首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 281 毫秒
1.
土体冻融过程中的未冻水动态变化与冰-水相变过程密切相关,是冻融过程中非饱和土研究的重要基础。利用在线控温以及分层扫描的核磁共振新技术直观测试冻融过程中非饱和砂土的未冻水含量。结合T_(2)分布曲线(曲线上不同的T;值对应着孔隙水类别特性,曲线下方的面积对应试样水分含量)在冻融过程中的峰值大小和峰面积数据反演土体中含水量的大小与赋存的位置,而曲线的峰形态以及弛豫范围(各峰起始值以及终止值)等信息反演不同类型水分(吸附水与毛细水)以及土体结构的分布。在处理试验结果时,首先依据测试得到的冻结温度划分试样冻结区与未冻区。冻结区与未冻区未冻水含量及其孔隙变化差异明显,究其原因是冰水相变与水分迁移。在土样冻结区域冰水相变占主导地位,水分主要由未冻区向冻结锋面附近的e、f层迁移。首先以中大孔隙中毛细水迁移为主,其次以小孔隙中的吸附水迁移为辅。依据水相变成冰体积增大和孔隙体积占比数据分析可知,冻结区微小孔隙会在冻结过程中连通形成中大孔隙;而在未冻区水分迁移占主导地位。未冻区受固结作用中大孔隙压缩形成为小孔隙。试验过程中冻结锋面附近的e、f层孔隙变化最为剧烈。  相似文献   

2.
对水盐补给条件下硫酸盐渍土中的热质迁移、孔隙流体相变过程以及硫酸盐渍土盐冻胀变形进行了理论和试验研究。基于非饱和土力学和热弹性连续介质理论,建立了非饱和硫酸盐渍土中水-热-盐-力多物理场耦合的数学模型,其中考虑了孔隙内相变对热力学和水力学参数的影响,通过数值模拟分析了开放系统单向冻结条件下土体内部温度场、水分场、盐分场及应力场的变化过程,并利用室内降温试验对理论模型的有效性进行了验证。研究结果表明:盐分在结晶时所析出的潜热会直接影响到水分冻结成冰的过程;土体孔隙溶液浓度在开放系统单向冻结条件的影响下随时间先快速增长至峰值而后逐渐下降,最终趋于稳定;在负温的影响下,土体内部水分相变成冰,并逐渐形成冻结锋面,随着冻结锋面的下移,土体盐冻胀程度越来越大。  相似文献   

3.
《岩土力学》2017,(7):1919-1925
冻结特征曲线(SFCC)是指冻土中温度和未冻水含量之间的关系,采用核磁共振系统和低温恒温冷浴获得了采用不同浓度Na Cl溶液饱和的黏土的冻结特征曲线。根据试验结果分析不同浓度的孔隙溶液对冻结特征的影响规律,结果表明:随着溶液浓度的增大,冻结特征曲线向上移动,也就是说在相同未冻水含量下,浓度越大,冻结温度越低。这主要是因为盐溶液引起了渗透势能,使得孔隙水中总势能降低,从而降低了孔隙水的冰点。在冻土中,孔隙水的冻结温度与能量状态有关,其中孔隙水的势能包括基质势能和渗透势能,而基质势能部分又分为毛细部分和吸附部分,渗透势能与孔隙溶液的浓度有关。当土体中未冻水含量较低时,主要是吸附效应在起作用。此时未冻水是以吸附膜的形式吸附在土颗粒的周围,将非饱和土的概念引入到冻土中,采用分子间作用力和吸附水膜厚度之间的关系,以描述处于吸附状态的冻结特征曲线。结合渗透势能来模拟不同浓度下的冻结特征曲线,与试验数据拟合结果较好。  相似文献   

