首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A deeper understanding of the sediment characteristics associated with rock fragment content can improve our knowledge of the erosional processes and transport mechanisms of sediments on steep rocky slopes. This research used simulated rainfall experiments lasting for 1 h at a rate of 90 mm h−1 and employed 5 × 1 × 0.4 m parallel troughs filled with purple soils with different rock fragment volumetric contents (0, 5, 10, 20, 30 and 40%) on a 15° slope gradient. For each simulated event, runoff and sediment were sampled at 1- and 3-min intervals, respectively, to study, in detail, the temporal changes in the size distributions of the eroded sediments. The results show that sediment concentrations, soil erosion rates and soil loss ratios significantly decreased as rock fragment content increased for rock fragment contents from 0 to 40% in purple soils. During the transportation process, clay particles often formed aggregates and were then transported as larger particles. Silt particles were more likely to be transported as primary particles with a low degree of sediment aggregation. Sand-sized particles, which constituted a greater proportion of the original soil than the eroded sediments, were formed from other fine particles and transported as aggregates rather than as primary particles. Suspension-saltation, which mainly transports fine particles of 0.02–0.05 mm and coarse particles larger than 0.5 mm in size, was the most important transport mechanism on steep rocky slopes. The results of this study can help to explain the inherent laws of erosional processes on steep rocky slopes and can provide a foundation for improving physical models of soil erosion. © 2019 John Wiley & Sons, Ltd.  相似文献   

2.
The proportional contributions of stream bank and surface sources to fine sediment loads in watersheds in New York State were quantified with uncertainty analysis. Eroding streamside glacial drift, including glaciolacustrine deposits, were examined to help explain variations in the proportional contributions made by bank erosion. Sediment sources were quantified by comparing concentrations of the bomb‐derived radionuclide 137Cs in fluvial sediment with sediment from potential source areas such as agricultural soils, forest soils and stream banks. To compare sediment sources in streams containing abundant deposits of fine‐grained glacial drift with watersheds that lacked moderate or extensive streamside deposits, samples were taken from 15 watersheds in the region. The mean contribution of bank erosion to sediment loads in the six streams with glaciolacustrine deposits was 60% (range 46–76%). The proportional contribution of bank erosion was also important in one stream lacking glaciolacustrine deposits (57%) but was less important in the remainder, with contributions ranging from 0 to 46%. Data from this study on the varying contributions of bank erosion and data from past studies of sediment yield in 15 watersheds of New York State suggest that eroding streamside glacial deposits dominate sediment yield in many watersheds. In other watersheds, past impacts to streams, such as channelization, have also resulted in high levels of bank erosion. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
The bulk of eroded soils measured at the outlets of plots, slopes and watersheds are suspended sediments, splash‐induced sheet erosion. It is depending on rainfall intensity and antecedent soil moisture contents and contributes to a significant proportion of soil loss that usually is ignored in soil erosion and sediment studies. A digital image processing method for tracing and measuring non‐suspended soil particles detached/transported by splash/runoff was therefore used in the present study. Accordingly, fine mineral pumice grains aggregated with white cement and coloured with yellow pigment powder, with the same size, shape and specific gravity as those of natural soil aggregates, called synthetic color‐contrast aggregates, were used as tracers for detecting soil particle movement. Subsequently, the amount of non‐suspended soil particles detached and moved downward the slope was inferred with the help of digital image processing techniques using MATLAB R2010B software (Mathworks, Natick, Massachusetts, USA). The present study was conducted under laboratory conditions with four simulated rainfall intensities between 30–90 mm h‐1, five antecedent soil moisture contents between 12–44 % v v‐1 and a slope of 30%, using sandy loam soils taken from a summer rangeland in the Alborz Mountains, Northern Iran. A range of total transported soil between 90.34 and 1360.93 g m‐2 and net splash erosion between 36.82 and 295.78 g m‐2were observed. The results also showed the sediment redeposition ratio ranging from 87.27% [sediment delivery ratio (SDR) = 12.73%] to 96.39% (SDR = 3.61%) in various antecedent soil moisture contents of rainfall intensity of 30 mm h‐1 and from 80.55% (SDR = 19.45%) to 89.42% (SDR = 10.58%) in rainfall intensity of 90 mm h‐1. