首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For evaluating the deformations of the Earth’s crust in the Northern Tien Shan, we calculated the mode and intensity of the seismotectonic deformations (STD) for this region. The input for these calculations were the catalog data on the focal mechanisms of earthquakes, obtained by wave inversion of the signals recorded at the Kyrgyz seismic network (KNET) for the period 1994–2006. In the construction of STD maps, a modern approach to the classification of seismotectonic deformations was applied. This approach distinguishes eleven typical patterns of deformation. The areal distributions of the Lode-Nadai coefficient, as well as of the vertical component and the aspect angle of the deformed state were obtained. At the same time, based on the GPS measurements in the Northern Tien Shan during 1994–2006, the rates of dilatation and shear deformation of the Earth’s crust were estimated. A comparison between the directions of strain axes derived from the GPS data and from the earthquake focal data is carried out.  相似文献   

2.
Important problems of tectonophysical analysis of observational results in recent geodynamics are considered. The paradox of low rates of recent horizontal deformations of the Earth’s surface is formulated. This paradox states that, according to GPS measurements, the annual mean rates of relative deformations are 10−9–10−10 per year, whereas, according to ground-based geodetic and deformographic observations, the rates of recent horizontal deformations of the Earth’s surface are on the order of 10−5–10−6 per year. This paradox is shown to appear as a result of the application of the procedure of averaging to the displacements obtained on large measuring bases with a low degree of details of the time of observations. It is established that, according to multiyear (over 40 years) data, the annual mean rate of deformation processes in the Kopet Dagh seismically active region is 4 × 10−8 per annum along the vertical and 3.2 × 10−8 per year along the horizontal.  相似文献   

3.
We present the geophysical evidences on the role of fluids for generation of the lower crustal Jabalpur earthquake (21 May 1997, mb 6.0, Mw 5.8), in the mid-continental fracture zone of the Indian Peninsular Shield. With a focal depth of 35 km, it indicates a high angled (< 62 enclosed with maximum principal stress direction) reverse fault with small component of left-lateral strike slip in the lower crust. The Son-Narmada-Tapti (SONATA) magalineament, during the past two centuries, has experienced about 25 moderate to strong earthquakes; two of which namely the Son Valley (1927, M 6.5) and Jabalpur (21 May 1997) were disastrous. Historical earthquakes and recent earthquake swarms indicate a moderate to high seismicity in SONATA belt that is due to high strain accumulation, flexuring of the crust and neotectonic movements of the faults in the rift zones. By analyzing geophysical parameters such as Zero-Free air-based (ZFb) gravity anomalies (∼ −10 to –30 mGals), heat flow values (45–47 mWm−2), magneto-telluric values (1- Ohm m), strain rate (1.5 × 10−8) and failure stress conditions, we identify plausible causative factors for the occurrence of lower crustal earthquake in this region Fluids, due to dehydration of serpentinite in the lower crust, are suggested to be present in the earthquake source zone. The estimated pore-fluid factor for the Jabalpur earthquake (λ v ) is 0.95. The diffusion of pore-pressure relaxation, represented as pressure perturbation generated by coseismic stress change was seen in the form of swarm activity two years prior to the Jabalpur earthquake. We suggest the existence of a deep pre-fractured zone with low shear stress (τ = 15–18 MPa) that indicates the presence of fluid filled fractured mafic material in the felsic crust, in critical state of unstable failure condition, and also fluid driven migration of swarm activity before the Jabalpur earthquake.  相似文献   

