首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Manganese nodules from the Central Indian Basin (5°–10°S) vary in abundance, morphology, mineralogy, and chemistry with water depth and sediment type. Nodules from the southern region, dominated by siliceous sediment, differ markedly from northern and central regions, dominated by terrigenous and terrigenous-siliceous mixed sediments, respectively. Effects of lysocline and sediment diagenesis are envisaged for trace metal enrichment in rough nodules of the southern region. Influence of deep ocean bottom currents have been postulated for the atypical trace metal enrichment of the smooth nodules from other regions. While nodules from other areas of sub-equatorial CIB are grown hydrogenetically, present area nodules show diagenetic influence.  相似文献   

2.
In the Central Indian Basin manganese nodule abundance was variable in all sediment types. Mean abundance varied from 1.5 in calcareous ooze to 10.2 kg/m2 in terrigenous-siliceous ooze sediments. Nodule grade and growth rates are positively correlated only up to 10 mm/My (million years), and grade shows no distinct relationship with abundance. Relationships between the morphochemical characteristics of the nodules and host sediment types are subtle. Both hydrogenetic and diagenetic nodules (with smooth and rough surfaces respectively) occur on almost all sediments, but in variable proportions. Thus, the overall distribution pattern shows that small nodules (<4-cm diameters) of lower grade (average value Ni+Cu+Co=1.21%) with smooth surfaces are more common on red clay, terrigenous, and terrigenous-siliceous ooze transition-zone sediments. By contrast, large nodules (>4-cm diameters) of higher grade (average value Ni+Cu+Co=1.80%) with rough surfaces are more prevalent on siliceous ooze, siliceous ooze-red clay, and calcareous ooze-red clay transition-zone sediments. This implies an enhanced supply of trace metals from pore waters to rough-surface nodules during early diagenesis.  相似文献   

3.
泉州湾泥沙运移特征的初步研究   总被引:4,自引:0,他引:4  
泉州湾属于潮流、径流和波浪综合作用下的山地海湾,根据两次(1994年6月和2001年12月)水文泥沙实测资料,分析泉州湾悬浮泥沙和沉积物分布特征,研究其沉积物来源,并探讨北水道的沉积速率。悬浮泥沙含量自河口(湾顶)-湾口-外海逐渐降低。高值区出现在水道和河口,冬季高于夏季,大、中潮高于小潮。泉州湾沉积物分布与水动力强弱环境呈很好的对应关系。晋江携带入海的泥沙是研究区的主要物源:海岸侵蚀来沙与湾外来沙也提供了部分物源。南、北水道分别属于落潮槽与涨潮槽两种不同性质的水道。北水道沉积物较细,以沉积作用为主,其入口处淤积程度较轻,而在上游淤积程度相对较重;南水道流速较大,沉积物较粗,是泥沙输运主要通道,地形变化不明显。  相似文献   

4.
根据2011年在海阳万米海滩岸段与威海国际海水浴场岸段调查获得的夏、冬两季海岸实测地形剖面与沉积物粒度数据,并收集相关水文资料,对南北两海岸地貌与沉积差异性进行分析,探讨了半岛东部南北岸典型砂质海岸动力环境的差异。研究结果表明,南部海岸宽广平缓,发育滩脊、滩肩、沙波纹等地貌,沉积物在水下岸坡上段以中粗砂、中细砂为主,水下岸坡以下段以粉砂、黏土质粉砂为主;北部海岸地形陡,发育滩肩陡坎、水下沙坝等地貌,沉积物以砾质砂为主。导致这些差异的动力为风、波浪、潮汐及沿岸流堆积。  相似文献   