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Concentrations of suspended particulate matter (SPM), NO3-N and P fractions: PO4-P, dissolved organic P (DOP), particulate P (PP) and bioavailable exchangeable P were examined over 5 storm events in two nested agricultural catchments in NE Scotland: a (51 km2) catchment and its headwater (4 km2). NO3-N showed anticlockwise hysteresis for all storms in both catchments. In contrast, the headwater showed strong clockwise hysteresis of SPM, dissolved and particulate P concentrations, but which weakened through summer to spring. Less pronounced hysteresis of P forms in the larger catchment was attributed to a combination of factors: a less energetic system, nutrient leaching from the floodplain, a point source of a small sewage treatment works and the occurrence of coarser soil and sediment parent materials with less P adsorption and transport capacity. The headwater exhibited a strong ‘first flush’ effect of sediment and dissolved P, particularly following dry conditions, received a significant transfer of readily-solubilized organic P from the surrounding soils in late summer and after manure applications in winter, and was the likely cause of large sediment associated P signals observed in the 51 km2 catchment. Our results suggest that steeper gradient headwaters should be targeted for riparian improvements to mitigate soil erosion from headwater fields. The efficiency of riparian erosion controls is also dependant on the size of the store of fine sediment material within the stream channel and this may be large.  相似文献   

5.
In Mediterranean mountain agroecosystems, soil erosion associated with the development of ephemeral gullies is a common environmental problem that contributes to a loss of nutrient-rich topsoil. Little is known about the influence of ephemeral gully erosion on particle size distribution and its effect on soil organic (SOC) and inorganic (SIC) carbon among different sized soil particles in agricultural soils. In this study, laboratory tests were conducted using velocity settling tube experiments to examine the effects of erosion on sediment particle size distributions from an incised ephemeral gully, associated with an extreme event (235 mm). We also consider subsequent deposition on an alluvial fan in order to assess the distribution of SOC and SIC concentrations and dissolved carbon before and after the extreme event. Soil fractionation was carried out on topsoil samples (5 cm) collected along an ephemeral gully in a cultivated field, located in the lower part of a Mediterranean mountain catchment. The results of this study showed that the sediment transported downstream by runoff plays a key role in the particle size distribution and transportability of soil particles and associated carbon distribution in carbonate rich soils. The eroding sediment is enriched in clay and silt-sized particles at upslope positions with higher SOC contents and gradually becomes coarser and enriched in SIC at the end of the ephemeral gully because the finest particles are washed-out of the study field. The extreme event was associated with an accumulation of dissolved organic carbon at the distal part of the depositional fan. Assessment of soil particle distribution using settling velocity experiments provides basic information for a better understanding of soil carbon dynamics in carbonate rich soils. Processes of soil and carbon transport and relationships between soil properties, erodibility and aggregate stability can be helpful in the development of more accurate soil erosion models. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

6.
The long‐term and current volumes of sediment exported from stream banks were calculated as potential sources of sediment in a large pond located at the catchment outlet of a small agricultural lowland basin strongly affected by anthropogenic pressure in France. Bank erosion was measured over a short period using a network of erosion pins along a small stream (1400 m long) to quantify the material exported during a single winter (2012–2013). The material exported by this same stream over the last 69 years was quantified using an original approach involving the comparison of a compilation of three‐dimensional historical stream redesign plans that date back to 1944 with the state of the banks in 2013 (differential global positioning system and LiDAR data). The results suggest that a global trend of material loss along the stream banks monitored by erosion pins, with an average erosion rate of 17.7 mm year?1 and an average volume of exported material of 75 t km?1. Over 69 years, this same stream exported an average of 36 t km?1 year?1, and the average loss of material from the banks throughout the whole catchment was estimated to be 14 t km?1 year?1. The contribution of bank material to the filling of the pond over the last 10 years is between 46% and 52% based on an extrapolation of erosion pin dynamics or between 27% and 30% based on the comparison of LiDAR data to the average historical profile extrapolated for the catchment. These results suggest that bank erosion represents a major source of sediment in degraded waters in traditionally understudied agricultural lowland catchments, where anthropogenic pressures are high.  相似文献   

7.
