首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of Io with the Jovian magnetosphere generates auroral and radio emissions. The underlying electron acceleration process is not understood and few observations exist to constrain the theoretical models. The source of energy for the electron acceleration is in all likelihood supplied from the Alfvén wings that stretch out from both poles of Io into the two Jovian hemispheres. The form of the current system associated with the Alfvén wings has been disputed, some suggesting that the greatly slowed flow near Io implies that a steady current loop links Io to Jupiter's ionosphere, others arguing that the return waves appear only downstream of Io and others suggesting that both forms develop. Given the finite inclination of the Alfvén wings implied by the finite value of the Alfvén Mach number and the strong reflection that occurs at the boundary of the Io torus, we argue that no steady current loop can be invoked between Io and Jupiter's ionosphere. However, the energetics of the auroral and radio emissions imply that most of the energy in the Alfvén wings is transformed into electron acceleration at high-latitudes, that is, outside the Io torus. The dilemma then is to understand how a large fraction of the power penetrates the reflecting boundary. We present data from Galileo's multiple flybys of Io that suggest that the coupling with the Jovian ionosphere is mediated by filamentary Alfvén wings associated with electromagnetic waves propagating out of the torus. In particular, we report on the systematic observation, within the cross-section of Io's Alfvén wings and in their immediate vicinity, of intense electromagnetic waves at frequencies up to several times the proton gyrofrequency. We interpret these “high-frequency/small-scale” waves as the signature of a strong filamentation/fragmentation of the Alfvén wings before they reflect off of the sharp boundary gradient of the Io torus. As a consequence, we suggest that most of the primary energy is converted into “high-frequency/small-scale” electromagnetic waves that can propagate out from the torus toward Jupiter's ionosphere. Reaching high-latitudes, these waves are able to accelerate electrons to almost relativistic speeds.  相似文献   

2.
The Alfvén's critical ionization velocity (CIV) have been observed in a number of laboratory and space experiments. In the Io-torus system, relative velocity of the plasma species in the torus with respect to the neutral species in the Io's atmosphere and neutral cloud exceeds the critical velocity required for CIV. Townsand condition is satisfied up to 6r io , in the neutral cloud when Io passes through the torus. In this paper it is shown that during the passage of Io through the plasma torus, apart from critical velocity and Townsand condition, a number of other requirements are also satisfied. Therefore, it is concluded that, the CIV mechanism must play an important role in ionizing the neutral cloud and enriching the plasma torus.  相似文献   

3.
Volcanic plumes on the Jovian satellite Io may be a visible manifestation of a plasma-arc discharge phenomenon. The amount of power in the plasma arc (1011 W) is not enough to account for all the energy dissipated by the volcanoes. However, once a volcano is initiated by tidal and geologic processes, the dynamics of the volcanic plumes can be influenced by the plasma arcs. As initially pointed out by Gold (1979), plasma arcs are expected because of 106 A currents and 400 kV potentials generated by the flow past Io of a torus of relatively dense magnetospheric plasma. We utilize our experience with laboratory plasma arcs to investigate the plume dynamics. The filamentation in the plume of the volcano Prometheus and its cross-sectional shape is quantitatively consistent with theories developed from laboratory observation.Paper dedicated to Professor Hannes Alfvén on the occasion of his 80th birthday, 30 May 1988.  相似文献   

4.
Can gravitational effects damp Alfvén waves?   总被引:1,自引:0,他引:1  
Mckenzie  J.F.  Axford  W.I. 《Solar physics》2000,193(1-2):153-159
We show that Alfvén-gravity waves propagating in a gravitationally stratified atmosphere do not suffer damping as a result of the rate of working of the gravity drift current on the electric field of the waves. A self-consistent treatment involving conservation of total energy, Poynting's theorem, and the rate of working of the various drift currents on the electric field demonstrates that dissipation only arises from real dissipative processes such as Ohmic heating or viscous effects, otherwise the system is adiabatic.  相似文献   

