首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plasma lines observed by the French incoherent scatter radar during the period 1973–1974 are studied. Two methods are used to determine the steady-state photoelectron flux from plasma line measurements; one using a Maxwellian model for the photoelectron distribution and the other by solving (numerically) the differential equation that is satisfied by the distribution.The direct numerical calculation of the photoelectron flux is used to obtain theoretical kTp values which are compared with those from the plasma line observation. The comparison leads to the conclusion that there must be a sharp increase of the photoelectron flux when the energy decreases below 4 ~ 5 eV.This result, in agreement with rocket and satellite measurements of the low energy photoelectron flux, is used to bear a new insight to the problem of the electron-gas heat balance: the problem is reduced to the need of an additional photoelectron flux production below 5 eV.  相似文献   

2.
Assuming that the unidimensional distribution function of the photoelectron flux can be determined from plasma line intensity measurement, it is shown that the photoelectron flux distribution is not uniquely determined if additional hypotheses are not made. The limitations of the inversion procedure are shown: in particular, plasma line measurements cannot allow the determination of more than the first two Legendre components of the photoelectron flux. Experimental procedures for this determination are finally reviewed.  相似文献   

3.
The basic theory of solar flux attenuation by the Earth's atmosphere is reviewed and a model of the time-varying flux observed by a satellite during eclipse passage developed. The general model is applied to the specific problem of variations in photoelectron flux during penumbral passage and the effects of wavelength, solar activity, and atmospheric constituents on photoelectron emission investigated. Predictions of the photoelectron current expected from tungsten and aluminum surfaces are then successfully compared with actual observations from the ATS-5 and Injun 5 satellites confirming the validity of the model.  相似文献   

4.
Calculations of the steady-state photoelectron energy and angular distribution in the altitude region between 120 and 1000 km are presented. The distribution is found to be isotropic at all altitudes below 250 km, while above this altitude anisotropies in both pitch angle and energy are found. The isotropy found in the angular distribution below 250 km implies that photoelectron transport below 250 km is insignificant, while the angular anisotropy found above this altitude implies a net photoelectron current in the upward direction. The energy anisotropy above 500 km arises from the selective backscattering of the low energy photoelectron population of the upward flux component by Coulomb collisions with the ambient ions. The total photoelectron flux attains its maximum value between about 40 and 70 km above the altitude at which the photoelectron production rate is maximum. The displacement of the maximum of the equilibrium flux is attributed to an increasing (with altitude) photoelectron lifetime. Photoelectrons at altitudes above that where the flux is maximum are on the average more energetic than those below that altitude. The flux of photoelectrons escaping to the protonosphere at dawn was found to be 2.6 × 108 cm?2 sec?1, while the escaping flux at noon was found to be 1.5 × 108 cm?2 sec?1. The corresponding escaping energy fluxes are: 4.4 × 109 eV cm?2 sec?1 and 2.7 × 109 eV cm?2 sec?1.  相似文献   

5.
Photoelectrons of ionospheric origin have been observed for the first time at high altitudes (up to 7RE geocentric distance) using the suprathermal plasma analysers (SPA) on the GEOS satellites. At such high altitudes the photoelectron flux is confined within a few degrees of the magnetic field direction. We show how this flux may be identified and extracted from the background which is a combination of locally produced photoelectrons and ambient plasma. GEOS-2 results are presented to illustrate the “turn-on” of the photoelectron flux at dawn in the ionosphere. Data from GEOS-1 are used to study the behaviour of the photoelectron flux with equatorial geocentric distance from 3 to 7RE. The results compare favourably with theoretical models and with ionospheric observations at mid latitudes.  相似文献   

6.
The plasma oscillations that can be observed by the French incoherent scatter system have small phase velocities and are excited by low energy photoelectrons, typically 2–5 eV. Consequently, the method used to determine the energy photoelectron distribution from plasma line measurements made at other observatories (e.g. Cicerone, 1974) cannot be applied here: it is necessary to chose a model energy distribution with a small number of parameters. The energy shape of the flux is assumed Maxwellian and the angular shape is assumed linear with the cosine of the pitch angle. Total flux values and mean energies are obtained as a function of altitude, in agreement with other determinations, and the difference between upshifted and downshifted plasma line intensities lead to the determination of the anisotropy of the photoelectron flux.  相似文献   

