首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stability in the sense of Lagrange of the Sun–Jupiter–Saturn system and 47 UMa system with respect to masses on a time scale of 106 years was studied using the method of averaging and numerical methods. When the masses of Jupiter and Saturn increase by 20 times (approximately, more accurate value depends on a time-scale of stable motion), these planets can have close approaches. Close approaches appear when analyzing osculating elements; they are absent in the mean elements. A similar situation takes place in the case of 47 UMa and other exoplanetary systems. The study of Lagrange stability with respect to masses allows us to obtain upper limits for masses of extrasolar planets.  相似文献   

2.
According to current observational data, planets of many exoplanetary systems have resonant motion. The formation of resonance configurations is studied within a unified model of planetary migration. Planets in the observed systems 24 Sex, HD 37124, HD 73526, HD 82943, HD 128311, HD 160691, Kepler 9, NN Ser, which are moving in the 2: 1 resonance, could have been captured into this resonance due to both the Type I and II migration with a wide range of parameters. The migration conditions are defined for the formation of HD 45364 and HD 200964 that are in the 3: 2 and 4: 3 first-order resonances, correspondingly. The results obtained for HD 200964 show that planets can be captured in the first-order resonances, when the outer-to-inner orbital period ratios for the planets are less than 3: 2, only if Type I migration rates are large, and the mass of at least one planet is substantially less than the modern masses of the observed giant planets. The formation of the HD 102272, HD 108874, HD 181433 and HD 202206 systems with planets in high-order resonances is considered. The capture into these resonances can be realized with very slow Type II migration. Possible bounds for migration parameters are considered. In particular, it has been found that the capture of HD 108874 into the 4: 1 resonance is possible only if the angle between the plane of planetary orbits and the plane of sky is appreciably less than 90°, i.e., the planetary masses are a few times larger than the minimum values. The capture of HD 202206 into the 5: 1 resonance is possible at low migration rates; however, another mechanism is required to explain the high observed eccentricity of the inner planet (for example, strong gravitational interaction between the planets). Resonant configurations can be disrupted due to the interaction between planets and remaining fragments of the planetesimal disk as, for example, may occur in the three-planet system 47 UMa. The specific orbital features observed for this system are explained.  相似文献   

3.
Families of nearly circular periodic orbits of the planetary type are studied, close to the 3/1 mean motion resonance of the two planets, considered both with finite masses. Large regions of instability appear, depending on the total mass of the planets and on the ratio of their masses.Also, families of resonant periodic orbits at the 2/1 resonance have been studied, for a planetary system where the total mass of the planets is the 4% of the mass of the sun. In particular, the effect of the ratio of the masses on the stability is studied. It is found that a planetary system at this resonance is unstable if the mass of the outer planet is smaller than the mass of the inner planet.Finally, an application has been made for the stability of the observed extrasolar planetary systems HD82943 and Gliese 876, trapped at the 2/1 resonance.  相似文献   

4.
A complete study is made of the resonant motion of two planets revolving around a star, in the model of the general planar three body problem. The resonant motion corresponds to periodic motion of the two planets, in a rotating frame, and the position and stability properties of the periodic orbits determine the topology of the phase space and consequently play an important role in the evolution of the system. Several families of symmetric periodic orbits are computed numerically, for the 2/1 resonance, and for the masses of some observed extrasolar planetary systems. In this way we obtain a global view of all the possible stable configurations of a system of two planets. These define the regions of the phase space where a resonant extrasolar system could be trapped, if it had followed in the past a migration process.The factors that affect the stability of a resonant system are studied. For the same resonance and the same planetary masses, a large value of the eccentricities may stabilize the system, even in the case where the two planetary orbits intersect. The phase of the two planets (position at perihelion or aphelion when the star and the two planets are aligned) plays an important role, and the change of the phase, other things being the same, may destabilize the system. Also, the ratio of the planetary masses, for the same total mass of the two planets, plays an important role and the system, at some resonances and some phases, is destabilized when this ratio changes.The above results are applied to the observed extrasolar planetary systems HD 82943, Gliese 876 and also to some preliminary results of HD 160691. It is shown that the observed configurations are close to stable periodic motion.  相似文献   

5.
6.
We investigate whether Earth-type habitable planets can in principle exist in the planetary system of 47 UMa. The system of 47 UMa consists of two Jupiter-size planets beyond the outer edge of the stellar habitable zone, and thus resembles our own Solar System most closely compared to all exosolar planetary systems discovered so far. Our study of habitability deliberately follows an Earth-based view according to the concept of Franck and colleagues, which assumes the long-term possibility of photosynthetic biomass production under geodynamic conditions. Consequently, a broad variety of climatological, biogeochemical, and geodynamical processes involved in the generation of photosynthesis-driven life conditions is taken into account. The stellar luminosity and the age of the star/planet system are of fundamental importance for planetary habitability. Our study considers different types of planetary continental growth models and takes into account a careful assessment of the stellar parameters. In the event of successful formation and orbital stability, two subjects of intense research, we find that Earth-type habitable planets around 47 UMa are in principle possible! The likelihood of those planets is increased if assumed that 47 UMa is relatively young (?6 Gyr) and has a relatively small stellar luminosity as permitted by the observational range of those parameters.  相似文献   