5.
The propagation and interference of Alfvén waves in magnetic regions is studied. A multilayer approximation of the standard models of the solar atmosphere is used. In each layer, there is a linear law of temperature variation and a power law of Alfvén velocity variation. The analytical solutions of a wave equation are stitched at the layer boundaries. The low-frequency Alfvén waves (P > 1 s) are able to transfer the energy from sunspots into the corona by tunneling only. The chromosphere is not a resonance filter for the Alfvén waves. The interference and resonance of Alfvén waves are found to be important to wave propagation through the magnetic coronal arches. The transmission coefficient of Alfvén waves into the corona increases sharply on the resonance frequences. To take into account the wave absorption in the corona, a method of equivalent schemes is developed. The heating of a coronal arch by Alfvén waves is discussed.  相似文献   

6.
As a result of his polar expeditions at the beginning of this century, Kristian Birkeland determined that intense ionospheric currents were associated with the aurora. Birkeland suggested that these currents originated far from the Earth and that they flowed ointo and away from the polar atmosphere along the geomagnetic field lines. The existence of such field-aligned or Birkeland currents was disputed because it was not possible to unambiguously identify current systems that are field-aligned (as suggested by Alfvén, 1939, 1940) and those which are completely contained in the ionosphere (as developed by Vestine and Chapman, 1938) with surface magnetic field observations. The presence of Birkeland currents has been absolutely confirmed with satellite-borne particle and magnetic field experiments conducted over the past two decades. These satellite observations have determined the large-scale patterns, flow directions, and intensities of Birkeland currents in the auroral and polar regions, and their relationship to the orientation and magnitude of the interplanetary magnetic field. The Birkeland currents are directly associated with visible and UV auroral forms observed with satellites. The results obtained from a variety of recently launched satellites are discussed here. These include Sweden's first satellite, VIKING, which has provided evidence for resonant Alfvén waves on the same geomagnetic field lines that guide stationary Birkeland currents. These observations demonstrate the important role that these currents play in the coupling of energy between the interplanetary medium and the lower ionosphere and atmosphere.Paper dedicated to Professor Hannes Alfvén on the occasion of his 80th birthday, 30 May 1988.  相似文献   

7.
Ultraviolet and near-infrared observations of auroral emissions from the footprint of Io's magnetic Flux Tube (IFT) mapping to Jupiter's ionosphere have been interpreted via a combination of the unipolar inductor model [Goldreich, P., Lynden-Bell, D., 1969. Astrophys. J. 156, 59-78] and the multiply-reflected Alfvén wave model [Belcher, J.W., 1987. Science 238, 170-176]. While both models successfully explain the general nature of the auroral footprint and corotational wake, and both predict the presence of multiple footprints, the details of the interaction near Io are complicated [Saur, J., Neubauer, F.M., Connerney, J.E.P., Zarka, P., Kivelson, M.G., 2004. In: Bagenal, F., Dowling, T.E., McKinnon, W.B. (Eds.), Jupiter: The Planet, Satellites and Magnetosphere. Cambridge University Press, Cambridge, UK, pp. 537-560; Kivelson, M.G., Bagenal, F., Kurth, W.S., Neubauer, F.M., Paranicas, C., Saur, J., 2004. In: Bagenal, F., Dowling, T.E., McKinnon, W.B. (Eds.), Jupiter: The Planet, Satellites and Magnetosphere. Cambridge University Press, Cambridge, UK, pp. 513-536]. The auroral footprint brightness is believed to be a good remote indicator of the strength of the interaction near Io, indicating the energy and current strength linking Io with Jupiter's ionosphere. The brightness may also depend in part on local auroral acceleration processes near Jupiter. The relative importance of different physical processes in this interaction can be tested as Jupiter's rotation and Io's orbital motion shift Jupiter's magnetic centrifugal equator past Io, leading to longitudinal variations in the plasma density near Io and functionally different variations in the local field strength near Jupiter where the auroral emissions are produced. Initial HST WFPC2 observations found a high degree of variability in the footprint brightness with time, and some evidence for systematic variations with longitude [Clarke, J.T., Ben Jaffel, L., Gérard, J.-C., 1998. J. Geophys. Res. 103, 20217-20236], however the data were not of sufficient quality to determine functional relationships. In this paper we report the results from a second, more thorough study, using a series of higher resolution and sensitivity HST STIS observations and a model for the center to limb dependence of the optically thin auroral emission brightness based on measurements of the auroral curtain emission distribution with altitude. A search for correlations between numerous parameters has revealed a strong dependence between Io's position in the plasma torus and the resulting footprint brightness that persists over several years of observations. The local magnetic field strength near Jupiter (i.e. the size of the loss cone) and the expected north/south asymmetry in auroral brightness related to the path of currents generated near Io through the plasma torus en route to Jupiter appear to be less important than the total plasma density near Io. This is consistent with the near-Io interaction being dominated by collisions of corotating plasma and mass pickup, a long-standing view which has been subject to considerable debate. The brightness of the auroral footprint emissions, however, does not appear to be proportional to the incident plasma density or energy, and the interpretation of this result will require detailed modeling of the interaction near Io.  相似文献   