7.
The ambient photoelectron spectrum above 300 km has been measured for a sample of 500 AE-E orbits during the period 13 December 1975 to 24 February 1976 corresponding to solar minimum conditions. The 24 h average and maximum ΣKp were 19 and 35, respectively. The photoelectron flux above 300 km was found to have an intensity and energy spectrum characteristic of the 250–300 km production region only when there was a low plasma density at the satellite altitude. Data taken at local times up to 3 h after sunrise were of this type and the escaping flux was observed to extend to altitudes above 900 km with very little modification, as predicted by several theoretical calculations. The flux at high altitudes was found to be extremely variable throughout the rest of the day, probably as a result of attenuation and energy loss to thermal plasma along the path of the escaping photoelectrons. This attenuation was most pronounced where the photoelectrons passed through regions of high plasma density associated with the equatorial anomaly. At altitudes of 600 km, the photoelectron fluxes ranged from severely attenuated to essentially unaltered—depending on the specific conditions, Photoelectron fluxes from conjugate regions were often less attenuated than those observed arriving from the high density regions immediately below. Comparison of the observed attenuations, photoelectron line broadening, and energy loss due to coulomb scattering from the thermal plasma with rough calculations based on stopping power and transmission coefficients of thermal plasma for fast electrons yielded order of magnitude agreement—satisfactory in view of the large number of assumptions necessary for the calculations. Overall, the impression of the high altitude photoelectron flux which emerges from this work is that the fluxes are extremely variable as a consequence of interactions with the thermal plasma whose density is in turn affected by electrodynamic and neutral wind processes in the underlying F region.  相似文献   

8.
Dissociation and ionization of hydrogen molecules and ionization of hydrogen atoms due to extreme UV radiation from the parent star are accompanied by the formation of a concurrent photoelectron flux with excess kinetic energy. These dissociation and ionization processes are the main source of atomic and molecular ions in the thermospheres of extrasolar planets, such as the “hot Jupiter” HD 209458b. The ionization processes are the most important part of contemporary aeronomic models of planetary atmospheres in the Solar System and extrasolar systems (Johnson et al., 2008; Yelle et al., 2008). We estimate the contribution of the dissociation and ionization processes due to the stellar UV radiation and the concurrent photoelectron flux to the formation of extended ionospheres around extrasolar giant planets. As opposed to models of other researchers, we calculated the ionization rates due to the concurrent photo-electron flux for the first time. It is established that, in contrast to a widely used parametrization of the photoelectron contribution (Cecchi-Pestellini et al., 2006; 2009), the rate of secondary ionization due to the photoelectrons depends appreciably on the altitude, approaching the photoionization rate in the lower layers of the thermosphere. The calculated ionization rate in the thermosphere of the extrasolar giant planet (EGP) orbiting close to its parent star is a necessary link when modeling an aeronomic model and estimating the rate of the EGP atmospheric loss.  相似文献   

9.
Emission profiles of the 6300Åline are determined from OGO 4 data in the dark ionosphere during conjugate sunrise. From Saint-Santin electron density profile measurements, it is shown that, for the two cases studied in December 1967, the recombination cannot account for the measured O1D emission profiles. However, direct photoelectron-oxygen excitation can reproduce the data: if the photoelectron escape flux in the sunlit ionosphere, computed from standard photoelectron production, is transmitted through the field tube with an additional attenuation of 0.6 due to angular diffusion through photoelectron-electron and photoelectron-ion Coulomb collisions, the Hinteregger (1965) solar flux data must be increased by a factor 2, which agrees with previous results.  相似文献   