5.
Manganese nodules of the Clarion–Clipperton Fracture Zone (CCFZ) in the NE Pacific Ocean are highly enriched in Ni, Cu, Co, Mo and rare-earth elements, and thus may be the subject of future mining operations. Elucidating the depositional and biogeochemical processes that contribute to nodule formation, as well as the respective redox environment, in both water column and sediment, supports our ability to locate future nodule deposits and to evaluate the potential ecological and environmental effects of future deep-sea mining. For these purposes we studied the local hydrodynamics and pore-water geochemistry with respect to the nodule coverage at four sites in the eastern CCFZ. Furthermore, we carried out selective leaching experiments at these sites in order to assess the potential mobility of Mn in the solid phase, and compared them with the spatial variations in sedimentation rates. We found that the oxygen penetration depth is 180–300 cm at all four sites, while reduction of Mn and NO3 is only significant below the oxygen penetration depth at sites with small or no nodules on the sediment surface. At the site without nodules, potential microbial respiration rates, determined by incubation experiments using 14C-labeled acetate, are slightly higher than at sites with nodules. Leaching experiments showed that surface sediments covered with big or medium-sized nodules are enriched in mobilizable Mn. Our deep oxygen measurements and pore-water data suggest that hydrogenetic and oxic-diagenetic processes control the present-day nodule growth at these sites, since free manganese from deeper sediments is unable to reach the sediment surface. We propose that the observed strong lateral contrasts in nodule size and abundance are sensitive to sedimentation rates, which in turn, are controlled by small-scale variations in seafloor topography and bottom-water current intensity.  相似文献   

6.
The deep ocean floor between the Clarion and Clipperton fracture zones (NE equatorial Pacific) has the highest known manganese nodule abundance in the world oceans. A detailed analysis of MR1 (Mapping Researcher 1, 11–12?kHz) sonar images and free-fall grab data in the Korean manganese nodule field areas reveals a close relationship between side-scan sonar characteristics of the seafloor and manganese nodule abundance. Eight sonar facies are identified based on back-scattering intensity and distribution patterns. These sonar facies can be interpreted as (1) volcanic seamounts (facies I-1), (2) bounding faults of abyssal hills (facies I-2 and II-1), (3) lava flows or volcanoclastic mass-flow deposits around the volcanic seamounts (facies I-3 and II-2), (4) crests of abyssal hills (facies II-1), (5) abyssal troughs between abyssal hills (facies III-1), (6) relatively flat areas (facies II-3 and III-2). In the areas where facies II-1 (abyssal hill crests with thin sediment cover) and II-3 (relatively flat areas draped by thin sediments) are dominant, manganese nodules occur abundantly. In contrast, zones comprising facies III-1 (abyssal troughs with thick sediment cover) and III-2 (relatively flat areas covered by thick sediments) are characterized by low abundance of manganese nodules. This relationship between distribution of sonar facies and manganese nodule abundance implies that (1) the qualitative difference in acoustic reflectivity of long-range side-scan sonar with some ground truth data is useful for regional assessment of manganese nodule occurrence over wide areas in a reasonable time, and (2) seafloor topography and sediment thickness are important controlling factors for regional occurrences of manganese nodules.  相似文献   

7.
Regional variation of Mn, Fe, Co, Ni and Cu in ferromanganese oxides (nodules and crusts) in the central south Pacific is related to primary productivity, oxygen minimum layer, and calcium carbonate compensation depth. The largely latitudinal influence of these environmental parameters on nodule and crust composition reflects their predominantly latitudinal variation. Primary productivity is the principal regional environmental control, influencing diagenetic enrichment of these elements in nodules through its effect, mediated by the CCD, on supply and concentration of labile organic matter vs. carbonate remains to the sediments. It influences hydrogenetic enrichment of these elements in nodules and crusts through its effect, mediated by the oxygen minimum layer (mainly in the case of crusts), on their export from surface waters.The elements’ varying susceptibility to being scavenged or organically bound influences the contrasting composition of diagenetic vs. hydrogenetic ferromanganese oxides, which is further influenced by depth. Hydrogenesis is the fundamental process governing nodule and crust formation, superimposed on which is diagenesis under specific circumstances; both are subject to intermittent interruption, diminution and augmentation by changes in environmental parameters. Application of regionally operative environmental controls locally explains local compositional variations and helps refine exploration criteria for economically viable nodules and crusts.  相似文献   