Riparian vegetation can trap sediment and nutrients sourced from hillslopes and reduce stream bank erosion. This study presents results from a 10-year stream monitoring program (1991–2000), in a 6 km2 agricultural catchment near Albany, Western Australia. After 6 years, a 1.7 km stream reach was fenced, planted with eucalyptus species and managed independently from the adjacent paddocks. Streamflow, nutrient and sediment concentration data were collected at the downstream end of the fenced riparian area, so there are data for before and after improved riparian management. Suspended sediment (SS) concentrations fell dramatically following improved riparian management; the median event mean concentration (EMC) dropped from 147 to 9.9 mg l−1. Maximum SS concentrations dropped by an order of magnitude. As a result, sediment exports from the catchment decreased following improved riparian management, from over 100 to less than 10 kg ha−1 yr−1. Observations suggest that this was the result of reduced bank erosion and increased channel stability. Riparian management had limited impact on total phosphorus (TP) concentrations or loads, but contributed to a change in phosphorus (P) form. Before improved riparian management, around half of the P was transported attached to sediment, but after, the median filterable reactive P (FRP) to TP ratio increased to 0.75. In addition, the median FRP EMC increased by 60% and the raw median FRP concentration increased from 0.18 to 0.35 mg l−1. These results suggest that there was a change in the dominant P form, from TP to FRP. Changes in total nitrogen (TN) following improved riparian management were less clear. There were reductions in TN concentrations at high flows, but little change in the loads or EMC. This study demonstrates the benefits of riparian management in reducing stream bank erosion, but suggests that in catchments with sandy, low P sorption soils, there may be limitations on the effectiveness of riparian buffers for reducing P and N exports.  相似文献   

8.
M. E. Grismer 《水文研究》2014,28(2):161-170
Establishment and ‘crediting’ for total maximum daily loads (TMDL) of sediment require development of stream monitoring programs capable of detecting changes in land use and erosion ‘connectivity’ conditions across the watershed. As a ‘proof of concept’ directed at developing such an effective stream monitoring program considering only the effects of soil disturbances or restoration in the Lake Tahoe Basin, variability in daily stream sediment load predictions from a local‐scale, field data–based distributed runoff and erosion model developed previously is analysed for the west‐shore watersheds of Homewood (HMR) and Madden Creeks. The areal extent effects of forest fuel reductions (slight soil disturbances in Madden) and soil restoration efforts (e.g. dirt road removal and ski‐run rehabilitation in HMR) on watershed daily sediment loads for the 1994–2005 period are considered. Based on model predictions, forest fuel management in the Madden Creek watershed must occur across more than 30% of the basin area to result in a detectable increase in daily sediment loads at the >95% confidence level. Similarly, a daily load reduction that could be assessed with >95% confidence within the HMR basin required substantial dirt road removal (50% by roaded area) and restoration of 20% of the ski‐run area (combined for ~5% of the basin area) for the 11‐year record but was also possible within 2–3 years following restoration. These modelling results suggest that despite considerable flow–load variability, it may be possible to detect cumulative changing land‐use conditions within several years of project completion such that quantitative TMDL ‘crediting’ may be developed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Organic carbon (OC) is easily enriched in sediment particles of different sizes due to aggregate breakdown and selective transport for sheet erosion. However, the transport of aggregate-associated OC has not been thoroughly investigated. To address this issue, 27 simulated rainfall experiments were conducted in a 1 m × 0.35 m box on slope gradients of 15°, 10°, and 15°and under three rainfall intensities of 45 mm h−1, 90 mm h−1 and 120 mm h−1. The results showed that OC was obviously enriched in sediment particles of different sizes under sheet erosion. The soil organic carbon (SOC) concentrations of each aggregate size class in sediments were different from those in the original soil, especially when the rainfall intensity or slope was sufficiently low, such as 45 mm h–1 or 5°, respectively. Under a slope of 5°, the SOC enrichment ratios (ERocs) of small macroaggregates and microaggregates were high but decreased over time. As rainfall intensity increased, OC became enriched in increasingly fine sediment particles. Under a rainfall intensity of 45 mm h–1, the ERocs of the different aggregate size classes were always high throughout the entire erosion process. Under a rainfall intensity of > 45 mm h–1 and slope of > 5°, the ERocs of the different aggregate size classes were close to 1.0, especially those of clay and silt. Therefore, the high ERocs in sediments resulted from the first transport of effective clay. Among total SOC loss, the proportion of OC loss caused by the transport of microaggregates and silt plus clay-sized particles was greater than 50%. We also found that low stream power and low water depth were two requirements for the high ERocs in aggregates. Stream power was closely related to sediment particle distribution. Flow velocity was significantly and positively related to the percentage of OC-enriched macroaggregates in the sediments (P > 0.01). Our study will provide important information for understanding the fate of SOC and building physical-based SOC transport models. © 2019 John Wiley & Sons, Ltd.  相似文献   

10.