4.
邴慧  何平  杨成松  施烨辉 《冰川冻土》2006,28(1):126-130
易溶盐在土中的存在及其在冻结过程中的重新分布对土体的冻结过程有重要影响.在开放系统单向冻结条件下,对青藏铁路沿线粉质红粘土进行了冻结试验.结果表明:随着冷能的持续传递,硫酸钠盐和水分向温度较低处迁移,土体0℃曲线持续降低;但基于测定的含盐土大量冻结温度的基础上,对土体冻深的研究发现,在开放单向冻结条件下土体冻深随着水盐迁移进程的发展而减小,造成与补蒸馏水的土体相比,土体的冻胀较小.同时,利用冻深发展曲线和硫酸钠水溶液相图及溶解度曲线,对土柱中的冻胀和盐胀分别进行了计算,结果认为:土体变形主要是由冻胀引起,硫酸钠结晶膨胀只发生在未冻土段,这与试验结束后对土体冻土段和未冻土段的干密度分层测定的试验结果相一致.  相似文献   

5.
针对封闭系统下粗颗粒硫酸盐渍土在冻结过程中的水盐迁移和变形特性开展了理论和试验研究。基于非饱和多孔介质热弹性理论,考虑孔隙水盐相变,建立了适用于粗颗粒盐渍土水-热-盐-力多场耦合模型,并对单向冻结条件下粗颗粒盐渍土的温度场、水分场、盐分场和位移场分布进行了数值模拟。通过配制含硫酸盐的细砂作为土样开展了单向冻结条件下的室内试验,测定了冻结过程中的温度、水分、盐分以及变形的分布,并与数值结果进行了比较,验证了理论模型的有效性。结果表明:砂土结构孔隙更大,水分和盐分更容易渗透和迁移,在单向冻结试验中,水盐迁移速度更快;细砂的轴向位移呈现先下降后上升的变化趋势,且收缩变形持续时间较黏土更长;由于暖端水分向冷端迁移致使暖端土体孔隙减小,下部土体变得更加密实,土柱下部侧壁压力大于上部。  相似文献   

6.
季节冻土区水盐迁移及土体变形特性模型试验研究   总被引:1,自引:0,他引:1  
为研究盐渍化冻土水分、盐分迁移规律以及变形特性,探索寒区旱区土壤盐渍化机制,配制了不同含盐量的粉质黏土进行模型试验。试验结果表明,温度、水分、盐分和土体变形之间相互耦合。温度降低有利于盐晶体析出和未冻水结冰;反之,温度升高易于晶体溶解和冰融化。水盐相变过程中伴随能量的释放或吸收,影响土体温度。盐分改变了流体的动力黏度和土体冻结温度,并且盐分结晶使土体产生较大的吸力,加剧了未冻水含量的变化。水分是盐分迁移的介质,盐分以离子形式随未冻水迁移。降温期水分盐分向上迁移,升温期迁移方向相反。迁移速率与吸力有关,冻结缘附近吸力最大,速率最快。盐渍化冻土的变形是盐分和水分共同作用的结果,含盐量较低时冻胀和融沉是土体变形的主要因素;当含盐量较高时盐胀和溶陷占主导作用。  相似文献   

7.
刘慧  杨更社  叶万军  申艳军 《冰川冻土》2015,37(6):1591-1598
未冻水含量是影响岩石低温冻结过程中热力学性质的重要因素, 是冻土科学研究中的重要问题. 采用CT无损识别技术进行不同温度梯度下岩石CT扫描实验, 获得了20℃、-2℃、-5℃、-10℃、-20℃、-30℃下岩石的CT扫描图像. 以数字图像处理理论为依据, 运用CT图像直方图技术进行不同温度梯度下冻结岩石CT图像解析, 完成了冻结岩石未冻水含量及损伤信息的定量分析. 研究结果表明: -2~-5℃是岩石内未冻水含量急剧减小的温度区间; 当温度降到-10℃时, 岩石内未冻水全部冻结成冰. 根据CT数直方图峰形形状可判别低温环境下冻结岩石的损伤大小及分布均匀性. 论文所提出的冻结岩石CT图像直方图技术为定量分析不同温度梯度下冻结岩石未冻水含量、损伤扩展随温度的变化规律提供了新的方法和思路.  相似文献   