8.
The deep ocean floor between the Clarion and Clipperton fracture zones (NE equatorial Pacific) has the highest known manganese nodule abundance in the world oceans. A detailed analysis of MR1 (Mapping Researcher 1, 11-12 kHz) sonar images and free-fall grab data in the Korean manganese nodule field areas reveals a close relationship between side-scan sonar characteristics of the seafloor and manganese nodule abundance. Eight sonar facies are identified based on back-scattering intensity and distribution patterns. These sonar facies can be interpreted as (1) volcanic seamounts (facies I-1), (2) bounding faults of abyssal hills (facies I-2 and II-1), (3) lava flows or volcanoclastic mass-flow deposits around the volcanic seamounts (facies I-3 and II-2), (4) crests of abyssal hills (facies II-1), (5) abyssal troughs between abyssal hills (facies III-1), (6) relatively flat areas (facies II-3 and III-2). In the areas where facies II-1 (abyssal hill crests with thin sediment cover) and II-3 (relatively flat areas draped by thin sediments) are dominant, manganese nodules occur abundantly. In contrast, zones comprising facies III-1 (abyssal troughs with thick sediment cover) and III-2 (relatively flat areas covered by thick sediments) are characterized by low abundance of manganese nodules. This relationship between distribution of sonar facies and manganese nodule abundance implies that (1) the qualitative difference in acoustic reflectivity of long-range side-scan sonar with some ground truth data is useful for regional assessment of manganese nodule occurrence over wide areas in a reasonable time, and (2) seafloor topography and sediment thickness are important controlling factors for regional occurrences of manganese nodules.  相似文献   

9.
A study to estimate manganese nodule abundance (weight of nodules in kg/m2) was carried out in a small area of the abyssal plains covering a one-degree square block in the central Indian Basin. Abundance was assessed at various intervals by progressively reducing the grid spacing. Sampling the corners of the 1° survey block (approximately110-km spacing), i.e., four stations with 5-7 free-fall operations (sampling locations) in each case, indicated a nodule abundance of 3.50 kg/m2. By reducing the sampling spacing to four grid units (0.5° survey blocks) and sampling the entire block at eight stations (25 locations), the average abundance of the block was 3.36 kg/m2. Further reduction of the grid to 0.25° survey blocks and sampling in 16 grid units (70 sampling locations) increased the abundance to 4.41 kg/m2. For 64 grid units in the one-degree block (sampling in 0.125° survey blocks), a substantially higher value was recorded, i.e., 5.31 kg/m2 or about 1.5 times the abundance obtained at a 1° spacing. Adding 25 more stations in 0.0625° survey blocks (intervals of sampling locations approximately 500 m) resulted in a negligible change in abundance, the average value of the one-degree block being 5.23 kg/m2. These data demonstrate that, for estimating nodule resources in the region, it is important to adopt a close-grid sampling strategy, so that areas with lower abundance can be relinquished and areas with higher abundance can be confidently identified. To ascertain exact nodule abundance for mine-track selection, it may be sufficient to restrict detailed grid surveys to areas with marked variations in topography and nodule abundance, rather than carrying out such detailed (albeit less cost effective) surveys at a very narrow spacing (0.0625°) over the entire pioneer area.  相似文献   

10.
The western South Korea Plateau in the East Sea (Sea of Japan) is occupied by rifted continental fragments formed in association with the early phase of back-arc opening. The present study focuses on the seismic stratigraphy of the sedimentary succession and the underlying acoustic basement in this region, based on closely spaced multichannel seismic reflection profiles. The sedimentary succession occurs mainly within a series of subparallel basement troughs (grabens or half grabens) bounded by faulted continental blocks (horsts) or volcanic ridges, and commonly floored by extrusive volcanic rocks showing hyperbolic reflectors. These features are strongly suggestive of continental rifting accompanied by normal faulting, volcanic activity and high rates of basin subsidence. The sedimentary succession can be subdivided into four seismic units. Unit 1 is characterized by short and irregular high-amplitude reflectors and interpreted as a syn-rift deposit consisting of a non-marine volcanics/sediment complex in topographic lows. Units 2 and 3 formed in an open marine environment during the Middle Miocene to Early Pliocene, characterized by an onlap-fill and later draping marine sedimentary succession dominantly composed of hemipelagic sediments and turbidites with frequent intercalation of mass-flow deposits. Along the western margin of the plateau, these units were deformed under a compressional regime in the Early Pliocene, associated with the back-arc closing phase. Unit 4 (deposited since the Early Pliocene) comprises hemipelagic sediments and turbidites with evidence of sporadic slides/slumps.  相似文献   