7.
Since the first extrasolar planet was discovered about 10 years ago, a major point of dynamical investigations was the determination of stable regions in extrasolar planetary systems where additional planets may exist. Using numerical methods, we investigate the dynamical stability in known multiple planetary systems (HD74156, HD38529, HD168443, HD169830) with special interest on the region between the two known planets and on the mean motion resonances inside this region. As a dynamical model we take the restricted 4-body problem containing the host star, the two planets and massless test-planets. For our numerical integrations, we used the Lie-integrator and additionally the Fast Lyapunov Indicators as a tool for detecting chaotic motion. We also investigated the inner resonances with the outer planet and the outer resonances with the inner planet with test-planets located inside the resonances.  相似文献   

8.
Keiko Atobe  Shigeru Ida 《Icarus》2004,168(2):223-236
We have investigated obliquity variations of possible terrestrial planets in habitable zones (HZs) perturbed by a giant planet(s) in extrasolar planetary systems. All the extrasolar planets so far discovered are inferred to be jovian-type gas giants. However, terrestrial planets could also exist in extrasolar planetary systems. In order for life, in particular for land-based life, to evolve and survive on a possible terrestrial planet in an HZ, small obliquity variations of the planet may be required in addition to its orbital stability, because large obliquity variations would cause significant climate change. It is known that large obliquity variations are caused by spin-orbit resonances where the precession frequency of the planet's spin nearly coincides with one of the precession frequencies of the ascending node of the planet's orbit. Using analytical expressions, we evaluated the obliquity variations of terrestrial planets with prograde spins in HZs. We found that the obliquity of terrestrial planets suffers large variations when the giant planet's orbit is separated by several Hill radii from an edge of the HZ, in which the orbits of the terrestrial planets in the HZ are marginally stable. Applying these results to the known extrasolar planetary systems, we found that about half of these systems can have terrestrial planets with small obliquity variations (smaller than 10°) over their entire HZs. However, the systems with both small obliquity variations and stable orbits in their HZs are only 1/5 of known systems. Most such systems are comprised of short-period giant planets. If additional planets are found in the known planetary systems, they generally tend to enhance the obliquity variations. On the other hand, if a large/close satellite exists, it significantly enhances the precession rate of the spin axis of a terrestrial planet and is likely to reduce the obliquity variations of the planet. Moreover, if a terrestrial planet is in a retrograde spin state, the spin-orbit resonance does not occur. Retrograde spin, or a large/close satellite might be essential for land-based life to survive on a terrestrial planet in an HZ.  相似文献   

9.
Limits are placed on the range of orbits and masses of possible moons orbiting extrasolar planets which orbit single central stars. The Roche limiting radius determines how close the moon can approach the planet before tidal disruption occurs; while the Hill stability of the star–planet–moon system determines stable orbits of the moon around the planet. Here the full three-body Hill stability is derived for a system with the binary composed of the planet and moon moving on an inclined, elliptical orbit relative the central star. The approximation derived here in Eq. (17) assumes the binary mass is very small compared with the mass of the star and has not previously been applied to this problem and gives the criterion against disruption and component exchange in a closed form. This criterion was applied to transiting extrasolar planetary systems discovered since the last estimation of the critical separations (Donnison in Mon Not R Astron Soc 406:1918, 2010a) for a variety of planet/moon ratios including binary planets, with the moon moving on a circular orbit. The effects of eccentricity and inclination of the binary on the stability of the orbit of a moon is discussed and applied to the transiting extrasolar planets, assuming the same planet/moon ratios but with the moon moving with a variety of eccentricities and inclinations. For the non-zero values of the eccentricity of the moon, the critical separation distance decreased as the eccentricity increased in value. Similarly the critical separation decreased as the inclination increased. In both cases the changes though very small were significant.  相似文献   

10.
Analysis of the data obtained during transits of low-orbit extrasolar planets across the stellar disk yields different estimates of their atmospheric loss rates. Experimental data point to the probable existence of several distinct subtypes of extrasolar giant planets, including “hot Jupiters” of low density (HD 209458b), with massive cores composed of heavy elements (HD 149026b), and others. We show that the expected hot-Jupiter mass losses due to atmospheric escape on a cosmogonic time scale do not exceed a few percent, while the losses through Jeans dissipation are negligible. We also argue that low-orbit giant planets should have a strong magnetic field that interacts with circumstellar plasma with the planet’s supersonic orbital velocity. The magnetic field properties can be used to search for extrasolar planets.  相似文献   