10.
The ambient photoelectron spectrum below 300 km has been studied for a sample of 500 AE-E orbits taken during the period 13 December 1975 to 24 February 1976. During this solar minimum period, the average and maximum Σ Kp were 19 and 35 respectively. The agreement between the measured spectral shape and several recent calculations is extremely good. The daytime photoelectron spectrum below 300 km from 1 to 100 eV is illustrated by a number of spectra. Detailed 0–32 eV spectra are presented at various altitudes and solar zenith angles. High resolution 10–32eV spectra show the widths of the photoelectron lines in the spectrum and the variation of the linewidth and intensity with altitude. Data from the entire 500 orbit sample are combined into plots of the average flux over a number of altitude ranges up to 300 km at various local times and solar zenith angles. The data show that the photoelectron flux below 300 km is remarkably constant (typical variation less than ±50%) over a period of several months. The photoelectron lines between 20 and 30 eV are extremely sharp when the total plasma density is low but broaden significantly at high altitudes as the plasma density builds up during the day. The N2 vibration-rotation excitation dip at 2.3 eV is strongest at the lowest altitudes and decreases with increasing altitude and plasma density. The absolute accuracy of the experiment is discussed in detail and a correction factor for previously published AE-E fluxes is given.  相似文献   

11.
A new theoretical approach for calculating the equilibrium photoelectron flux energy and pitch angle distribution in the ionosphere is presented. Photoelectron transport, secondary electron production, and energy degradation by the excitation of the discrete energy states of the neutral atmospheric constituents and by continuous energy transfer to the ambient thermal electron gas are included in a manner consistent with the Boltzmann equation which constitutes the foundation of the theory. A difference equation, suitable for numerical solution, is given, and a numerical method for the solution of this equation is discussed in detail.  相似文献   

12.
As part of the continuing effort to improve the accuracy of the absolute measurements of the ambient photoelectron flux in the thermosphere from the Atmosphere Explorer Satellite Photoelectron Spectrometer experiments (PES), we present a detailed comparison of experimental photoelectron fluxes from AE-C and AE-E together with theoretical calculations of the ambient flux for the same geophysical conditions. As an additional check, the various experimental and theoretical fluxes are used to calculate the expected N2 2PG (0, 0) volume emission rate expected at 3371Å and these results are compared to AE-C Visible Airglow Experimental (VAE) experimental results. The comparisons clearly show that because of spacecraft shielding of the sensor on AE-C, the agreement with AE-E spectra for similar geophysical conditions ranges from good when shielding is minimal to poor for severe shielding cases. The calculated fluxes are lower by approx. a factor of 1.5–2.0 in absolute magnitude than the AE-E or unshielded AE-C fluxes. The N2 2PG volume emission rates calculated from the measured ambient electron fluxes overestimate the measured VAE volume emission rates by 20–30% while those calculated from the theoretical fluxes underestimate the measured emission rate by typically 30%. These data suggest therefore that the measured AE-E fluxes are 20–30% high.  相似文献   

13.
Photoelectron flux in the energy range 6–70 eV coming from the sunlight conjugate ionosphere has been measured directly by the rocket borne low energy electron spectrometer in the altitude region of 210–350 km. Pitch angle distribution of the measured flux is nearly isotropic, the flux decreasing slightly with pitch angle. The photoelectron fluxes measured at 350 km at the energies of 15 and 30 eV are 3 × 106 and 1 × 106 (cm2 s str eV)?1 respectively which decrease to 1 × 106 and 1 × 105 at 250 km at the same energies. These values are consistent with the vertical profile of the 630 nm airglow intensity measured simultaneously. The fluxes obtained near apogee show peaks in the range 20–30 eV which also appear in the daytime photoelectron flux, indicating reduced loss of electrons during the passage from the conjugate ionosphere through the plasmasphere at the low geomagnetic latitude where observation was made. Photoelectron fluxes observed below the apogee height are compared to the calculated fluxes to investigate the interaction of electrons with the atmospheric species during the passage in the ionosphere. Calculated fluxes obtained by using continuous slowing-down approximation and neglecting pitch angle scattering are in good agreement with the observations although there still remain disagreements in detailed comparison which may be ascribed to the assumptions inherent in the calculation and/or to the uncertainties of the input data for the calculation.  相似文献   

14.
Recent spectroscopic observations of atmospheric emissions in the u.v. region of the spectrum have been analyzed using laboratory-measured excitation cross-sections, models and observations of energetic electron fluxes and models of atmospheric composition. In both the airglow and the aurora, self-consistent pictures of the excitation processes and atmospheric composition have been obtained. These analyses have shown that photoelectron fluxes measured from the Atmospheric Explorer satellite are in good agreement with the photoelectron-excited dayglow and that a large number of recent laboratory-measured excitation processes are able to reproduce the u.v. spectra in both the dayglow and aurora. In this paper we show that accurate quantitative determinations of thermospheric parameters can now be made from u.v. spectral observations. In particular, we show that the composition and temperature can be obtained from altitude profiles of the emissions alone, without reliance on the absolute photoelectron flux.  相似文献   