4.
The long-term variations in the second degree sectorial Stokes parameters of the geopotential have been determined from TOPEX-POSEIDON (T/P) satellite altimeter data, covering the period of January 1, 1993 to January 3, 2001 (T/P cycles 11-305). It is the first attempt to determine the variations in the second sectorial harmonics in the Earth’s inertia tensor due to the ocean dynamics. The variations amount to about 1 × 10−10 (J 2 (2) ≈ 1.6 × 10−6 and S 2 (2) ≈ −0.9 × 10−6). The variations are about 5% of the tidal effect. This corresponds to variations in the directions of the equatorial axes of the Earth’s inertia ellipsoid of up to 10 arc-seconds. Consequently, the annual and semi-annual variations of the Earth’s equatorial flattening is about 10−9; i.e. it corresponds to a change of 8 units of its denominator of 91 030. (The equatorial flattening ≈ 1/91 030). Since the coverage of the Earth’s ocean surface is not worldwide, and the inclination of T/P is i = 66°, it is only 58.2% (min. depth of the ocean 2 000 m) of the Earth’s surface which is processed, the torque, resulting from the seasonal transfer of masses within a sea surface layer, is not zero. It amounts up to 1016 kg m2s−2, which is comparable to the total indirect tidal torque due to the Moon and the Sun, ∼ 3.9 × 1016 kg m2s−2. However, the above estimate strongly depends on the adopted thickness of the sea surface layer, ΔR = 50 m. For a larger thickness of ΔR = 100 m, the seasonal torque amounts to about ∼ 2.3 × 1016 kg m2s−2.  相似文献   

5.
Lower crustal xenoliths brought up rapidly by basaltic magma onto the earth surface may provide di-rect information on the lower crust. The main purpose of this research is to gain an insight into the rheology of the lower crust through the detailed study of lower crustal xenoliths collected from the Hannuoba basalt, North China. The lower crustal xenoliths in this area consist mainly of two pyroxene granulite, garnet granulite, and light-colored granulite, with a few exception of felsic granulite. The equilibration temperature and pressure of these xenoliths are estimated by using geothermometers and geobarometers suitable for lower crustal xenoliths. The obtained results show that the equilibration temperature of these xenoliths is within the range of 785―900℃, and the equilibrium pressure is within the range of 0.8―1.2 GPa, corresponding to a depth range of 28―42 km. These results have been used to modify the previously constructed lower crust-upper mantle geotherm for the studied area. The dif-ferential stress during the deformation process of the lower crustal xenoliths is estimated by using recrystallized grain-size paleo-piezometer to be in the range of 14―20 MPa. Comparing the available steady state flow laws for lower crustal rocks, it is confirmed that the flow law proposed by Wilks et al. in 1990 is applicable to the lower crustal xenoliths studied in this paper. The strain rate of the lower crust estimated by using this flow law is within the range of 10-13―10-11 s-1, higher than the strain rate of the upper mantle estimated previously for the studied area (10-17―10-13 s-1); the equivalent viscosity is estimated to be within the range of 1017―1019Pa·s, lower than that of the upper mantle (1019―1021 Pa·s). The constructed rheological profiles of the lower crust indicate that the differential stress shows no significant linear relation with depth, while the strain rate increases with depth and equivalent vis-cosity decrease with depth. The results support the viewpoint of weak lower continental crust.  相似文献   

6.
According to variations of 137Cs and clay contents, 44 flood couplets were identified in a profile of reservoir deposit with a vertical length of 28.12 m in the Yuntaishan Gully. Couplet 27 at the middle of the profile had the highest average 137Cs content of 12.65 Bq kg-1, which indicated the 1963s' deposits, then 137Cs content decreased both downward and upward in the profile. The second top and bottom couplets had average 137Cs contents of 2.15 Bq kg-1 and 0.92 Bq kg-1, respectively. By integrated analysis of reservoir construction and management history, variations of 137Cs contents over the profile, sediment yields of flood couplets and rainfall data during the period of 1958-1970, individual storms related to the flood couplets were identified. 44 floods with a total sediment yield of 2.36×104 m3 occurred and flood events in a year varied between 1 and 10 times during the period of 1960-1970. 7-10 flood events occurred during the wet period of 1961-1964 with very wet autumn, while only 1-2 events during the dry period of 1965-1969. Average annual specific sediment yield was 1.29×104 t km-2 a-1 for the Yuntaishan Gully during the period of 1960-1970, which was slightly higher than 1.11 ×104 t km-2 a-1 for the Upper Yanhe River Basin above the Ganguyi Hydrological Station and slightly lower than 1.40 ×104 t km-2 a-1 for the nearby Zhifang Gully during the same period. Annual specific sediment yields for the Yuntaishan Gully were correlated to the wet season's rainfalls well.  相似文献   

