits weak changes due to variations in the circumstellar envelope. The variations observed in the stellar spectrum can be explained by either binarity or variations of the magnetic field in the stellar disk. Difficulties associated with both these possibilities are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号