15.
A numerical model of current F-region theory is use to calculate the diurnal variation of the mid-latitude ionospheric F-region over Millstone Hill on 23–24 March 1970, during quiet geomagnetic conditions. From the solar EUV flux, the model calculates at each altitude and time step primary photoelectron spectra and ionization rates of various ion species. The photoelectron transport equation is solved for the secondary ionization rates, photoelectron spectra, and various airglow excitation rates. Five ion continuity equations that include the effects of transport by diffusion, magnetospheric-ionospheric plasma transport, electric fields, and neutral winds are solved for the ion composition and electron density. The electron and ion temperatures are also calculated using the heating rates determined from chemical reactions, photoelectron collisions, and magnetospheric-ionospheric energy transport. The calculations are performed for a diurnal cycle considering a stationary field tube co-rotating with the Earth; only the vertical plasma drift caused by electric fields perpendicular to the geomagnetic field line is allowed but not the horizontal drift. The boundary conditions used in the model are determined from the incoherent scatter radar measurements of Te, Ti and O+ flux at 800km over Millstone Hill (Evans, 1971a). The component of the neutral thermospheric winds along the geomagnetic field has an important influence on the overall ionospheric structure. It is determined from a separate dynamic model of the neutral thermosphere, using incoherent scatter radar measurements.The calculated diurnal variation of the ionospheric structure agrees well with the values measured by the incoherent scatter radar when certain restrictions are placed on the solar EUV flux and model neutral atmospheric compositions. Namely, the solar EUV fluxes of Hinteregger (1970) are doubled and an atomic oxygen concentration of at least 1011cm3 at 120 km is required for the neutral model atmosphere. Calculations also show that the topside thermal structure of the ionosphere is primarily maintained by a flow of heat from the magnetosphere and the night-time F2-region is maintained in part by neutral winds, diffusion, electric fields, and plasma flow from the magnetosphere. The problem of maintaining the calculated night-time ionosphere at the observed values is also discussed.  相似文献   

16.
The Electron Spectrometer (ELS) instrument of the ASPERA-3 package on the Mars Express satellite has recorded photoelectron energy spectra up to apoapsis (∼10,000 km altitude). The characteristic photoelectron shape of the spectrum is sometimes seen well above the ionosphere in the evening sector across a wide range of near-equatorial latitudes. Two numerical models are used to analyze the characteristics of these high-altitude photoelectrons. The first is a global, multi-species MHD code that produces a 3-D representation of the magnetic field and bulk plasma parameters around Mars. It is used here to examine the possibility of magnetic connectivity between the high-altitude flanks of the martian ionosheath and the subsolar ionosphere. It is shown that some field lines in this region are draped interplanetary magnetic lines while others are open field lines (connected to both the IMF and the crustal magnetic field sources). The second model is a kinetic electron transport model that calculates the electron velocity space distribution along a selected, non-uniform, magnetic field line. It is used here to simulate the high-altitude ELS measurements. It is shown that the photoelectrons are essentially confined to the source cone, as governed by magnetic field inhomogeneity along the field line. Reasonable agreement is shown between the data and the model results, and a method is demonstrated for inferring properties of the local and photoelectron source region magnetic field from the ELS measurements. Specifically, the number of sectors in which photoelectrons are measured is a function of the magnetic field intensity ratio and the field's angle with respect to the detector plane. In addition, the sector of the photoelectron flux peak is a function of the magnetic field azimuthal angle in the detector plane.  相似文献   

