首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1 INTRODUCTION To data, there are about 100 formulae for the incipient motion of sediment, among which, only about ten are convenient and practical. In 1936, using nondimensional drag force and the sediment’s Reynolds number, Shields (1936) presented the…  相似文献   

2.
This paper presents an approach to modeling the depth-averaged velocity and bed shear stress in compound channels with emergent and submerged vegetation. The depth-averaged equation of vegetated compound channel flow is given by considering the drag force and the blockage effect of vegetation, based on the Shiono and Knight method (1991) [40]. The analytical solution to the transverse variation of depth-averaged velocity is presented, including the effects of bed friction, lateral momentum transfer, secondary flows and drag force due to vegetation. The model is then applied to compound channels with completely vegetated floodplains and with one-line vegetation along the floodplain edge. The modeled results agree well with the available experimental data, indicating that the proposed model is capable of accurately predicting the lateral distributions of depth-averaged velocity and bed shear stress in vegetated compound channels with secondary flows. The secondary flow parameter and dimensionless eddy viscosity are also discussed and analyzed. The study shows that the sign of the secondary flow parameter is determined by the rotational direction of secondary current cells and its value is dependent on the flow depth. In the application of the model, ignoring the secondary flow leads to a large computational error, especially in the non-vegetated main channel.  相似文献   

3.
The presence of vegetation modifies flow and sediment transport in alluvial channels and hence the morphological evolution of river systems. Plants increase the local roughness, modify flow patterns and provide additional drag, decreasing the bed‐shear stress and enhancing local sediment deposition. For this, it is important to take into account the presence of vegetation in morphodynamic modelling. Models describing the effects of vegetation on water flow and sediment transport already exist, but comparative analyses and validations on extensive datasets are still lacking. In order to provide practical information for modelling purposes, we analysed the performance of a large number of models on flow resistance, vegetation drag, vertical velocity profiles and bed‐shear stresses in vegetated channels. Their assessments and applicability ranges are derived by comparing their predictions with measured values from a large dataset for different types of submerged and emergent vegetation gathered from the literature. The work includes assessing the performance of the sediment transport capacity formulae of Engelund and Hansen and van Rijn in the case of vegetated beds, as well as the value of the drag coefficient to be used for different types of vegetation and hydraulic conditions. The results provide a unique comparative overview of existing models for the assessment of the effects of vegetation on morphodynamics, highlighting their performances and applicability ranges. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
The paper addresses the problem of the resistance due to vegetation in an open channel flow, characterized by partially and fully submerged vegetation formed by colonies of bushes. The flow is characterized by significant spatial variations of velocity between vertical profiles that make the traditional approach based on time averaging of turbulent fluctuations inconvenient. A more useful procedure, based on time and spatial averaging (Double-Averaging Method) is applied for the flow field analysis and characterization. The vertical distribution of mean velocity and turbulent stresses at different spatial locations has been measured with a 3D Acoustic Doppler Velocimeter (ADV) for two different vegetation densities where fully submerged real bushes (salix pentandra) have been used. Velocity measurements were completed together with the measurements of drag exerted on the flow by bushes at different flow depths. The analysis of velocity measurements allows depicting the fundamental characteristics of both the mean flow field and turbulence. The experimental data show that the contribution of form-induced stresses to the momentum balance cannot be neglected. The mean velocity profiles and the spatially averaged turbulent intensity profiles allow inferring that the vegetation density is a driving parameter for the development of a mixing layer at the canopy top in the case of submerged vegetation. Moreover, the net upward turbulent momentum flux, evaluated with the methodology proposed by Lu and Willmarth (1973), appears to be damped for increased vegetation density; this finding can rationally explain the reduction of the suspended sediment transport capacity typically observed in free surface flows over a vegetated bed.  相似文献   

5.
1 INTRODUCTIONWhen water flows over a fluvial bed, hydro-dynandc force induced by the flow is acting on thesediment particles lying on the bed. A further increase in flow velocity results in an increase in themagnitude of this fOrce; and sediment particles begin to move if a situation is eventu8lly reached whenthe hydro-dynandc force exceeds a certain critical value. This initial movement of sediment pallicles istermed inciPient motion. The erosion and sedimentation of nuvial beds can be…  相似文献   

