共查询到20条相似文献,搜索用时 62 毫秒
1.
滑坡预测对于减轻地质灾害的危害十分重要,但对科学研究却很有挑战性。基于变形特征和位移监测数据,建立了三峡库区白水河滑坡的时间序列加法模型。在模型中,累计位移分为3个部分:趋势、周期和随机项,解释了由内部因素(地质环境,重力等)、外部因素(降雨,水库水位等)、随机因素(不确定性)共同作用的影响。在对位移数据进行统计分析后,提出了一个3次多项式模型对趋势项进行学习,并利用多算法寻优的支持向量回归机(SVR)模型对周期项进行训练与预测。结果表明,在预测精度上,基于时间序列与遗传算法-支持向量回归机(GA-SVR)耦合的位移预测模型要明显优于网格寻优(GS)以及粒子群算法(PSO)优化的支持向量回归机模型。因此,GA-SVR模型在滑坡位移预测方面可以得到较好的应用。在“阶跃型”滑坡位移预测中,GA-SVR将具有广阔的应用前景。 相似文献
2.
基于粒子群-高斯过程回归耦合算法的滑坡位移时序分析预测智能模型 总被引:1,自引:0,他引:1
高斯过程回归(GPR)学习机有着容易实现、超参数自适应获取及预测输出具有概率意义等优点。通常采用共轭梯度法获取GPR超参数,但其存在优化效果对初值依赖性太强,迭代次数难以确定,易陷入局部最优的缺点。改用粒子群优化 (PSO)算法进行最优超参数搜索,形成粒子群-高斯过程回归耦合算法(PSO-GPR)。将该算法引入三峡永久船闸高边坡、卧龙寺新滑坡、链子崖滑坡3个不同的典型滑坡变形时序分析中,对每个滑坡分别采用稳态核及一种新式神经网络(NN)、平方指数(SE)、有理二次型(RQ)3种单一核函数进行外推预报测试。工程应用表明,基于3种不同单一核函数的粒子群-高斯过程回归算法(PSO-GPR)均能完全适应不同滑坡时序分析,其中以NN核函数外推预测效果最佳,平均相对误差分别为6.37%、7.62%、1.07%,从而改善了在进行不同滑坡变形时序分析时采用单一核函数的核机器外推能力存在较大差异性的问题,提高了单一核函数对不同数据类型的兼容性 相似文献
3.
4.
滑坡周期项位移的预测,是研究地质灾害中滑坡变形至关重要的一步。由于单一模型易受偶然因素影响,且无法充分利用有效信息,导致其预测精度不高,适用性不强。基于此,文中提出了一种结合自适应粒子群算法(APSO)、支持向量机回归算法(SVR)、门控神经网络算法(GRU)的组合模型。该模型通过自适应粒子群优化算法对支持向量机回归算法进行参数寻优,确定最优参数组合,然后利用最小二乘法对APSO-SVR模型与GRU模型赋权建立最优权重比组合模型。以三峡白水河滑坡作为研究对象,选取降雨量、库水位及位移量作为周期项位移的影响因子,对模型进行训练验证,结果表明:在白水河滑坡周期项位移预测中,文中所提出的APSO-SVR-GRU组合模型与单一模型相比,具有更高的预测精度和稳定性。 相似文献
5.
白龙江流域是我国滑坡泥石流灾害四大高发区之一,进行该区域滑坡敏感性评价,能够为决策者在灾害管理和设施建设规划方面提供帮助,对区域防灾减灾具有重要指导意义。本研究采用边坡单元为基本研究单元,在野外调查及前人研究基础上,选择控制该区域滑坡发育的19个要素作为影响因子;经过主成分分析和独立性检验得到该区域对滑坡形成贡献最大的6个因子:高程、坡度、坡向、岩性、断裂距离和人口密度;分别使用二元逻辑回归模型(LR)和支持向量机模型(SVM)对该区域进行滑坡敏感性评价;最后,采用ROC曲线对模型精度进行验证。研究结果表明,两模型各能将38.76%、14.48%、9.40%、11.28%、26.07%和13.49%、21.61%、8.17%、26.70%、30.04%的边坡单元分别预测为极高危险区、高危险区、中度危险区、低危险区和极低危险区;精度验证结果表明两种模型均能有效地进行该区域滑坡敏感性评价,并且支持向量机模型具有更好的分类能力、预测精度和稳定性。 相似文献
6.