11.
南海北部陆坡神狐海域发育众多海底峡谷,其物质来源、地貌形态、水动力条件、沉积过程复杂,海底滑坡和浊流频发。虽然通过地球物理(多波束和反射地震等)能够识别出数米至百米的滑坡体,但对于浅层海底重力流、浊流和异重流等沉积体系的高分辨率识别还受到很多限制。本研究以南海北部陆坡海底峡谷群12号峡谷脊部下游的SH-CL38站位岩芯沉积物为研究对象,通过粒度测试和浮游有孔虫氧同位素组成分析,将该站位岩芯划分为3个层段:第Ⅰ层段(0~285 cm)、第Ⅱ层段(285~615 cm)以及第Ⅲ层段(615~800 cm)。其中第Ⅱ层段的粒度参数、有孔虫的氧同位素组成明显不同于其他层段,这表明该层段形成时的水动力条件、沉积环境发生了突变。而且第II层段的285~505 cm和505~615 cm具有明显不同的概率累积曲线特征,粒度数据也分布在C-M图上不同的区域。基于此,我们认为该站位的异常沉积层是受深水沉积作用和末次冰期海平面变化的影响,285~505 cm层段发育浊流沉积,而505~615 cm层段可能是浊流或重力流引发的沉积物失稳。  相似文献   

12.
南海南、北共轭大陆边缘盆地的对比研究是深入了解南海扩张过程及古地理格局的重要途径。由于历史原因,目前对南海南缘盆地构造—沉积演化研究还非常薄弱,极大地限制了对南海扩张及海陆变迁等基础地质问题的整体认识。综合南海及其周缘盆地沉积地层和沉积环境的研究进展,对南海扩张过程和古地理格局演化进行了分析。南海南、北缘盆地破裂不整合面存在着明显的穿时性,从NE向SW逐渐变年轻,对应南海海底扩张从NE向SW渐进式打开。台湾新生代地层破裂不整合面位于33~39 Ma之间,暗示南海洋壳开始形成的时间可能在33~39 Ma之间,有部分较老的洋壳可能已经向东俯冲消减掉。南海经历了从早期"北陆南海"逐渐演变为现今"北海南陆"的过程,南海北缘早期存在一个向东开口的海湾,可能为古南海的一部分。伴随南海的扩张,海侵范围由东向西逐渐扩展,从一个狭窄的海湾形成今日的形貌。南海北缘盆地物源在~25 Ma左右发生明显的改变,早期主要为华南沿海的近源剥蚀沉积。在~25 Ma后,来自扬子地块的沉积物逐渐增多。南海南缘盆地物源在~25 Ma前与南海北缘盆地具有相似的物质来源,~25 Ma后南海洋盆阻挡扬子地块的物源向南输送,南海南缘仍以陆块内部中生代花岗岩及火山岩为主要物质来源。  相似文献   

13.
Analysis of high-resolution seismic reflection profiles and sediment samples has revealed the evolution and sediment budget of the southeastern Yellow Sea mud belt (SEYSM) along the southwestern Korean Peninsula. The SEYSM, up to 50 m thick, over 250 km long and 20–55 km wide, can be divided into three stratigraphic units (A1, A2, and B, from oldest to youngest). Unit A1, overlying the acoustic basement, comprises the northern part of the SEYSM. Unit A2 comprises the southern part of the SEYSM; much of unit A2 is exposed at the seafloor. Unit B completely covers unit A1 and pinches out southward.

14C data suggest that evolution of each unit is closely related to the postglacial sea-level changes. Unit A1 consists of estuarine/deltaic or shallow-water muds deposited during the early to middle stage of postglacial sea-level rise (ca. 14,000–7000 yr B.P.). Unit A2 corresponds to relict muds deposited during the last, deceleration stage of sea-level rise (ca. 7000–3.500 yr B.P.). Unit B consists of shelf muds deposited during the recent sea-level highstand (ca. <3500 yr B.P.).