6.
Submerged aquatic vegetation affects flow, sediment and ecological processes within rivers. Quantifying these effects is key to effective river management. Despite a wealth of research into vegetated flows, the detailed flow characteristics around real plants in natural channels are still poorly understood. Here we present a new methodology for representing vegetation patches within computational fluid dynamics (CFD) models of vegetated channels. Vegetation is represented using a Mass Flux Scaling Algorithm (MFSA) and drag term within the Reynolds‐averaged Navier–Stokes Equations, which account for the mass and momentum effects of the vegetation, respectively. The model is applied using three different grid resolutions (0.2, 0.1 and 0.05 m) using time‐averaged solution methods and compared to field data. The results show that the model reproduces the complex spatial flow heterogeneity within the channel and that increasing the resolution leads to enhanced model accuracy. Future applications of the model to the prediction of channel roughness, sedimentation and key eco‐hydraulic variables are presented, likely to be valuable for informing effective river management. © 2016 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

7.
Weiming Wu 《Ocean Dynamics》2014,64(7):1061-1071
A 3-D shallow-water flow model has been developed to simulate the flow in coastal vegetated waters with short waves. The model adopts the 3-D phase-averaged shallow-water flow equations with radiation stresses induced by short waves. It solves the governing equations using an implicit finite volume method based on quadtree rectangular mesh in the horizontal plane and stretching mesh in the vertical direction. The flow model is coupled with a spectral wave deformation model called CMS-Wave. The wave model solves the spectral wave-action balance equation and provides wave characteristics to the flow model. The model considers the effects of vegetation on currents and waves by including the drag and inertia forces of vegetation in the momentum equations and the wave energy loss due to vegetation resistance in the wave-action balance equation. The model has been tested using several sets of laboratory experiments, including steady flows in a straight channel with submerged vegetation and in a compound channel with vegetated floodplain and random waves through a vegetated channel and on a vegetated beach slope. The calculated water levels, current velocities, and wave heights are in general good agreement with the measured data.  相似文献   

8.
Effects of vegetation on flow conveyance and sediment transport capacity   总被引:3,自引:0,他引:3  
In-stream and riparian vegetation may significantly affect flow and sediment transport in vegetated channels. A hydraulic model has been developed in this paper to compute the flow discharge in channels with rigid and flexible vegetation under emergent and submerged conditions. An empirical formula has also been presented to determine the bed-load discharge in vegetated channels. The model has been tested against experimental and field data available in the literature. The computed flow discharge and bed-load transport rate agree well with the measured data.  相似文献   

9.
《国际泥沙研究》2016,(3):251-256
The classic Engelund bed-load formula involves four oversimplified assumptions concerning the quantity of particles per unit bed area that can be potentially entrained into motion, the probability of sediment being entrained into motion at a given instant, the mean velocity of bed-load motion, and the dimen-sionless incipient shear stress. These four aspects are reexamined in the light of new findings in hydrodynamics, and a modified bed-load formula is then proposed. The modified formula shows promise as being reliable in predicting bed-load transport rates in a wide range of flow intensities.  相似文献   

10.
《国际泥沙研究》2016,(4):360-367
Studies regarding the influence of emergent vegetation on sediment transport are scarce and have mainly focused on flume conditions. To fill this gap and also meet the international need, we aimed to evaluate the influence of emergent vegetation (Echinodorus macrophyllus) on sediment transport of Capibaribe River, Brazil. Bedload and suspended sediment measurements were carried out using the US BLH 84 and US DH 48 samplers, respectively. Measurements of stem diameter, stem spacing and plant density were performed in conjunction with flow and sediment field measurements. Based on our results, 0.45 m s ? 1 was the threshold of mean flow velocity supported by E. macrophyllus under field conditions. This value can be helpful for other rivers with gravel-bed river to armoured layer ratio (AR ? D50-surface)/D50-subsurface ? 12.50) – natural conditions observed in Capibaribe River – or where the vegetation can provide positive effects, such as increase the bed stability, assist water restoration/rehabilitation and decrease water turbidity. Our results can hopefully be used in engineering practice and ecosystem management. In general, both the drag coefficient and drag force varied inversely and directly with the mean flow velocity and vegetation density, respectively. The vegetation resistance force was inversely proportional to the bedload transport owing to the resistance caused by emergent vegetation. This finding was supported by the clear decoupling between nonvegetated and emergent vegetated conditions indicated by cluster analysis. The study results provided a reasonable understanding of the interaction between emergent vegetation, water flow and sediment transport in the Capibaribe River.&2016 International Research and Training Centre on Erosion and Sedimentation/the World Association  相似文献   