17.
For the 10–30 nm interval within the extreme UV region of the solar spectrum, there are no commonly accepted views on the spectral composition and absolute magnitudes of the radiation intensity due to the lack of reliable data. This region is connected with characteristics of the ionosphere heat regime, photoelectron spectrum parameters and E–F valley characteristics. For estimating the solar radiation flux by the indirect route within the spectral region from 10 to 30 nm, which is difficult for direct measurements, it is suggested to use data on the electron concentration in the E-region maximum and E–F valley. Taken from empirical models, the data on these parameters were correlated with theoretical calculations of height profiles of electron concentration in the ionosphere. Based on the proportion between electron concentration in the E-layer maximum and E–F valley minimum, the solar radiation flux within the 10–30 nm region was shown to be 2.5 times greater than that obtained in measurements on board the ‘AE–E’ and ‘AE–C’ satellites. The results are used for correcting model spectra of the extreme UV radiation.  相似文献   

18.
Observations and computer calculations of OI 7774 airglow emissions excited by conjugate photoelectrons have been carried out. The observations were made at McDonald Observatory, Texas using a 2m grille spectrometer from December 1972 to June 1973. The zenithal emission intensity during conjugate photoelectron precipitation was fairly constant at 2–4 R until conjugate sunset, after which it diminished steadily and ceased near a conjugate solar zenith angle (χc) of 105 ± 3°. A predawn enhancement in both OI 7774 and [OI] 6300 was observed to commence near χc ~ 102°.The computations utilize the two-stream technique of Nagy and Banks (1970) to obtain the escaping photoelectron flux and the local excitation rates of the oxygen emissions. Good agreement with the observations is obtained for the dependence of the emission rate on conjugate solar zenith angle. A lack of agreement in absolute intensity may not be due entirely to uncertainties in the excitation cross section. The discrepancy may indicate significant magnetospheric scattering of photoelectrons with energy greater than 15 eV.  相似文献   

19.
Modeling of the dayglow spectrum in the wavelength region between 3300 and 3500 Å indicates that the N2 second positive (0,0) band at 3371 Å is blended with the Vegard-Kaplan (0,9) band. A recent analysis of rocket observations of the dayglow shows that 20–30% of a 3371 Å narrow band filter-photometer signal is due to the VK emission (Conway and Christensen, 1983). Kopp et al. (1977) and Hernandez et al. (1983) reported analyses of 3371 Å photometer observations from the Visible Airglow Experiment on the Atmospheric Explorer-C (AE-C) satellite which did not consider the Vegard-Kaplan (VK) emission. The observations were compared to theoretical estimates of the second positive volume emission rate based on a photoelectron model and on absolute fluxes measured by the Photoelectron Spectrometer experiments on AE-C and AE-E. Inclusion of the VK band in the AE analysis would bring the reported photoelectron theory into agreement with the airglow observations. However, the overestimate of the N2 second positive airglow predicted by the AE-E photoelectron flux measurements increases to a factor of nearly two rather than the 20–30% reported by Hernandez et al. (1983).  相似文献   

20.
The total photoelectron and secondary electron fluxes are calculated at different times and altitudes along the trajectory of Mars Global Surveyor passing through the nightside and dayside martian ionosphere. These results are compared with the electron reflectometer experiment on board Mars Global Surveyor. The calculated electron spectra are in good agreement with this measurement. However, the combined fluxes of proton and hydrogen atom as calculated by E. Kallio and P. Janhunen (2001, J. Geophys. Res.106, 5617-5634) were found to be 1-2 orders of magnitude smaller than the measured spectra. We have also calculated ionization rates and ion and electron densities due to solar EUV, X-ray, and electron-proton-hydrogen atom impacting with atmospheric gases of Mars at solar zenith angles of 75°, 105°, and 127°. In the vicinity of the dayside ionization peak, it is found that the ion production rate caused by the precipitation of proton-hydrogen atom is larger than the X-ray impact ionization rate while at all altitudes, the photoionization rate is always greater than either of the two. Moreover, X-rays contribute greatly to the photoelectron impact ionization rate as compared to the photoion production rate. The calculated electron densities are compared with radio occultation measurements made by Mars Global Surveyor, Viking 1, and Mars 5 spacecraft at these solar zenith angles. The dayside ionosphere produced by proton-hydrogen atom is smaller by an order of magnitude than that produced by solar EUV radiation. X-rays play a significant role in the dayside ionosphere of Mars at the altitude range 100-120 km. Solar wind electrons and protons provide a substantial source for the nightside ionosphere. These calculations are carried out for a solar minimum period using solar wind electron flux, photon flux, neutral densities, and temperatures under nearly the same areophysical conditions as the measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号