7.
Besides generating seismic waves, which eventually dissipate, an earthquake also generates a static displacement field everywhere within the Earth. This global displacement field rearranges the Earth’s mass thereby causing the Earth’s rotation and gravitational field to change. The size of this change depends upon the magnitude, focal mechanism, and location of the earthquake. The Sumatran earthquake of December 26, 2004 is the largest earthquake to have occurred since the 1960 Chilean earthquake. Using a spherical, layered Earth model, the coseismic effect of the Sumatran earthquake upon the Earth’s length-of-day, polar motion, and low-degree harmonic coefficients of the gravitational field are computed. Using a model of the earthquake source that is composed of five subevents having a total moment-magnitude M w of 9.3, it is found that this earthquake should have caused the length-of-day to decrease by 6.8 microseconds, the position of the Earth’s generalized figure axis to shift 2.32 milliarcseconds towards 127° E longitude, the Earth’s oblateness J 2 to decrease by 2.37 × 10−11 and the Earth’s pear-shapedness J 3 to decrease by 0.63 × 10−11. The predicted change in the length-of-day, position of the generalized figure axis, and J 3 are probably not detectable by current measurement systems. But the predicted change in oblateness is perhaps detectable if other effects, such as those of the atmosphere, oceans, and continental water storage, can be adequately removed from the observations.  相似文献   

8.
Ten volcanic samples at Zhangwu,western Liaoning Province,North China were selected for a sys-tematic geochemical,mineralogical and geochronological study,which provides an opportunity to ex-plore the interaction between the continental crust and mantle beneath the north margin of the North China craton.Except one basalt sample(SiO2= 50.23%),the other nine samples are andesitic with SiO2 contents ranging from 53% to 59%.They have relatively high MgO(3.4%―6.1%,Mg#=50―64) and Ni and Cr contents(Ni 27×10?6―197×10?6,Cr 51×10?6―478×10?6).Other geochemical characteristics of Zhangwu high-Mg andesites(HMAs) include strong fractionation of light rare earth elements(LREE) from heavy rare earth elements(HREE),and Sr from Y,with La/Yb greater than 15,and high Sr/Y(34― 115).Zircons of andesite YX270 yield three age groups with no Precambrian age,which precludes ori-gin of the Zhangwu HMAs from the partial melting of the Precambrian crust.The oldest age group peaking at 253 Ma is interpreted to represent the collision of the Siberia block and the North China block,resulting in formation of the Central Asian orogenic belt by closure of the Mongol-Okhotsk Ocean.The intermediate age group corresponds to the basalt underplating which caused the wide-spread coeval granitoids in the North China craton with a peak 206Pb/238U age of 172 Ma.The youngest age group gives a 206Pb/238U age of 126±2 Ma,which is interpreted as the eruption age of the Zhangwu HMAs.The high 87Sr/86Sri(126 Ma)>0.706 and low εNd(t)= ?6.36―?13.99 of the Zhangwu HMAs are distinct from slab melts.The common presence of reversely zoned clinopyroxene phenocrysts in the Zhangwu HMAs argues against the origin of the Zhangwu HMAs either from melting of the water saturated mantle or melting of the lower crust.In light of the evidence mentioned above,the envisaged scenario for the formation of the Zhangwu HMAs is related to the basaltic underplating at the base of the crust,which led to the thickening of the lower crust and formation of lower crustal eclogite,followed by foundering of the eclogitic lower crust into the asthenosphere.The foundered eclogite then melted and the resul-tant melts interacted with surrounding peridotite during their upward transport,which finally produced the high-Mg andesites.This well explains the high-Mg adakitic characters and absence of ancient in-herited zircon in the Zhangwu lavas.  相似文献   