11.
Sediment incipient motion is a fundamental issue in sediment transport theory and engineering practice. Whilst Shields curve often is used to determine the threshold of sediment movement under unidirectional current conditions, it is unclear whether it can be directly applied for the wave or combined wave-current conditions. The study developed adaptive criterion curves describing incipient motion of sediment under wave and current conditions based on the flow pattern around the sediment particles. Firstly, the flow pattern law for fixed particles was recognized based on the friction law under various dynamic conditions (wave, current, and their combinations), and the flow pattern demarcations for incipient sediment motion were obtained with the threshold conditions for sediment movement under various dynamic conditions combined. Secondly, the exact shape of the Shields curve in each flow regime was derived under the current condition. By combining the flow pattern demarcations for incipient sediment motion under the wave condition, the criterion curve under the wave condition was derived. By combining the flow pattern demarcations for incipient sediment motion under the combined current-wave condition, the criterion curve for sediment incipient motion under the combined current-wave condition was derived. The results indicated that the flow pattern around incipient particles includes laminar, laminar-rough turbulent transition, and rough turbulent regimes. The criterion curves for sediment incipient motion under various dynamic conditions stayed the same in the laminar and rough turbulent regimes, but different in the transition regime. Depending on the relative strengths of the currents and waves, the shape of the criterion curve under the combined current-wave condition transitions adaptively between the criterion curve under the current condition and the criterion curve under the wave conditions.  相似文献   

12.
1 INTRODUCTION TheCirculatingFlow(CF)exhibitssecondaryflowandoccursinnatureandthehydraulicandwatertransportengineering,inwhicht...  相似文献   

13.
《国际泥沙研究》2020,35(1):1-14
A two-dimensional(2 D) computational model for simulation of incipient sediment motion for noncohesive uniform and non-uniform particles on a horizontal bed was developed using the Discrete Element Method(DEM).The model was calibrated and verified using various experimental data reported in the literature and compared with different theories of incipient particle motion.Sensitivity analysis was done and the effects of relevant parameters were determined.In addition to hydrodynamic forces such as drag,shear lift and Magnus force,the particle-particle interaction effects were included in the model.The asymptotic critical mobility number was evaluated for various critical particle Reynolds numbers(R*) in the range of very small and very large R*.The obtained curve is classified into four regions.It was found that in the linear region,the drag force has the principal role on the initiation of motion.Moreover,the critical mobility number is independent of particle diameter.A procedure for estimating the critical shear velocity directly from the information on particle diameter and roughness height was developed.Finally,the mechanism of incipient motion for the different regions was studied and the effect of different forces on the incipient particle motion was obtained.It was found that the maximum effects of lift and Magnus forces were,respectively,less than ten and twenty percent of the total force.The drag force,however,was typically the dominant force accounting for majority of the net hydrodynamic force acting on sediment particles at the onset of incipient motion.  相似文献   

14.
Non-uniform sediment incipient velocity   总被引:5,自引:3,他引:2  
Based on the mechanism of non-uniform sediment incipient motion, the dragging force and uplift force coefficient expressions are put forward for the non-uniform bed material exposure and close alignment state. The incipient velocity formula of the non-uniform sediment is then established. It is shown that the formula structure is reasonable, and fine particles of the non-uniform sediment are more difficult to set into motion than the same sized uniform particles, whereas coarser particles are easier to set into motion than their uniform equivalents. The validity of the formula is verified by field and experiment data.  相似文献   

15.
The long‐term (10–100 years) evolution of tidal channels is generally considered to interact with the bio‐geomorphic evolution of the surrounding intertidal platform. Here we studied how the geometric properties of tidal channels (channel drainage density and channel width) change as (1) vegetation establishes on an initially bare intertidal platform and (2) sediment accretion on the intertidal platform leads to a reduction in the tidal prism (i.e. water volume that during a tidal cycle floods to and drains back from the intertidal platform). Based on a time series of aerial photographs and digital elevation models, we derived the channel geometric properties at different time steps during the evolution from an initially low‐elevated bare tidal flat towards a high‐elevated vegetated marsh. We found that vegetation establishment causes a marked increase in channel drainage density. This is explained as the friction exerted by patches of pioneer vegetation concentrates the flow in between the vegetation patches and promotes there the erosion of channels. Once vegetation has established, continued sediment accretion and tidal prism reduction do not result in significant further changes in channel drainage density and in channel widths. We hypothesize that this is explained by a partitioning of the tidal flow between concentrated channel flow, as long as the vegetation is not submerged, and more homogeneous sheet flow as the vegetation is deeply submerged. Hence, a reduction of the tidal prism due to sediment accretion on the intertidal platform, reduces especially the volume of sheet flow (which does not affect channel geometry), while the concentrated channel flow (i.e. the landscape forming volume of water) is not much affected by the tidal prism reduction. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
A generalized probabilistic model is developed in this study to predict sediment entrainment under the incipient motion, rolling, and pickup modes. A novelty of the proposed model is that it incorporates in its formulation the probability density function of the bed shear stress, instead of the near-bed velocity fluctuations, to account for the effects of both flow turbulence and bed surface irregularity on sediment entrainment. The proposed model incorporates in its formulation the collective effects of three para-meters describing bed surface irregularity, namely the relative roughness, the volumetric fraction and relative position of sediment particles within the active layer. Another key feature of the model is that it provides a criterion for estimating the lift and drag coefficients jointly based on the recognition that lift and drag forces acting on sediment particles are interdependent and vary with particle protrusion and packing density. The model was validated using laboratory data of both fine and coarse sediment and was compared with previously published models. The study results show that all the examined models perform adequately for the fine sediment data, where the sediment particles have more uniform gra-dation and relative roughness is not a factor. The proposed model was particularly suited for the coarse sediment data, where the increased bed irregularity was captured by the new parameters introduced in the model formulation. As a result, the proposed model yielded smaller prediction errors and physically acceptable values for the lift coefficient compared to the other models in case of the coarse sediment data.  相似文献   