逻辑回归与支持向量机模型在滑坡敏感性评价中的应用 总被引:1,自引:0,他引:1
白龙江流域是我国滑坡泥石流灾害四大高发区之一,进行该区域滑坡敏感性评价,能够为决策者在灾害管理和设施建设规划方面提供帮助,对区域防灾减灾具有重要指导意义。本研究采用边坡单元为基本研究单元,在野外调查及前人研究基础上,选择控制该区域滑坡发育的19个要素作为影响因子; 经过主成分分析和独立性检验得到该区域对滑坡形成贡献最大的6个因子:高程、坡度、坡向、岩性、断裂距离和人口密度; 分别使用二元逻辑回归模型(LR)和支持向量机模型(SVM)对该区域进行滑坡敏感性评价; 最后,采用ROC曲线对模型精度进行验证。研究结果表明,两模型各能将38.76%、14.48%、9.40%、11.28%、26.07%和13.49%、21.61%、8.17%、26.70%、30.04%的边坡单元分别预测为极高危险区、高危险区、中度危险区、低危险区和极低危险区; 精度验证结果表明两种模型均能有效地进行该区域滑坡敏感性评价,并且支持向量机模型具有更好的分类能力、预测精度和稳定性。 相似文献
7.
总结以往滑坡预测方法存在的诸多不足,针对滑坡监测位移-时间曲线特点,本文提出了一种基于时间序列的人工蜂群算法(ABC)与支持向量回归机(SVR)相结合的滑坡位移预测方法。以三峡库区白水河滑坡为例,通过对滑坡位移、降雨、库水位等因素的分析,研究影响滑坡位移变化的因素。用时间序列加法模型和移动平均法将滑坡位移分解为趋势项和周期项。以多项式最小二乘法拟合滑坡位移趋势项,用人工蜂群支持向量机模型对滑坡位移周期项进行训练和预测。通过灰色系统关联分析法计算多项因子与滑坡位移周期项之间的关联性。最终的滑坡总位移预测值为周期项预测值与趋势项预测值之和。与BP神经网络、PSO-SVR模型方法相比,该方法在滑坡位移预测中有更高的精度,在防灾减灾工作中有较好的推广应用前景。 相似文献
8.
渗透系数参数反演的本质是优化问题求解,遗传算法是一种基于自然选择和群体遗传机理的新的全局优化求解方法,可以较好地用于求解诸如渗透系数参数反演等复杂非线性组合优化问题。基于结构风险最小化原理的支持向量机具有逼近复杂非线性系统、较强的学习泛化能力,可以用来计算渗透系数参数反演过程中的测点水头值。实验表明,基于遗传算法-支持向量回归机的地下水渗透系统参数反演拟合效果良好,能大大提升区间搜索效率,避免出现局部最优解,其参数识别精度符合实际应用要求。 相似文献
9.
以麻柳林滑坡为例,选取了内摩擦角、粘聚力、渗透系数、浸没率、库水位下降速率及降雨量等6个因素进行了正交试验,采用极差分析法进行了稳定性敏感分析.结果表明,滑坡稳定性及其变化率主要由内因决定,库水和降雨对其影响较小.滑坡稳定性对内摩擦角最敏感,其次依次为渗透系数、粘聚力和浸没率.滑坡初始稳定性主要由内摩擦角和粘聚力决定.滑坡稳定性随浸没率的降低而逐步增加,但增幅较小;渗透系数对滑坡稳定系数变化率的影响最大,并存在临界值K_0,渗透系数大于K_0时,滑坡稳定性随渗透系数的增加而增加,渗透系数小于K_0时,滑坡稳定性随渗透系数的降低而降低. 相似文献
10.
11.
支持向量机是基于结构风险最小化原理的机器学习技术,在广泛收集金属矿山采空区失稳塌陷时间资料的基础上,建立了基于支持向量机的采空区稳定时间的预计模型。通过对采空区稳定时间测试样本的预测研究表明,用支持向量机来预计采空区的稳定时间是可行的。 相似文献
12.
结合支持向量机和马尔可夫链,提出了一种新的位移时序预测模型--支持向量机-马尔可夫链预测模型(SVM-MC)。通过对实测位移值的学习,利用经粒子群算法优化的支持向量机对位移时间序列的宏观发展趋势进行滚动预测;在此基础上应用马尔可夫链确定位移时序的状态转移概率矩阵,通过对状态的划分、实测值与支持向量机拟合值的绝对误差及相对误差等指标的分析,实现了对预测结果的改进。将该模型应用到某工程永久船闸高边坡的位移时序预测中,结果表明,该模型具有科学可靠、预测精度高的优点,在岩土体位移时序预测中具有有一定工程应用价值。 相似文献
13.