8.
We present a model that describes Io's delayed electrodynamic response to a temporal change in Io's atmosphere. Our model incorporates the relevant physical processes involved in Io's atmosphere-ionosphere-magnetosphere electrodynamic interaction to predict the far-ultraviolet (FUV) radiation as Io enters Jupiter's shadow and re-emerges into sunlight. The predicted FUV brightnesses are highly nonlinear as the strength of the electrodynamic interaction depends on the ratios of ionospheric conductances to the torus Alfvén conductance, but the former are functions of electrodynamics and the atmospheric density, which decays rapidly upon entering eclipse. Key factors governing the time evolution are the column density due to sublimation and the column density due to volcanoes, which maintain the background atmosphere during eclipse. The plasma interaction does not react instantaneously, but lags to a temporarily changing atmosphere. We find three qualitatively different scenarios with two of them including a post-eclipse brightening. The brightness ratio of in-sunlight/in-eclipse coupled with the existence of a sub-jovian equatorial spot constrains the volcanic column density to several times 1018 m−2, based on the currently available observations. Thus in sunlight, the sublimation driven part of Io's atmosphere dominates the volcanically driven contribution by roughly a factor of 10 or more.  相似文献   

9.
It is now recognized that a number of neutral-plasma interaction processes are of great importance in the formation of the Io torus. One effect not yet considered in detail is the charge exchange between fast torus ions and the atmospheric neutrals producing fast neutrals energetic enough to escape from Io. Since near Io the plasma flow is reduced, the neutrals of charge exchange origin are not energetic enough to leave the Jovian system; these neutrals are therefore distributed over an extensive region as indicated by the sodium cloud. It is estimated here that the total neutral injection rate can reach 1027 s?1 if not more. New ions subsequently created in the distributed neutral atomic cloud as a result of charge exchange or electron impact ionization are picked up by the corotating magnetic field. The pick-up ions are hot with initial gyration speed near the corotation speed. The radial current driven by the pickup process cannot close in the torus but must be connected to the planetary ionosphere by field-aligned currents. These field-aligned currents will flow away from the equator at the outer edge of the neutral cloud and towards it at the inner edge. We find that the Jovian ionospheric photoelectrons alone cannot supply the current flowing away from the equator, and torus ions accelerated by a parallel electric field could be involved. The parallel potential drop is estimated to be several kV which is large enough to push the torus ions into the Jovian atmosphere. This loss could explain the sharp discontinuous change of flux tube content and ion temperature at L = 5.6 as well as the generation of auroral type hiss there. Finally we show that the inner torus should be denser at system III longitudes near 240° as a result of the enhanced secondary electron flux in this region. This effect may be related to the longitudinal brightness variation observed in the SII optical emissions.  相似文献   