Soil salinization can occur in many regions of the world. Soil sodicity affects rainfall‐runoff relationships and related erosion processes considerably. We investigated sodicity effects on infiltration, runoff and erosion processes on sodic soil slopes for two soils from China under simulated rainfall. Five sodicity levels were established in a silt loam and a silty clay with clay contents of 8.5% and 46.0%, respectively. The soils, packed in 50 cm × 30 cm × 15 cm flumes at two slope gradients (22° and 35°), were exposed to 60 min of simulated rainfall (deionized water) at a constant intensity of 125 mm h?1. Results showed that, for both soils, increasing soil sodicity had some significant effects on hydrological processes, reducing the infiltration coefficient (pr = ?0.69, P  < 0.01) and the quasi‐steady final infiltration rate (pr = ?0.80, P  < 0.01), and increasing the mean sediment loss (pr = 0.39, P  < 0.05); however, it did not significantly affect the cumulative rainfall to ponding (P  > 0.05). Moreover, increasing sodicity significantly increased the Reynolds number and the stream power (pr = 0.78 and 0.66, P  < 0.01, respectively) of the runoff, decreased Manning roughness and Darcy–Weisbach coefficient (pr = ?0.52 and ?0.52, P  < 0.05, respectively), but did not significantly affect the mean flow velocity, mean flow depth, Froude number and hydraulic shear stress. Stream power was shown to be the most sensitive hydraulic variable affecting sediment loss for both soils. Furthermore, as sodicity increased, the values of critical stream power decreased for both the silt loam (R 2 = 0.29, P  < 0.05) and the silty clay (R 2 = 0.49, P  < 0.05). The findings of this study were applied to a real situation and identified some negative effects that can occur with increasing sodicity levels. This emphasized the importance of addressing the influences of soil sodicity in particularly high risk situations and when predicting soil and water losses.  相似文献   

11.
Simulated rainfall experiments were performed on bare, undecomposed litter layer and semi-decomposed litter layer slopes with litter biomasses of 0, 50, 100 and 150 g m−2, respectively, to evaluate the effect of the undecomposed layer and semi-decomposed layer of Quercus variabilis litter on the soil erosion process and the particle size distribution of eroded sediment. The undecomposed layer and semi-decomposed layer of litter reduced the runoff rate by 10.91–27.04% and 12.91–36.05%, respectively, and the erosion rate by 13.35–40.98% and 17.16–59.46%, respectively. The percentage of smaller particles (clay and fine silt particles) decreased and the percentage of larger particles (coarse silt and sand particles) increased with an increased rainfall duration on all treated slopes, while the extent of the eroded sediment particle content varied among the treated slopes with the rainfall duration, with bare slopes exhibiting the largest variability, followed by undecomposed litter layer slopes and finally semi-decomposed litter layer slopes. The clay and sand particles were transported as aggregates, and fine silt and coarse silt particles were transported as primary particles. Compared with the original soil, sediment eroded from all treated slopes was mainly enriched in smaller particles. Furthermore, the loss of the smaller particles from the undecomposed litter layer slopes was lower than that from the semi-decomposed litter layer slopes, indicating that the undecomposed litter layer alleviated soil coarsening to some extent. The findings from this study improve our understanding of how litter regulates slope erosion and provide a reference for effectively controlling soil erosion.  相似文献   

12.