11.
In this paper, we consider the physical properties and characteristic features of extrasolar planets and planetary systems, those, for which the passage of low-orbit giant planets across the stellar disk (transits) are observed. The paper is mostly a review. The peculiarities of the search for transits are briefly considered. The main attention in this paper is given to the difference in the physical properties of low-orbit giant planets. A comparison of the data obtained during the transits of “hot Jupiters” points to the probable existence of several distinct subtypes of low-orbit extrasolar planets. “Hot Jupiters” of low density (HD 209458b), “hot Jupiters” with massive cores composed of heavy elements (HD 149026b), and “very hot Jupiters” (HD 189733b) are bodies that probably fall into different categories of exoplanets. Dissipation of the atmospheres of low-orbit giant planets estimated from the experimental data is compared with the calculated Jeans atmospheric losses. For “hot Jupiters”, the expected Jeans mass losses due to atmospheric escape on a cosmogonic time scale hardly exceed a few percent. Low-orbit giant planets should have a strong magnetic field. Since the orbital velocity of “hot Jupiters” is close to the magnetosonic velocity (or can even exceed it), the moving planet should actively interact with the “stellar wind” plasma. The possession of a magnetic field by extrasolar planets and the effects of their interaction with plasma can be used to search for extrasolar planets.  相似文献   

12.
Today there are more than 340 extra-solar planets in about 270 extra-solar systems confirmed. Besides the observed planets there exists also the possibility of a Trojan planet moving in the same orbit as the Jupiter-like planet. In our investigation we take also into account the habitability of a Trojan planet and whether such a terrestrial planet stays in the habitable zone. Its stability was investigated for multi-planetary systems, where one of the detected giant planets moves partly or completely in the habitable zone. By using numerical computations, we studied the orbital behaviour up to 107 years and determined the size of the stable regions around the Lagrangian equilibrium points for different dynamical models for fictitious Trojans. We also examined the interaction of the Trojan planets with a second or third giant planet, by varying its semimajor axis and eccentricity. We have found two systems (HD 155358 and HD 69830) that can host habitable Trojan planets. Another aim of this work was to determine the size of the stable region around the Lagrangian equilibrium points in the restricted three body problem for small mass ratios μ of the primaries μ ≤ 0.001 (e.g. Neptune mass of the secondary and smaller masses). We established a simple relation for the size depending on μ and the eccentricity.  相似文献   

13.
Our work deals with the dynamical possibility that in extrasolar planetary systems a terrestrial planet may have stable orbits in a 1:1 mean motion resonance with a Jovian like planet. We studied the motion of fictitious Trojans around the Lagrangian points L4/L5 and checked the stability and/or chaoticity of their motion with the aid of the Lyapunov Indicators and the maximum eccentricity. The computations were carried out using the dynamical model of the elliptic restricted three‐body problem that consists of a central star, a gas giant moving in the habitable zone, and a massless terrestrial planet. We found 3 new systems where the gas giant lies in the habitable zone, namely HD99109, HD101930, and HD33564. Additionally we investigated all known extrasolar planetary systems where the giant planet lies partly or fully in the habitable zone. The results show that the orbits around the Lagrangian points L4/L5 of all investigated systems are stable for long times (107 revolutions). (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Light and cold extrasolar planets such as OGLE 2005‐BLG‐390Lb, a 5.5 Earth masses planet detected via microlensing, could be frequent in the Galaxy according to some preliminary results from microlensing experiments. These planets can be frozen rocky‐ or ocean‐planet, situated beyond the snow line and, therefore, beyond the habitable zone of their system. They can nonetheless host a layer of liquid water, heated by radiogenic energy, underneath an ice shell surface for billions of years, before freezing completely. These results suggest that oceans under ice, like those suspected to be present on icy moons in the Solar system, could be a common feature of cold low‐mass extrasolar planets. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Althea V. Moorhead 《Icarus》2005,178(2):517-539
This paper presents a parametric study of giant planet migration through the combined action of disk torques and planet-planet scattering. The torques exerted on planets during Type II migration in circumstellar disks readily decrease the semi-major axes a, whereas scattering between planets increases the orbital eccentricities ?. This paper presents a parametric exploration of the possible parameter space for this migration scenario using two (initial) planetary mass distributions and a range of values for the time scale of eccentricity damping (due to the disk). For each class of systems, many realizations of the simulations are performed in order to determine the distributions of the resulting orbital elements of the surviving planets; this paper presents the results of ∼8500 numerical experiments. Our goal is to study the physics of this particular migration mechanism and to test it against observations of extrasolar planets. The action of disk torques and planet-planet scattering results in a distribution of final orbital elements that fills the a-? plane, in rough agreement with the orbital elements of observed extrasolar planets. In addition to specifying the orbital elements, we characterize this migration mechanism by finding the percentages of ejected and accreted planets, the number of collisions, the dependence of outcomes on planetary masses, the time spent in 2:1 and 3:1 resonances, and the effects of the planetary IMF. We also determine the distribution of inclination angles of surviving planets and the distribution of ejection speeds for exiled planets.  相似文献   