10.
S.H. Gross  G.V. Ramanathan 《Icarus》1976,29(4):493-507
Observations of Io suggest that it may have an atmosphere in which sodium vapor, ammonia, and nitrogen are important constituents. Several atmospheric models consisting of these gases are treated here. These are tested as a function of total content against the Pioneer 10 observations and for stability against escape. The results suggest that the atmosphere is very tenuous and that the interpretation of the ionosphere detected by Pioneer 10 by a static model may be inconsistent with the sodium cloud observations. It is postulated that ionization may also be escaping and that sodium may be comparable in content in the atmosphere with some molecular constituent such as NH3 or N2. Sodium and this molecular component then dominate the atmosphere. It is also suggested that particle precipitation contributes to heating of the atmosphere and to the production of ionization; furthermore, the difference between day- and nighttime ionospheres and possible trailing and leading side effects may relate to the nature of the particle energy distributions. These distributions may be the result of the peculiar interaction of Io with the Jovian magnetosphere.  相似文献   

11.
When a highly conducting magnetized plasma passes an object with lower conductivity, or a body with inhomogeneous conductivity, 2-D structures are formed, the so-called `Alfvén wings'. These structures may arise, for example, at a Jovian moon without an intrinsic magnetic field (Callisto). In this case, Alfvén wings could be generated in the magnetized Jovian magnetospheric plasma flow owing to the in homogeneity of the moon's ionosphere/atmosphere conductivity. Such Alfvén wings may be considered as a satellite magnetosphere; the satellite magnetospheric magnetic field is a disturbed field of the Jovian magnetospheric plasma flow. An analytical solution is obtained in a simple proposed model. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
We study a model of extended radio sources (ERS), in particular, extragalactic jets and radio lobes, which are inhomogeneous and where noncompressive Alfvén and surface Alfvén waves (and not shocks and magnetosonic waves) are primarily excited. We assume that a negligible thermal population exists (i.e., the ion density at the low-energy cut-off of the power law distribution is greater than the ion density of the thermal population, if present). Due to internal instabilities and/or the interaction of the ERS with the ambient medium, surface Alfvén waves (SAW) are created. We show that even very small amplitude SAW are mode converted to kinetic Alfvén waves (KAW) which produce large moving accelerating potentials , parallel to the magnetic field. Neglecting nonlinear perturbations, and for typical physical parameters of ERS, we obtaine1 MeV. Wesuggest that these potentials are important in acceleration (e.g., injection energy) and reacceleration of electrons in ERS. We show that energy losses by synchrotron radiation can be compensated by reacceleration by KAW. The relation between KAW acceleration, and previously studied cyclotron-resonance acceleration by Alfvén waves, is discussed.  相似文献   

13.
Thomas R. McDonough 《Icarus》1975,24(4):400-406
The Jovian hydrogen torus associated with Io, that was observed by Judge and Carlson, has been found by them to be a third of a torus rather than a complete torus. It is shown that the energetic particles observed by Pioneer 10 do not ionize atomic hydrogen sufficiently fast to erode the torus as observed. It is proposed that the reason an incomplete torus exists is the presence of a corotating cold magnetospheric plasma. If this explanation is correct, the angular extent of the fractional torus is a measure of the density of the magnetospheric plasma near Io's orbit, which is found to be ~102cm?3. It is shown that such a plasma may provide an adequate input to Io, where it can recombine and escape, to form enough hydrogen atoms to explain the number of observed torus atoms. Thus the magnetospheric plasma may serve as both the source and the sink of the torus. However, while it is not difficult to make the plasma be the sink of the toroidal hydrogen, it is difficult (although perhaps possible) to self-consistently make it the source. It may be necessary to invoke some other mechanism to generate the hydrogen.  相似文献   

14.
Interplanetary dust grains entering the Jovian plasmasphere become charged, and those in a certain size range get magneto-gravitationally trapped in the corotating plasmasphere. The trajectories of such dust grains intersect the orbits of one or more of the Galilean satellites. Orbital calculations of micron sized dust grains show that they impact the outermost satellite Callisto predominantly on its leading face, while they impact the inner three — Io, Europa and Ganymede — predominantly on the trailing face. These results are offered as an explanation of the observed brightness asymmetry between the leading and trailing faces of the outer three Galilean satellites. The albedo of Io is likely to be determined by its volcanism.  相似文献   