17.
For the appropriate management and restoration of rivers, isolated vegetation is often a practical means for improving stream habitat and ecology. The effect of a finite vegetation patch on flow and bed morphology in an open channel was investigated using laboratory experiments. The patch containing emergent and submerged vegetation was modeled using circular cylinders and located mid‐channel along a side wall. Several configurations of the patch and submergence ratio (i.e. water depth to the height of vegetation), and two flow conditions (i.e. below and above the sediment motion threshold) were considered. For flows below the sediment motion threshold, erosion occurred primarily on the opposite side of the patch and near the leading edge of the patch. The degree of scouring depth observed in both these regions was affected by the submergence ratio and it increased with the non‐dimensional flow blockage (i.e. the product of the patch density and width). In contrast, for flows above the sediment motion threshold, sediment accumulated within and around the patch due to a reduction in bed shear stress, which was strongly influenced by the flow blockage and the obstruction ratio (i.e. the ratio of patch width to channel width). The eroded area observed within the patch was consistent with the interior adjustment region where the deceleration and diversion of flow occurred through the patch. As the flow blockage increased or as the obstruction ratio decreased, the deposition rate within and behind the patch decreased. Furthermore, the deposition rate increased with an increase in the ratio of flow rate through the patch to total flow rate regardless of the submergence ratio. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
19.
A decline in the ecosystem health of Australia's Moreton Bay, a Ramsar wetland of international significance, has been attributed to sediments and nutrients derived from catchment sources. To address this decline the regional management plan has set the target of reducing the loads by 50%. Reforestation of the channel network has been proposed as the means to achieve this reduction, but the extent of revegetation required is uncertain. Here we test the hypothesis that sediment and nutrient loads from catchments decrease proportionally with the increasing proportion of the stream length draining remnant vegetation. As part of a routine regional water quality monitoring program sediment and nutrient loads were measured in 186 flow events across 22 sub‐catchments with different proportions of remnant woodland. Using multiple linear regression analysis we develop a predictive model for pollutant loads. Of the attributes examined a combination of runoff and the proportion of the stream length draining remnant vegetation was the best predictor. The sediment yield per unit area from a catchment containing no remnant vegetation is predicted to be between 50 and 200 times that of a fully vegetated channel network; total phosphorus between 25 and 60 times; total nitrogen between 1.6 and 4.1 times. There are ~48 000 km of streams in the region of which 32% drain areas of remnant vegetation. Of these 17 095 km are above the region's water storage dams. We estimate that decreasing the sediment and phosphorus loads to Moreton Bay by 50% would involve rehabilitating ~6350 km of the channel network below the dams; halving the total nitrogen load would require almost complete restoration of the channel network. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Studies on emergent flow over vegetative channel bed with downward seepage   总被引:2,自引:2,他引:0  
Experimental observations in a tilting flume having a bed covered with rice plants (Oryza sativa) are used to analyse the flow characteristics of flexible emergent vegetation with downward seepage. The flow velocity for no-seepage and with seepage is reduced by, on average, 52% and 33%, respectively, as the flow reaches the downstream end with vegetation. Higher Reynolds stress occurs at the start of the vegetation zone; hence, bed material transport occurs in this region. The results indicate that the bed is no longer the primary source of turbulence generation in vegetated flow; rather it is dominated by turbulence generated by the vegetation stems. The local effect of the presence of vegetation causes variations in the hydrodynamic characteristics along the vegetated portion of the channel, which leads to erosion and deposition in the vegetation zone. The experiments show that vegetation can provide considerable stability to channels by reducing channel erosion even with downward seepage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号