9.
We derive expressions for computing the gravitational field (potential and its radial derivative) generated by an arbitrary homogeneous or laterally varying density contrast layer with a variable depth and thickness based on methods for a spherical harmonic analysis and synthesis of gravity field. The newly derived expressions are utilised in the gravimetric forward modelling of major known density structures within the Earth’s crust (excluding the ocean density contrast) beneath the geoid surface. The gravitational field quantities due to the sediments and crust components density contrasts, shown in numerical examples, are computed using the 2 × 2 arc-deg discrete data from the global crustal model CRUST2.0. These density contrasts are defined relative to the adopted value of the reference crustal density of 2670 kgm−3. All computations are realised globally on a 1 × 1 arc-deg geographical grid at the Earth’s surface. The maxima of the gravitational signal due to the sediments density contrast are mainly along continental shelf regions with the largest sedimentary deposits. The corresponding maxima due to the consolidated crust components density contrast are over areas of the largest continental crustal thickness with variable geological structure.  相似文献   

10.
The portable highly sensitive measuring station KVVN-7 has been designed. It enables us to perform frequency sounding with controllable sources and audio-magnetotelluric sounding in the field of natural variations in an electromagnetic field within one session. Signal recording is made by seven channels (three magnetic and four electric ones) in a broad frequency spectrum (0.1–2000 Hz) with elimination of frequencies on the edges of the set frequency range and in the odd harmonics of industrial frequency (up to the ninth harmonic). The station incorporates the system of band-stop filters and anti-alias filters at resistors having a low temperature coefficient of resistance (TCR is lower than 25 × 10−6 °C−1) and capacitors having a low temperature coefficient of capacity (TCC is lower than ±30 × 10−6 °C−1). Application of the KVVN-7 station allows the electric conductivity and fluid regime of the upper crust to be studied for both implementation of geological tasks and tasks related to electromagnetic monitoring of seismoactive zones in combination with seismic methods. The example of practical application of the KVVN-7 station in the Lovozero-Pulozero profile (Kola Peninsula) has been presented. A high effectiveness of a station has been demonstrated when study of a fluid-saturated layer with conductivity of a dilatancy-diffuse origin (“DD layer”) in the upper crust. The further perfection of the KVVN-7 measuring station is aimed at the design of a completely automated recording system through data recording to a built-in data medium (flash memory). Additionally, it is suggested to use a built-in analog-to-digital converter of high resolution (24 bit) for every channel in order to broaden the dynamical range of the station.  相似文献   

11.
Tonalites from the island arc rock assemblage in the Zêtang segment of the Yarlung Zangbo suture zone were analyzed for major, trace elements (including REE) and Sr-Nd isotope. The experimental datademonstrate that the tonalites have the adakite-like characteristics, including high SiO2 (58%-63%),Al2O3 (18.4%-22.4%), Sr (810×10-6-940×10-6), Sr/Y (77-106), low HREE (Y=9×10-6-11×10-6, Yb=1×10-6-1.3×10-6), with LREE enrichment and faint Eu positive anomaly. Isr (0.70421-0.70487) is relatively low whereas 143Nd/144Nd (0.512896-0.512929) and εNd(t) values ( 6.7- 7.3) are high. These feainvolvement of a small amount of oceanic sediments. The identification of Z(e)tang adakites, derived from slab melting, presents new evidence for the intra-Tethyan subduction and the previous suggestion about the existence of intra-oceanic island arc within Tethys.  相似文献   

12.
The unit for detecting thermal neutrons, which makes it possible to study variations in cosmic rays of the interplanetary and geophysical origin, has been created at the high altitude cosmic ray station (3340 m above sea level) near the Earth’s crust fault. It has been established that variations in thermal neutrons are of the same nature as high-energy variations registered with a neutron supermonitor in the absence of seismic activity. The flux of thermal neutrons from the Earth’s crust during seismic activity in December 2006 has been registered for the first time. The flux value is higher than the background level by 5–6%. The method for detecting the flux of thermal neutrons from the Earth’s crust with the simultaneous registration of high-energy neutrons has been proposed.  相似文献   