15.
The Io-controlled radio arcs are emissions in the decametric radio range which appear arc shaped in the time-frequency plane. Their occurrence is controlled by Io's position, so it has been for long inferred that they are powered by the Io-Jupiter electrodynamic interaction. Their frequency ranges correspond to the electron cyclotron frequencies along the Io Flux tube, so they are expected to be generated by cyclotron maser instability (CMI). The arc shape was proposed to be a consequence of the strong anisotropy of the decametric radio emissions beaming, combined with the topology of the magnetic field in the source and the observation geometry. Recent papers succeeded at reproducing the morphologies of a few typical radio arcs by modeling in three dimensions the observation geometry, using the best available magnetic field model and a beaming angle variation consistent with a loss-cone driven CMI. In the continuation of these studies, we present here the systematic modeling of a larger number of observations of the radio arcs emitted in Jupiter's southern hemisphere (including multiple arcs or arcs exhibiting abrupt changes of shape), which permits to obtain a statistical determination of the emitting field line localization (lead angle) relative to the instantaneous Io field line, and of the emitting particle velocities or energies. Variations of these parameters relative to Io's longitude are also measured and compared to the location of the UV footprints of the Io-Jupiter interaction. It is shown that the data are better organized in a reference frame attached to the UV spot resulting from the main Alfvén wing resulting from the Io-Jupiter interaction. It is proposed that the radio arcs are related to the first reflected Alfvén wing rather than to the main one.  相似文献   

16.
Kumar  Nagendra  Roberts  B. 《Solar physics》2003,214(2):241-266
The effect of ion–neutral collisions on the propagation of MHD waves and surface waves at a single magnetic interface is investigated. The dispersion equations for MHD waves in a partially ionized medium are derived. There are three damped propagating modes in a uniform unbounded medium: an Alfvén mode, and fast and slow modes. The damping of waves depends on both the collisional frequency and the ionization fraction. Wave damping increases as ionization fraction decreases. Surface waves are discussed in three cases: (a) the incompressible limit, (b) the low plasma, and (c) for parallel propagation. The incompressible limit leads to Alfvén surface waves in a partially ionized medium and the dispersion characteristics are similar to those obtained by Uberoi and Datta. In the low plasma of the Earth's auroral F region there are two damped propagating magnetoacoustic surface waves for =/3. There is only one damped surface mode for =/2, but no surface wave is able to propagate for =0°. For the case of parallel propagation (=0°) the results obtained in the absence of ion-neutral collisions are consistent with the results of Jain and Roberts. It is found that a three-mode structure of damped propagating waves occurs owing to ion–neutral collisions for a comparatively high ionization fraction. For the case of the solar photosphere, where the ionization fraction is low, two weakly damped surface waves are found, though the damping is almost negligible. The pattern of propagation is similar to that found in the case discussed by Jain and Roberts, but the wave speeds are lower due to ion–neutral collisions. The strong collisions tie the ion–neutral species together and reduce the damping.  相似文献   

17.
A mathematical model for undamped, toroidal, small-amplitude Alfvén waves in a spherically-symmetric or equatorial stellar wind is developed in this paper. The equations are reduced to a very simple form by using real Fourier amplitudes and the ratio of the inward and outward propagating wave amplitudes, which is interpreted as a measure of the relative influence of wave reflection in the flow, on the solution at a given point. Asymptotic solutions at large distances are found to depend only on one parameter, = / P - the ratio of wave frequency and critical (or cutoff) frequency which is a flow characteristic; a = 1 divides solutions into two qualitatively different groups. When 1 the asymptotic (r-) ratio of the inward and outward propagating wave amplitudes does not depend on wave frequency and is equal to unity, while the phase shift between them changes; in this case the wave pattern is a standing wave. If > 1 the converse occurs with the ratio of the amplitudes decreasing rapidly as the frequency increases, and the phase shift equals to -1/2, corresponding to a propagating wave pattern. The result is also expressed in terms of velocity and magnetic field perturbations.Existence of a finite incoming wave amplitude solution at the Alfvén critical point indicates that this point is stable with respect to the perturbations which originate at the critical point and spend an infinite time in its vicinity.Special attention is paid to the applicability of the WKB approximation. It is argued that it can be used only in finite intervals which do not contain the Alfvén critical point, with inward propagating waves taken into account through the boundary conditions. It is shown that despite the presence of reflection, the outward propagating wave amplitude can be described reasonably well by the WKB formula, perhaps with different constants in different regions. In this context = 1 divides solutions which cannot be approximated by the WKB estimate at all at large distances (the first group), from those which can with any given accuracy.As an illustration of the analytical behaviour some numerical results are shown using a cool wind model. These are likely to express qualitatively the features of the Alfvén waves in any stellar wind, since the only assumptions about the flow used in the analytical study of the wave equations were that: the flow has small velocity at the base of the corona; it then passes through the critical point, and reaches its finite non-zero limit at infinity.  相似文献   