8.
利用测温法和核磁共振法测量了不同浓度典型盐溶液(NaCl、Na_(2)CO_(3))饱和重塑粉土的冻结温度及冻结特征曲线,并与不同浓度的NaCl、Na_(2)CO_(3)纯溶液作对比分析,研究初始含盐量对冻结温度及未冻水含量的影响。结果表明:土样冻结温度随初始含盐量的增加而逐渐降低;相同浓度NaCl溶液饱和土样的冻结温度低于相应纯溶液的冻结温度,但相同浓度(0.6 mol/L)Na_(2)CO_(3)溶液饱和土样的冻结温度却比纯溶液的冻结温度高;同一负温下,土样中未冻水含量随NaCl初始含盐量的增加而增多,但随Na_(2)CO_(3)初始含盐量的变化不明显。通过机理分析,表明盐类型和含盐量对土水势具有不同的影响。基于改进的广义Clapeyron方程,将含盐分土冻结温度表达式引入未冻水含量预测模型,得到了能够考虑不同含盐量影响的土体未冻水含量的定量表达,并与实测数据进行对比,验证了该模型能够较为合理地预测不同温度下含盐土体的未冻水含量。  相似文献   

9.
温度-湿度-荷载综合作用下路基冻融过程试验研究   总被引:5,自引:3,他引:2  
为了研究季节冻土路基内部温度场、水分场及应力场综合效应的变化特性,基于自主研发的温度-湿度-荷载综合模型试验测试系统,进行室内路基模型的冻结与融化循环试验,分析了冻融循环过程路基内部土体水、热及力学性能的变化特性.试验表明:冻结过程中,初期温度变化大,温度梯度从顶端向底部逐渐递减;路基顶冻结后,0℃冻结锋面不断往下移动,0℃分界线两段内温度梯度差异大;路基含水率分为冻结区未冻水含量似稳定段、过渡区未冻水快速相变段、未冻结区含水率减小段.融化过程中,温度变化先大后小,未冻结水含量与温度大小相关,路基内部含水量呈现中间增大,两端减小的情形.水热综合作用下,应力场表现:冻融过程中,路基回弹模量随着冻结深度的增大呈线性增加,随融化深度的增加而减小;路基回弹模量随冻融循环次数增加而衰减,当达到6次时,衰减趋于稳定.结果表明,土体水热耦合作用是影响路基土体力学性能的关键因素.  相似文献   

10.
冻融循环作用下节理岩体锚固性能退化机理和模式   总被引:2,自引:0,他引:2  
岩土锚固的长期性能和耐久性是当前岩土工程界普遍关注的热点问题,也是影响锚固工程长期安全性的关键问题之一。节理岩体存在不同尺度、程度的损伤和缺陷,为地下水的存储和运移提供场所和通道。当达到孔隙水和裂隙水的冻结温度时,岩体中产生冻胀,并伴随着水分迁移,影响锚固系统的锚固性能,在冻融循环作用下,引起锚固系统长期性能和耐久性的退化。依据孔隙介质的冻结理论,建立了砂浆、岩石、砂浆-钢筋和砂浆岩石接触面静水压力学模型,分析其冻结机理。在总结岩石冻融损伤劣化研究成果基础上,深入系统地分析了节理岩体锚固系统的冻融损伤劣化机理及其影响因素,并建立冻融循环作用下节理岩体锚固性能退化的6种模式及其数学模型。  相似文献   