加权支持向量回归机及其在水质预测中的应用 总被引:1,自引:0,他引:1
支持向量机是一种基于结构风险最小化原理的学习技术,也是一种新的具有很好泛化性能的回归方法。本文对用于回归估计的标准支持向量机加以改进,提出了一种新的用于回归估计的支持向量机学习算法,针对各样本重要性的差异,给各个样本的惩罚系数和误差要求赋予不同权重,并利用加权支持向量回归机的理论及其算法构建水质预测模型。实验结果表明,该方法对水质具有较好的预测效果。 相似文献
14.
In the predicting of geological variables, artificial neural networks (ANNs) have some drawbacks including possibility of getting trapped in local minima, over training, subjectivity in the determining of model parameters and the components of its complex structure. Recently, support vector machines (SVM) has been found to be popular in prediction studies due to its some advantages over ANNs. Because the least squares SVM (LS‐SVM) provides a computational advantage over SVM by converting quadratic optimization problem into a system of linear equations, LS‐SVM method is also tried in study. The main purpose of this study is to examine the capability of these two SVM algorithms for the prediction of tensile strength of rock materials and to compare its performance with ANN and linear regression (MLR) models. Total porosity, sonic velocity, slake durability index and aggregate impact value were used as input in modeling applications. Favorite performance evaluation measures were employed to assess developed models. The results determined in study indicate that the SVM, LS‐SVM and ANN methods are successful tools for prediction of tensile strength variable and can give good prediction performances than MLR model. Although these three methods are powerful artificial intelligence techniques, LS‐SVM makes the running time considerably faster with the higher accuracy. In terms of accuracy, the LS‐SVM model resulted in error reductions relative to that of the other models. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
15.
基于灰色最小二乘支持向量机的边坡位移预测 总被引:1,自引:0,他引:1
利用边坡实测位移序列预测边坡未来时间的位移,可以有效地判断边坡的稳定性。在分析了灰色预测方法和最小二乘支持向量机各自的优缺点的基础上,提出了将二者相结合的一种新的预测模型--灰色最小二乘支持向量机预测模型。新模型既发挥了灰色预测方法中“累加生成”的优点,弱化了原始序列中随机扰动因素的影响,增强了数据的规律性,又充分利用了最小二乘支持向量机求解速度快、易于描述非线性关系的优良特性,避免了灰色预测方法及模型存在的理论缺陷。同时,采用遗传算法进行了模型的参数优化,通过2个工程实例说明灰色最小二乘支持向量机模型预测边坡位移的有效性,具有较高的精度。 相似文献
16.
17.
获得支持向量机(SVM)背景下滑坡位移时序准确预测的关键,是构造或选择一合适的核函数。通过分析滑坡位移时序曲线特征以及不同类型Mercer核的性质,从基于核函数上的封闭运算角度,构造出支持向量机背景下预测滑坡位移时序的最佳核函数。利用3组不同特征的滑坡位移时序,对构造出的核函数进行性能检验,数值实验表明:对于典型的3组滑坡时序,LPG与MPG核的学习性能要优于简单核,且前者适合复杂位移时序的回归预测,而后者更适合规律性较强的简单时序曲线的建模预测。此外,探讨了这两种核函数下的核参数取值对模型精度的影响。 相似文献
18.
利用最小二乘支持向量机(LS-SVM)方法,建立了基于天气预报的参考作物腾发量(ET0)的预测模型.对广利灌区1997~2006年逐日气象信息中的天气类型和风速等级进行量化后,以不同天气预报信息作为输入量,建立10种验证方案,对2007年的逐日ET0进行预测.经验证,方案1~方案7精度均令人满意,其中方案1精度最高.方案1的输入量为气温、天气类型、风速等级3项的预测值,该方案的模型预测值与计算值的统计参数分别为:均方根偏差ERMS为0.5182 mm,相对偏差ER为0.1878,决定系数R2为0.864 8,认同系数IA为0.966 9,回归系数RC为0.9867;方案7精度亦较好,且以上指标统计参数依次为0.6576 mm、0.2332、0.986 6、0.774 7及0.986 6,该方案输入量只有气温项,实用性很强. 相似文献
19.
运用数据挖掘技术进行了黄土湿陷性的预测挖掘,挖掘模型采用最小二乘支持向量机。建模过程中用主成份分析法进行数据的预处理,以剔除指标间的相关性,消除多指标信息冗余对挖掘模型的影响,并引入粒子群优化算法进行模型反演分析,确定最优参数。针对实际工程数据进行的预测挖掘表明:黄土的电阻率、剪切波速与土的结构特性、含水率、密度等指标密切相关,可较为全面地反映影响黄土湿陷性的因素;以电阻率、剪切波速及土层埋深作为模型的预测变量就可定量预测黄土的湿陷性;用所建模型和预测变量来预测黄土的湿陷性是可行的。 相似文献