18.
As the Universe consists almost entirely of plasma, the understanding of astrophysical phenomena must depend critically on our understanding of how matter behaves in the plasma state.In situ observations in the near-Earth cosmical plasma offer an excellent opportunity of gaining such understanding. The near-Earth cosmical plasma not only covers vast ranges of density and temperature, but is the site of a rich variety of complex plasma physical processes which are activated as a result of the interactions between the magnetosphere and the ionosphere.The geomagnetic field connects the ionosphere, tied by friction to the Earth, and the magnetosphere, dynamically coupled to the solar wind. This causes an exchange of energy and momentum between the two regions. The exchange is executed by magnetic-field aligned electric currents, the so-called Birkeland currents. Both directly and indirectly (through instabilities and particle acceleration) these also lead to an exchange of plasma, which is selective and therefore causes chemical separation. Another essential aspect of the coupling is the role of electric fields, especially magnetic-field aligned (parallel) electric fields, which have important consequences both for the dynamics of the coupling and, especially, for energization of charged particles.Paper dedicated to Professor Hannes Alfvén on the occasion of his 80th birthday, 30 May 1988.Copyright 1986 IEEE. Reprinted with permission from IEEE Transactions on Plasma Science, Vol. PS-14, No. 6.  相似文献   

19.
Observations of sodium D-line emission from Io and the magnetosphere of Jupiter are reported. A disk-shaped cloud of sodium is found to exist in the Jovian magnetosphere with an inner edge at about 4R and an outer edge at about 10R . The gravitational scale height above the equatorial plane is a few Jovian radii. The data are interpreted in terms of a sputtering model, in which the sodium required to maintain the cloud is sputtered off the surface of Io by trapped energetic radiation-belt protons. Conditions on the atmospheric density are obtained. The Keplerian orbits attainable by such escaping sputtered atoms can provide the observed spatial distribution. The required 500-keV proton flux required to provide the 1–10 keV protons which will sputter the sodium at the surface of Io is consistent with the limiting trapped flux determined by ion-cyclotron turbulence.Publication No. 1410, Institute of Geophysics and Planetary Physics, University of California, Los Angeles 90024, Cal., U.S.A.  相似文献   

20.
The sudden and dramatic acceleration of charged particles seems to be a universal phenomenon which occurs in plasmas occupying a wide range of spatial scales. These accelerations are typically accompanied by intrusions of the energized plasma into adjacent regions of space. A physical understanding of these processes can only be obtained by carefully coordinated experimental and theoretical studies which are designed to let nature display what is happening without imposing limitations associated with existing paradigms. Studies of the Earth's magnetosphere are hampered by the lack of adequate sampling in space and time. The feature matching technique of building magnetic and electric field models can help compensate for the extreme sparseness of experimental data but many future studies will still require large numbers of spacecraft placed in carefully coordinated orbits. History shows that magnetospheric research has sometimes faltered while various attractive conjectures were explored, but that direct observations play the role of a strict teacher who has little concern for the egos of scientists. Presumably this teacher will also discard the author's pet notion: that the ignition of portions of the auroral shell in association with Earth flares results in the heating of ionospheric particles (and some particles of solar origin) that are then convected inward to form the ring current. The author, of course, hopes that at least some aspects of this notion will surive and will help lead the way to a better understanding of the Earth's neighbourhood.Paper dedicated to Professor Hannes Alfvén on the occasion of his 80th birthday, 30 May 1988.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号