16.
Spectroscopic studies of stars with and without planetary systems have concluded that planet hosts are more metal‐rich. This enrichment is also seen in the other chemical elements studied and is likely to be primordial in nature. Interesting trends of different chemical elements begin to appear as the number of extrasolar planets continues to grow. I present our current knowledge concerning the observed abundance trends of chemical elements in planet hosts and their possible implications. In most cases the abundance trends of planet host stars are identical to those of the comparison sample. However, some exceptions (such as Li) have been reported too. No clear correlation was found between orbital parameters of planets and host star metallicity. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The dynamical stability of a triple system composed of a binary or planetary system and a bound third body moving on a orbit inclined to the system is discussed in terms of Hill stability for the full three-body problem. The situation arises in the determination of stability of triple star systems against disruption and component exchange and the determination of stability of planetary systems against disruption, component exchange or capture. It is found that increasing the inclination of the third body decreases the Hill regions of stability. Increasing the eccentricity of the binary also produces similar effects. These type of changes make exchange or disruption of the component masses more likely. Increasing the eccentricity of the third body initially increases the stability of the system then decreases stability as the eccentricity reaches higher values.The Hill stability criterion is applied to extrasolar planetary systems to determine the critical distances at which planets of the same mass as the observed extrasolar planet moving on a circular orbit could remain on a stable orbit. It was found that these distances were sufficiently short suggesting that the presence of further as yet unobserved stable extrasolar planets in observed systems was very likely.  相似文献   

18.
The significant orbital eccentricities of most giant extrasolar planets may have their origin in the gravitational dynamics of initially unstable multiple planet systems. In this work, we explore the dynamics of two close planets on inclined orbits through both analytical techniques and extensive numerical scattering experiments. We derive a criterion for two equal mass planets on circular inclined orbits to achieve Hill stability, and conclude that significant radial migration and eccentricity pumping of both planets occurs predominantly by 2:1 and 5:3 mean motion resonant interactions. Using Laplace-Lagrange secular theory, we obtain analytical secular solutions for the orbital inclinations and longitudes of ascending nodes, and use those solutions to distinguish between the secular and resonant dynamics which arise in numerical simulations. We also illustrate how encounter maps, typically used to trace the motion of massless particles, may be modified to reproduce the gross instability seen by the numerical integrations. Such a correlation suggests promising future use of such maps to model the dynamics of more coplanar massive planet systems.  相似文献   

19.
We investigate the migration of massive extrasolar planets caused by gravitational interaction with a viscous protoplanetary disc. We show that a model in which planets form at 5 au at a constant rate, before migrating, leads to a predicted distribution of planets that is a steeply rising function of log( a ), where a is the orbital radius. Between 1 and 3 au, the expected number of planets per logarithmic interval in a roughly doubles. We demonstrate that, once selection effects are accounted for, this is consistent with current data, and then extrapolate the observed planet fraction to masses and radii that are inaccessible to current observations. In total, approximately 15 per cent of stars targeted by existing radial velocity searches are predicted to possess planets with masses  0.3< M p sin( i )<10 M J  and radii  0.1< a <5 au  . A third of these planets (around 5 per cent of the target stars) lie at the radii most amenable to detection via microlensing. A further  5–10  per cent of stars could have planets at radii of  5< a <8 au  that have migrated outwards. We discuss the probability of forming a system (akin to the Solar system) in which significant radial migration of the most massive planet does not occur. Approximately  10–15  per cent of systems with a surviving massive planet are estimated to fall into this class. Finally, we note that a smaller fraction of low-mass planets than high-mass planets is expected to survive without being consumed by the star. The initial mass function for planets is thus predicted to rise more steeply towards small masses than the observed mass function.  相似文献   

20.
The experimental data obtained in transit observations of the extrasolar planet HD 209458b and their comparison with theoretical inferences have led to the conclusions that HD 209458b (and other similar hot jupiters) is of a (mainly) hydrogen nature and that these objects probably possess strong magnetic fields. The results of the studies of HD 209458b and prospects for searches for the transits of other extrasolar planets are considered in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号