Very low background activities of 210Pb of the surface sediment of unit A2 suggest that the present-day sediment accumulation is negligible in the southern SEYSM. On the other hand, 210Pb excess activity profiles in unit B yield an average sediment accumulation rate of 3.9 mm/yr, indicating active sediment accumulation in the northern SEYSM. The annual sink (3.0×107 tons/yr) of fine-grained sediment in unit B is about an order of magnitude greater than can be explained by the sediment input from the Korean rivers alone. We propose that reworking of unit A2 has provided large volumes of muds to unit B, resulting in excessive sediment accumulation in the northern SEYSM. Much of unit A2, in turn, is likely to have originated from erosion of unit A1 in the north. This rather unique erosional/depositional regime of the SEYSM is probably owing to the tidal and regional currents characteristic in the southeastern Yellow Sea.  相似文献   


14.
I\TRODUcrIO\Most substances that enter the oceans are ultimately kept as sediments. ffefore settingdOwn, they experienced vdrious complex biological and chebocal cycles and interactions, whichinvolve sorne substances more than others. The interactlons continue after deposition. Sedl-ments do not lie passive]y on the sea--floor until they are buried: deeP--sea animals disturb thesediments as they forage fOr fdri, and some sediments may experience erosion and resuspensionby bottom currents. …  相似文献   

15.
Distribution characteristics of cobalt‐rich manganese deposits were evaluated from stereo photographs and video data on a seamount in the central Pacific Ocean by image analysis, photogrammetric technique, and visual observations. The results show that many locations have high crust coverages with highly undulating micro‐topography. High nodule coverages occur on relatively flat seafloor, and the nodule size distribution varies from uniform to inhomogeneous among different locations. Distribution of these deposits along detailed topographic sections show that the seafloor can be divided into nodule dominant zones between 0° and 3° slopes, with sediment patches up to 4° slopes; and crust dominant zones, which occur on slopes higher than 15°. The transition zone, between 4° and 15° slopes, has many locations, where nodules and crusts co‐occur in varying percentages. The observation of crust outcrops among sediments and nodules, as well as in the gravity core samples, indicates the presence of shallow buried crusts as well, which can substantially enhance resource evaluation of the deposits.  相似文献   

16.
Bathymetric, 9.5-kHz long-range sidescan sonar (OKEAN), seismic reflection and sediment-core data are used in the analysis of two tectonic troughs south of Crete, Eastern Mediterranean Sea. Here, up to 1.2 s two-way travel time (TWTT) of strata have accumulated since the Middle Miocene in association with extension in the South Aegean region. The study area comprises >100-km- long by >25-km-wide basins filled by sediments subdivided into two seismic units: (1) an upper Unit 1 deposited in sub-basins which follow the present-day configuration of the southern Cretan margin; (2) a basal Unit 2, more than 500 ms (TWTT) thick, accumulated in deeper half-graben/grabens distinct from the present-day depocentres. Both units overlap a locally stratified Unit 3 comprising the pre-Neogene core complex of Crete and Gavdos. In this work, the interpreted seismic units are correlated with the onshore stratigraphy, demonstrating that denudation processes occurring on Crete and Gavdos in response to major tectonic events have been responsible for high sedimentation rates along the proximal southern Cretan margin. Consequently, topographically confined sedimentary units have been deposited south of Crete in the last 12 Ma, including turbidites and other mass-flow deposits fed by evolving transverse and axial channel systems. Surface processes controlling facies distribution include the direct inflow of sediment from alluvial-fan systems and incising mountain rivers onto the Cretan slope, where significant sediment instability processes occur at present. In this setting, seismic profiles reveal eight different types of stratigraphic contacts on basin-margin highs, and basinal areas show evidence of halokinesis and/or fluid escape. The acquired data also show that significant changes to the margin’s configuration occurred in association with the post-Alpine tectonic and eustatic episodes affecting the Eastern Mediterranean.  相似文献   

17.
南海东部海域表层沉积物类型的研究   总被引:10,自引:3,他引:7  
南海东部海域表层沉积物可被分为11种类型:含岩块砾石黏土质粉砂、贝壳珊瑚砂、黏土质粉砂、钙质黏土、钙质软泥、有孔虫砂、深海黏土、含铁锰微粒粉砂质黏土、硅质黏土、含火山灰硅质黏土、含火山灰粉砂质黏土.这些类型按物源和成因可被分为陆源碎屑、钙质碎屑和硅质碎屑、火山碎屑3大类型,其中陆源碎屑分布面积约占50%,钙质碎屑占20%,硅质碎屑和火山碎屑各占15%.在物质来源、海底地形、火山作用、生物作用、水动力条件等因素影响和控制下,由于沉积环境的差异,故区内褐色类沉积物最多(60.68%),灰色类沉积物次之(38.20%),黄色类沉积物最少(1.12%).台湾省以南到17°N以北海区沉积物以陆源沉积物分布为主;巴士海峡以西海区沉积物较粗,常含砂岩块和砾石;东沙群岛以东海区钙质生物碎屑沉积丰富;中、西部海区以含铁锰微粒沉积物为主;中、南部海区水深大,主要分布硅质沉积物;南部海区、礼乐滩北缘沉积物受礼乐滩珊瑚碎屑影响大,沉积物类型为钙质软泥.  相似文献   