13.
This study examines the particle size characteristics of hillslope soils and fluvial suspended sediments in an agricultural catchment. Samples of surface runoff and stream flow were collected periodically and analysed for the size distributions of the effective (undispersed) sediment. This sediment was subsequently dispersed and the ultimate size distributions determined. The median effective particle size of stream suspended sediment was considerably coarser than the median ultimate particle size, indicating that most of the load included a substantial proportion of aggregates. Moreover, the proportion of fine material (i.e. silt and clay) increased, and the proportion of sand-sized material decreased, with increasing discharge. This decrease in sediment size with increased flow, which is contrary to the traditional assumption of a positive discharge/particle size relationship, is thought to reflect: (i) the influx of silt and clay, predominantly the former, originating on the catchment slopes and brought to the stream by overland flow along vehicle wheelings, roads and tracks; and (ii) erosion of fine material from the channel bed and banks. During large storms, however, the proportion of sand-sized sediment increased during the rising limb of the hydrograph, as a result of the entrainment of coarser source material from the valley floor during overbank flooding. The stream suspended sediment was finer than the catchment soils and considerably finer than material eroding from the catchment slopes during storms. The degree of clay and silt enrichment in the suspended sediments was largely the result of preferential deposition of the coarser fraction during the transport and delivery of sediment from its source to basin outlet. The data from this study confirm that a significant mode of sediment transport in fluvial systems is in the form of aggregates, and that the dispersed sediment size distribution is inappropriate for determining the transportability of sediment by flow. © 1997 by John Wiley & Sons, Ltd.  相似文献   

14.
The Qinghai–Tibet Plateau has a vast area of approximately 70×104 km2 of alpine meadow under the impacts of soil freezing and thawing, thereby inducing intensive water erosion. Quantifying the rainfall erosion process of partially thawed soil provides the basis for model simulation of soil erosion on cold-region hillslopes. In this study, we conducted a laboratory experiment on rainfall-induced erosion of partially thawed soil slope under four slope gradients (5, 10, 15, and 20°), three rainfall intensities (30, 60, and 90 mm h−1), and three thawed soil depths (1, 2, and 10 cm). The results indicated that shallow thawed soil depth aggravated soil erosion of partially thawed soil slopes under low hydrodynamic conditions (rainfall intensity of 30 mm h−1 and slope gradient ≤ 15°), whereas it inhibited erosion under high hydrodynamic conditions (rainfall intensity ≥ 60 mm h−1 or slope gradient > 15°). Soil erosion was controlled by the thawed soil depth and runoff hydrodynamic conditions. When the sediment supply was sufficient, the shallow thawed soil depth had a higher erosion potential and a larger sediment concentration. On the contrary, when the sediment supply was insufficient, the shallow thawed soil depth resulted in lower sediment erosion and a smaller sediment concentration. The hydrodynamic runoff conditions determined whether the sediment supply was sufficient. We propose a model to predict sediment delivery under different slope gradients, rainfall intensities, and thawed soil depths. The model, with a Nash–Sutcliffe efficiency of 0.95, accurately predicted the sediment delivery under different conditions, which was helpful for quantification of the complex feedback of sediment delivery to the factors influencing rainfall erosion of partially thawed soil. This study provides valuable insights into the rainfall erosion mechanism of partially thawed soil slopes in the Qinghai–Tibet Plateau and provides a basis for further studies on soil erosion under different hydrodynamic conditions.  相似文献   

15.