11.
含NaCl和Na2SO4双组分盐渍土的水盐相变温度研究   总被引:1,自引:0,他引:1  
盐渍土相变温度是判断土体中水分冻结与融化、盐分结晶与溶解的重要参数。不同盐分含量相变温度的差异,给盐渍土在降温过程中的水盐迁移过程及变形规律的模拟带来极大的不确定性。通过降温试验,研究了降温过程中氯盐和硫酸盐综合作用盐渍土中水盐相变温度的变化情况。结果表明:全盐量相同时,盐结晶温度随NaCl和Na2SO4比例的不同而不同。随NaCl的加入,在Na+同离子效应的影响下,Na2SO4更容易结晶,但土体的冰和芒硝共晶点温度下降,使得冰含量显著减少,从而降低了孔隙溶液中固相的产生比例,起到抑制Na2SO4盐渍土盐冻胀变形的作用。当土中只含Na2SO4盐时,随Na2SO4浓度的增加,冰和芒硝共晶点的温度先上升而后缓慢下降,二次相变前冰盐的累积量是导致冰和芒硝共晶点产生这种变化的主要原因。盐渍土三相共晶点温度随NaCl含量的增加呈现上升趋势,这是因为随着NaCl的加入,在发生三相共晶前,孔隙溶液发生相变的固相含量减少,从而使孔隙结构对三相共晶点的影响减小。此外,含有NaCl与Na2SO4双组分的盐渍土,水分和盐分可能以单固相、双固相以及三固相状态析出。研究结果可为深入认识盐渍土的相变规律及物理性质提供理论支撑。  相似文献   

12.
利用测温法和核磁共振法测量了不同浓度典型盐溶液(NaCl、Na2CO3)饱和重塑粉土的冻结温度及冻结特征曲线,并与不同浓度的NaCl、Na2CO3纯溶液作对比分析,研究初始含盐量对冻结温度及未冻水含量的影响。结果表明:土样冻结温度随初始含盐量的增加而逐渐降低;相同浓度NaCl溶液饱和土样的冻结温度低于相应纯溶液的冻结温度,但相同浓度 (<0.6 mol/L)Na2CO3溶液饱和土样的冻结温度却比纯溶液的冻结温度高;同一负温下,土样中未冻水含量随NaCl初始含盐量的增加而增多,但随Na2CO3初始含盐量的变化不明显。通过机制分析,表明盐类型和含盐量对土水势具有不同的影响。基于改进的广义Clapeyron方程,将含盐分土冻结温度表达式引入未冻水含量预测模型,得到了能够考虑不同含盐量影响的土体未冻水含量的定量表达,并与实测数据进行对比,验证了该模型能够较为合理的预测不同温度下含盐土体的未冻水含量。  相似文献   

13.
Freezing temperature is an important parameter in studying the freezing mechanism of saline soil. An equation for calculating the freezing temperature is proposed based on the phase transition theory in porous medium, including two main influencing factors, the water activity and pore size. In this equation, the effect of the water activity on the freezing temperature of soil is calculated by Pitzer model, while the impact of pore size is replaced by water content. Through comparing the calculated results with the published experimental data, the equation is proved to be competent in predicting the freezing temperature for the saline soil with sodium chloride or calcium chloride. For the saline soil with sodium carbonate, the effect of salt hydrate crystallization should be taken into consideration. With respect to the saline soil with sodium sulfate, it is difficult to determine the freezing temperature, since there is uncertainty of the resultant when freezing (that is, heptahydrate or decahydrate). In addition, the effects of pore size and multi-component solutes on freezing temperature are also discussed. The study would be helpful for revealing the freezing mechanism and also providing a useful theoretical method for engineering design of saline soil in cold regions.  相似文献   

14.
盐渍土与盐溶液冻结温度关系的试验研究   总被引:4,自引:2,他引:2  
吴刚  邴慧  卜东升 《冰川冻土》2019,41(3):615-628
通过不同降温方式的冻结温度试验,明确了降温速率对土体冻结温度的影响,并采用快速降温方法,测定了不同含水率的三种天然氯(亚)盐渍土和黄土的冻结温度,以及不同浓度Na2SO4、NaCl溶液和由溶液配制的黄土的过冷温度和冻结温度,分析了降温速率、含水率、含盐量、盐类对土和溶液相变过程的影响。结果表明,快速降温得到的冻结温度值比缓慢降温得到的值偏低。当含水率低于盐渍土的塑限含水率时,水分是冻结温度的主要制约因素;当含水率大于土的塑限含水率时,天然盐渍土的含盐量对土的冻结温度起控制作用,Na2SO4含量控制含盐土的第一次相变,NaCl含量控制含盐土在低温下的第二次相变;低含盐量黄土含水率低于塑限含水率时,冻结温度随含水率增大而增大,但当含水率高于饱和含水率时,冻结温度随含水率变化不大。含Na2SO4的土和溶液的过冷温度变化规律与冻结温度变化规律类似,且其温度差值较小,通过Na2SO4溶液的冻结温度试验,可近似得到同浓度下含水率为16%只含Na2SO4黄土的冻结温度。  相似文献   