13.
This paper addresses the seismicity of the Southern Baikal basin, where the M w = 6.0 earthquake of 1999 was the strongest over the period of instrumental observations in this region. Focal mechanisms of background earthquakes and aftershocks are analyzed in relation to faults mapped on flanks of and within the basin. Based on a supplemented catalog of focal mechanisms, the value and direction of seismotectonic strain are evaluated. The results show that the territory to the west of the transverse Angara fault (the Mishikhinskaya depression) experiences deformation of pure extension, while the E-W basin segment west of the fault is subjected to deformation of extension with shear (the transtension regime). The crustal deformation directions as determined from GPS measurements and seismological observations are found to agree well. The average seismotectonic strain rate of the crust amounts to 2.95 × 10?9 yr?1, which is about an order of magnitude smaller than the value obtained from geodetic observations.  相似文献   

14.
We outline the research leading to development of the Autonomous Fibre-Optic Rotational Seismograph (AFORS) and describe the final version of the instrument. The instrument with linear changes of sensitivity keeps accuracy from 5.1 × 10−9 to 5.5 × 10−8 rad/s in the detection bandpass 1.66–212.30 Hz; it is designed for a direct measurement of rotational components emitted during seismic events. The presented system is based on the optical part of the fibre optic gyro construction where a special autonomous signal processing unit (ASPU) optimizes its operation for the measurement of rotation motions instead of the angular changes. The application of a newly designed telemetric system based on the Internet allows for a remote system control, as shown in an example of the system’s operation in Książ (Poland) seismological observatory.  相似文献   

15.
Introduction The gravity anomaly is an indicator of the density distribution of the underground material. Therefore the gravity anomalies have been important data used for studying the deep crustal struc-ture for a long time. Many people have made detailed researches on the regional crustal structure inverted by Bouguer anomalies. In particular some empirical formulae and practical algorithms about the crustal thickness were brought forward, and a series of results were obtained (MENG, 1996)…  相似文献   

16.
By stacking high-precision tidal gravity observations obtained with superconducting gravimeters at six stations in China, Japan, Belgium, France, Germany and Finland, the local systematical discrepancies in the parameter fitting, caused by atmospheric, oceanic tidal loading and the other local environmental perturbations, are eliminated effectively. As a result, the resonance parameters of the Earth’s free core nutation are accurately determined. In this study, the eigenperiod of free core nutation is given as 429.0 sidereal days, which is in agreement with those published in the previous studies. It is about 30 sidereal days less than those calculated in theoretical models (about 460 sidereal days), which confirms the real ellipticity of the fluid core of the Earth to be about 5% larger than the one expected in assumption of hydrostatic equilibrium. The quality factor (Q value) of free core nutation is given as about 9543, which, compared with those determined before based on the body tide observations, is much larger, but more close to those obtained using the VLBI observations. The complex resonance strength is also determined as (−6.10×10−4, −0.01 ×10−4)°/h, which can principally describe the deformation characteristics of an anelastic mantle.  相似文献   

17.
Continuous measurements at the Kuril GPS network since 2006 have revealed anomalous coseismic and postseismic displacements of the Earth’s crust, which accompanied the great 2006–2007 earthquake doublet in the central Kuriles and were observed during 2.5 years after the events. Prior to the earthquakes, all observation sites of the Kuril network were moving towards the continent due to the subduction deformation of the continental margin. After the events, the direction of displacement had changed to the opposite direction at the stations located on the Matua, Ketoy, and Kharimkotan Islands, which were the nearest to the seismic events, and experienced a significant turn on the Urup Island nearby. Modeling of postseismic viscoelastic relaxation of strains in the asthenosphere suggested an acceptable explanation for the long-term anomalous offsets revealed. By solving the corresponding inverse problems, we estimated the viscosity of the upper mantle and constrained the slip distribution of the 2006 Simushir earthquake.  相似文献   