This study provides fundamental examination of mass fluvial erosion along a stream bank by identifying event timing, quantifying retreat lengths, and providing ranges of incipient shear stress for hydraulically driven erosion. Mass fluvial erosion is defined here as the detachment of thin soil layers or conglomerates from the bank face under higher hydraulic shear stresses relative to surface fluvial erosion, or the entrainment of individual grains or aggregates under lower hydraulic shear stresses. We explore the relationship between the two regimes in a representative, US Midwestern stream with semi‐cohesive bank soils, namely Clear Creek, IA. Photo‐Electronic Erosion Pins (PEEPs) provide, for the first time, in situ measurements of mass fluvial erosion retreat lengths during a season. The PEEPs were installed at identical locations where surface fluvial erosion measurements exist for identifying the transition point between the two regimes. This transition is postulated to occur when the applied shear stress surpasses a second threshold, namely the critical shear stress for mass fluvial erosion. We hypothesize that the regimes are intricately related and surface fluvial erosion can facilitate mass fluvial erosion. Selective entrainment of unbound/exposed, mostly silt‐sized particles at low shear stresses over sand‐sized sediment can armor the bank surface, limiting the removal of the underlying soil. The armoring here is enhanced by cementation from the presence of optimal levels of sand and clay. Select studies show that fluvial erosion strength can increase several‐fold when appropriate amounts of sand and clay are mixed and cement together. Hence, soil layers or conglomerates are entrained with higher flows. The critical shear stress for mass fluvial erosion was found to be an order of magnitude higher than that of surface fluvial erosion, and proceeded with higher (approximately 2–4 times) erodibility. The results were well represented by a mechanistic detachment model that captures the two regimes. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
A new method is presented for predicting sediment sorting associated with soil erosion by raindrop impact for non-equilibrium conditions. The form of soil erosion considered is that which results from raindrop impact in the presence of shallow overland flow itself where the flow is not capable of eroding sediment. The method specifically considers early time runoff and erosion when sediment leaving an eroding area is generally finer and thus may have a higher potential for transport of sorbed pollutants. The new mechanism described is the formation of a deposited layer on the soil surface, which is shown to lead to sediment sorting during an erosion event. The deposited layer is taken to have two roles in this process: to temporarily store sediment on the surface between successive trajectories, and to shield the underlying soil from erosive stresses. Equations describing the dynamics of the suspended sediment mixture and the deposited layer are developed. By integrating these equations over the length of eroding land element and over the duration of the erosion event, an event-based solution is proposed which predicts total sediment sorting over the event. This solution is shown to be consistent with experimentally observed trends in enrichment of fine sediment. Predictions using this approach are found to only partly explain measured enrichment for sets of experimental data for two quite different soils, but to be in poor agreement for an aridsol of dispersive character. It is concluded that the formation of the deposited layer is a significant mechanism in the enrichment of fine sediment and associated sorbed pollutants, but that processes in the dispersive soil are not as well described by the theory presented.  相似文献   

17.
Alluvial gullies are often formed in dispersible sodic soils along steep banks of incised river channels. Field data collected by Shellberg et al. (Earth Surface Processes and Landforms 38: 1765–1778, 2013) from a gully outlet in northern Australia showed little hysteresis between water discharge and fine (<63 µm) and coarse (>63 µm) suspended sediment, indicating transport‐limited rather than source‐limited conditions. The major source of the fine (silt/clay) component was the sodic soils of upstream gully scarps, and the coarser (sand) component was sourced locally from channel bed material. In this companion paper at the same study site, a new method was developed for combining the settling velocity characteristics of these two sediment source components to estimate the average settling velocity of the total suspended sediment. This was compared to the analysis of limited sediment samples collected during flood conditions. These settling velocity data were used in the steady‐state transport limit theory of Hairsine and Rose (Water Resources Research 28: 237–243, 245–250, 1992) that successfully predicted field data of concentrations and loads at a cross‐section, regardless of the complexity of transport‐limited upstream sources (sheet erosion, scalds, rills, gullies, mass failure, bank and bed erosion, other disturbed areas). The analysis required calibration of a key model parameter, the fraction of total stream power (F ≈ 0.025) that is effective in re‐entraining sediment. Practical recommendations are provided for the prediction of sediment loads from other alluvial gullies in the region with similar hydrogeomorphic conditions, using average stream power efficiency factors for suspended silt/clay (Fw ≈ 0.016) and sand (Fs ≈ 0.038) respectively, but with no requirement for field data on sediment concentrations. Only basic field data on settling velocity characteristics from soil samples, channel geometry measurements, estimates of water velocity and discharge, and associated error margins are needed for transport limit theory predictions of concentration and load. This theory is simpler than that required in source‐limited situations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