15.
为了研究氯盐侵蚀和冻融循环耦合下水泥土无侧限抗压强度和破坏特征, 进行了不同浓度氯化钠溶液下的水泥土冻融循环试验, 得到了冻融前后的冻融腐蚀因子、 体积变化率和变形模量, 分析了微观结构特征。结果表明: 在氯盐侵蚀和冻融循环耦合下, 水泥土的无侧限抗压强度、 冻融腐蚀因子均随着冻融循环次数的增加而呈现下降趋势; 氯盐浓度越高, 水泥土的无侧限抗压强度、 冻融腐蚀因子下降的幅度越大。随着冻融循环次数的增加, 在同种浓度溶液中, 水泥土的体积变化率增大, 变形模量减小; 氯盐浓度增大, 水泥土体积膨胀变大, 内部结构松散, 抵抗变形的能力减弱。相同冻融循环次数下, 氯盐溶液产生的损伤要大于清水中的损伤, 随着氯盐溶液浓度的增加, 水泥土内部微观结构损伤越严重。  相似文献   

16.
冻结法施工设计过程中地层的热物理参数是必须明确的指标, 为了探明高富水卵砾石地层热物理参数以及各参数与影响因素之间的相互作用关系, 本文以现场取回卵砾石样为研究对象, 通过自制试验装置测量试样起始冻结温度、比热容和导热系数, 探究含盐量对试样起始冻结温度的影响, 试样比热容、导热系数与冻结温度之间的相互作用关系, 试验结果表明:随着含盐量升高, 试样中水分的蒸气压不断下降, 造成试样需要更低的温度, 释放更多的能量才会发生冻结, 试样随着含盐量的升高起始冻结温度下降, 1、2、3号试样平均起始冻结温度从-0.46 ℃下降到-1.15 ℃; 随着冻结温度的降低试样中水分冻结, 卵砾石试样中含冰量增多, 未冻水含量减少, 由于冰的比热容是水的一半, 致使比热容不断下降, 卵砾石试样比热容从1.60 J·(g·℃)-1下降到1.06 J·(g·℃)-1; 随着冻结温度的降低试样含冰量增多, 含水量减少, 由于冰的导热系数远远大于水的导热系数, 致使卵砾石试样导热系数不断上升, 由1.71 W·(m·K)-1增加到2.13 W·(m·K)-1; 由于试样中含冰量、未冻水含量随温度不断变化, 固态和液态水的相变, 导致试样热物理性质随温度不断发生改变。  相似文献   

17.
路基冻胀问题严重影响寒区高速铁路的安全服役,而成冰相变过程是解释冻胀机制的关键。基于介观尺度的格子Boltzmann方法,将修正的孔隙水冻结温度算法与焓法固液相变格子Boltzmann模型相结合,模拟了悬浮液滴冻结和冻土孔隙水成冰两个过程,分别揭示了液态水在自由状态和孔隙束缚状态下冰水相变的细观机制。计算结果表明:土体孔隙中冰晶由中心向外生长的过程与悬浮在空气中的液滴冻结过程截然不同,并且孔隙水越接近颗粒表面,其冻结温度越低。相同粒径颗粒按照不同排列方式得到的冻结特征曲线(soil freezing characteristic curves,简称SFCC)具有明显差异;不同粒径的SFCC随着颗粒增大残余水含量逐渐变少,形态更加陡峭。通过与文献试验结果对比,验证了格子Boltzmann方法的有效性,表明该方法能够为研究多孔介质水气迁移与相变过程提供介观尺度的新手段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号