18.
The island of Menorca, one of the Balearic Islands (Spain) located in the western Mediterranean, is characterised by a contrasting geology and landscape with two major geographic domains: (1) a southern region called Migjorn, comprised of Late Miocene calcarenites and limestones, and (2) a northern region known as Tramuntana, which is composed of folded and faulted Palaeozoic, Mesozoic and Tertiary (Oligocene) siliceous and calcareous rocks. Both domains are lined by numerous pocket beaches exhibiting a high variety of surficial sediment assemblages. Grain-size and compositional analyses revealed that cliff erosion and nearshore Posidonia oceanica meadows are the main sources of sediments consisting mostly of medium- to coarse-grained carbonate sands of marine biogenic origin, with variable amounts of terrigenous rock fragments and quartz. Based on distinctly different contributions of bioclastic material, biogenic carbonates and quartz, 320 sediment samples from 64 beaches were grouped into different facies associations dominated by either (1) biogenic sands, (2) biogenic sands with terrigenous contributions or (3) terrigenous sands with quartz. Nevertheless, there is a marked regional variability in sediment texture and composition. Thus, variable mixtures of carbonate and siliciclastic sediments characterise the beaches of the northern region, whereas the beaches of the southern region are composed mostly of carbonate sands of marine biogenic origin. An exception is the central sector of the south coast, which is enriched in quartz sand (~10 %); this can be related to outcrops of quartz-rich basement rock and also to rocks exposed in some northern drainage basins captured by southern streams since the Plio-Quaternary.  相似文献   

19.
以黄海66个表层沉积物为研究对象,通过粒度、黏土矿物和碎屑矿物分析,研究了黄海表层沉积物的粒度分布与矿物组成特征,探讨了研究区沉积物的矿物组成特征对其物源、沉积环境的指示意义。黄海表层沉积物平均粒径为5.2Φ,分选较差;黏土矿物组合类型为伊利石-高岭石-蒙脱石-绿泥石,其中伊利石的含量最高,蒙脱石的含量最低;碎屑矿物(粒径为0.063~0.125 mm)平均含量为8.07%,标准偏差为4.03,分布趋势与平均粒径分布基本一致,轻矿物以石英和长石为主;重矿物以角闪石和绿帘石为主,其次是不透明矿物和片状矿物,重矿物主要集中分布于黄海南部。物源识别结果表明:黄海的东北部海域接受鸭绿江沉积物的供应;黄海北部主要为黄河源沉积物;南黄海西部沉积物主要为黄海沿岸流南下带来的现代黄河物质和再悬浮的老黄河沉积物;南黄海中部沉积物来源复杂以黄河沉积物为主,长江沉积物的供应较少。  相似文献   

20.
Abstract

The South China Sea is located within the domain of a plate triple‐junction and can be divided into five major geotectonic blocks that control the formation and distribution of the mineral resources of the region: (1) the southern China faulted block, (2) the eastern Indochina faulted block, (3) the Nansha‐Borneo faulted block, (4) the Taiwan‐Luzon faulted block, and (5) the central ocean basin faulted block. Apart from oil and gas, the most intensively exploited mineral deposits in the South China Sea are near‐shore placer minerals of titaniferous magnetite, zircon, monazite, tin, gold, and chromite. Based on analyses of submarine morphology and sea level change during the past 15,000 years, the South China Sea continental shelves are considered to be highly prospective for additional placer occurrence associated with such submarine features as: submerged platforms and terraces, drowned rivers and sand bars, ancient beaches, and seafloors covered by relict sediments. Additionally, based on available data, polymetallic sulfides and manganese nodules and crusts are considered as speculative resources of the future in the South China Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号