X-ray diffraction (XRD) of the fine matrix component of four alluvial units and modern channel sediments in the Voidomatis River Basin of northwest Greece shows that fine sediment sources have changed considerably during the late Quaternary. The matrix fraction of the modern channel sediments is derived predominantly from erosion of local flysch rocks and soils. During the last glaciation, however, the fine sediment load of the Voidomatis River was dominated by glacially-ground, finely comminuted limestone materials. Limestone-derived fine sediment is not produced in significant amounts under modern climatic conditions. By combining this XRD work with a detailed programme of clast lithologic 1 analysis we have reconstructed former bedload and fine sediment load composition. The lithological properties of both the coarse (8-256 mm) and fine (< 63 μm) elements of the sediment load have varied markedly during the late Quaternary. A simple, semiquantitative assessment of fine sediment mineralogy, using diffractogram peak-height data, has provided a valuable complement to the information gathered from more traditional clast lithological techniques. Together, in favourable geological settings, fine fraction mineralogy and clast lithological analysis can provide a valuable tool for the reconstruction of late Quaternary alluvial environments.  相似文献   

19.
Variability of interrill erosion at low slopes   总被引:2,自引:0,他引:2  
Numerous models and risk assessments have been developed in order to estimate soil erosion from agricultural land, with some including estimates of nutrient and contaminant transfer. Many of these models have a slope term as a control over particle transfer, with increased transfer associated with increased slopes. This is based on data collected over a wide range of slopes and using relatively small soil flumes and physical principals, i.e. the role of gravity in splash transport and flow. This study uses laboratory rainfall simulation on a large soil flume to investigate interrill soil erosion of a silt loam under a rainfall intensity of 47 mm h?1 on 3%, 6% and 9% slopes, which are representative of agricultural land in much of northwest Europe. The results show: (1) wide variation in runoff and sediment concentration data from replicate experiments, which indicates the complexities in interrill soil erosion processes; and (2) that at low slopes processes related to surface area connectivity, soil saturation, flow patterns and water depth may dominant over those related to gravity. Consequently, this questions the use of risk assessments and soil erosion models with a dominant slope term when assessing soil erosion from agricultural land at low slopes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Runoff generation and soil loss from slopes have been studied for decades, but the relationships among runoff, soil loss and rill development are still not well understood. In this paper, rainfall simulation experiments were conducted in two neighbouring plots (scale: 1 m by 5 m) with four varying slopes (17.6%, 26.8%, 36.4% and 46.6%) and two rainfall intensities (90 and 120 mm h?1) using two loess soils. Data on rill development were extracted from the digital elevation models by means of photogrammetry. The effects of rainfall intensity and slope gradient on runoff, soil loss and rill development were different for the two soils. The runoff and soil loss from the Anthrosol surface were generally higher than those from the Calcaric Cambisol surface. Higher rainfall intensity produced less runoff and more sediment for almost each treatment. With increasing slope gradient, the values of cumulative runoff and soil loss peaked, except for the treatments with 90 mm h?1 rainfall on the slopes with Anthrosol. With rainfall duration, runoff discharge decreased for Anthrosol and increased for Calcaric Cambisol for almost all the treatments. For both soils, sediment concentration was very high at the onset of rainfall and decreased quickly. Almost all the sediment concentrations increased on the 17.6% and 26.8% slopes and peaked on the 36.4% and 46.6% slopes. Sediment concentrations were higher on the Anthrosol slopes than on the Calcaric Cambisol slopes. At 90 mm h?1 rainfall intensity, increasingly denser rills appeared on the Anthrosol slope as the slope gradient increased, while only steep slopes (36.4% and 46.6%) developed rills for the Calcaric Cambisol soil. The contributions of rill erosion ranged from 36% to 62% of the cumulative soil losses for Anthrosol, while the maximum contribution of rill erosion to the cumulative soil loss was only 37.9% for Calcaric Cambisol. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号