18.
Natural and anthropogenic impacts on seismicity are considered. Taking into account the importance of the discussed problem, the authors propose to open the discussion on the questions considered. In this connection a wide circle of known experimental data is considered, which are indicative of the possibility in principle of active impact on the seismogenic medium for the smooth relieving of accumulated tectonic stresses in the Earth’ s crust. The reasoning is presented of one of the promising ways of the smooth controlled relaxation of the accumulated tectonic stresses in the Earth’s crust at the places of the probable onset of strong earthquakes due to a considerable increase in the plastic slips, which facilitate the decrease of the number and energy of earthquakes. The approach proposed is based on the results of the works on the excited seismicity, obtained in different regions of the Earth. Special attention is given to the most detailed long-term investigations of the excited seismicity in the region of the reservoir of the Nurek hydroelectric station in Tadzhikistan and in the neighborhood of the actively mined Romashkinskoe oil deposit in the Republic of Tatarstan. The results of the laboratory investigations of the behavior of samples made of materials of crystalline and amorphous structures under the action of pressure and vibration are invoked for the substantiation of the physical nature of the observed effects. For the reduction of seismic hazard, it is proposed to use vibration actions and water injection in the bore holes at the places of the expected seismic catastrophes in a time mode matched with the tidal motions of the Earth.  相似文献   

19.
The sorption of Eu species onto nano-size silica-water interfaces is investigated at pH range of 1―8.5 and the initial Eu concentrations (CEu) of 2×10−5, 2×10−4 and 2×10−3 M using fluorescence spectroscopy. The sorption rate of Eu is initially low, but significantly increases at pH > 4. For the initial CEu of 2×10−5, 2×10−4 and 2×10−3 M, the dissolved Eu species are completely sorbed onto silica-water interfaces at pH = 4.75, −5.8 and 6.6, respectively, with the respective sorption densities of −1.58×10−8, 1.58×10−7 and 1.58×10−6 mol/m2. The sorbed Eu species at pH < 6 is aquo Eu3+, which is sorbed onto silica-water interfaces as an outer-sphere complex at pH < 5, but may be sorbed as an inner-sphere bidentate complex at 5 < pH < 6, due to the decrease of the NH2O to −6 at pH = 6. At pH = 6 – 8, Eu(OH)2+, Eu(CO3)+and Eu(CO3)2 form in the solutions, and Eu(CO3)+is dominant at pH = −7.5. These ions may be sorbed onto silica-water interfaces as inner-sphere bidentate complexes or multi-nuclear pre-cipitates.  相似文献   

20.
Decompression experiments of a crystal-free rhyolitic liquid with ≈ 6.6 wt. % H2O were carried out at a pressure range from 250 MPa to 30–75 MPa in order to characterize effects of magma ascent rate and temperature on bubble nucleation kinetics, especially on the bubble number density (BND, the number of bubbles produced per unit volume of liquid). A first series of experiments at 800°C and fast decompression rates (10–90 MPa/s) produced huge BNDs (≈ 2 × 1014 m−3 at 10 MPa/s ; ≈ 2 × 1015 m−3 at 90 MPa/s), comparable to those in natural silicic pumices from Plinian eruptions (1015–1016 m−3). A second series of experiments at 700°C and 1 MPa/s produced BNDs (≈ 9×1012 m−3) close to those observed at 800°C and 1 MPa/s (≈ 6 × 1012 m−3), showing that temperature has an insignificant effect on BNDs at a given decompression rate. Our study strengthens the theory that the BNDs are good markers of the decompression rate of magmas in volcanic conduits, irrespective of temperature. Huge number densities of small bubbles in natural silicic pumices from Plinian eruptions imply that a major nucleation event occurs just below the fragmentation level, at which the decompression rate of ascending magmas is a maximum (≥ 1 MPa/s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号